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ABSTRACT

This paper presents an event sensing paradigm for intelligent event-analysis in a wireless, ad hoc, multi-camera,
video surveillance system. In particilar, we present statistical methods that we have developed to support three
aspects of event sensing: 1) energy-efficient, resource-conserving, and robust sensor data fusion and analysis,
2) intelligent event modeling and recognition, and 3) rapid deployment, dynamic configuration, and continuous
operation of the camera networks. We outline our preliminary results, and discuss future directions that research
might take.
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1. INTRODUCTION

Video cameras and wireless networks are becoming ubiquitous features of modern life. The confluence of these
two technologies now makes it possible to construct wireless ad hoc networks of multiple video cameras that can
be rapidly deployed, dynamically configured, and continuously operated to provide highly-available coverage for
environment monitoring and security surveillance.

While many extended “eyes” are being installed at an unprecedented pace, the intelligence needed for inter-
preting video-surveillance events by computers is still rather unsophisticated. In a recent ACM video-surveillance
workshop co-chaired by the authors,! participating developers and practitioners emphasized the urgent need
for an enhanced “brain” to match up with these multiple camera views for video analysis and query answering.
Indeed, we need (semi-) automated video-analysis and event-recognition systems that can gather intelligence and
provide timely warnings to alert security personnel.

To support (semi-) automatic event sensing, we have develop statistical methods to improve the two major
phases of a distributed, mobile surveillance system: data fusion and event analysis.>® The data-fusion phase
integrates mobile, multi-source data to detect and extract motion trajectories from video sources. The event-
analysis phase deals with classifying the events as to relevance for the query. The research challenges of the two
phases are summarized as follows:

e Data fusion from mobile cameras. Data fusion deals with collecting and analyzing data at the cameras,
transmitting the data (could be noisy or partial) to the server, and fusing them to extract motion trajectories.
Data fusion comes up against three major research challenges: sensor-network configuration, spatio-temporal
data fusion, and resource management. Given a query and its precision requirement, the sensor-network
may need to move some cameras and reconfigure itself to “see” the event of interest. This reconfiguration
must be performed in such a way that useful data can be collected with minimal consumption of power,
network bandwidth, and computer resources. Once the network has been reconfigured, observations from
multiple cameras should be integrated to build spatio-temporal patterns that can best describe events in the
environment. Such integration is necessary to improve surveillance coverage and to deal with transient object-
tracking obstacles such as spatial occlusion and scene clutter. In addition, streaming data to the server must
observe resource constraints such as network bandwidth or the server’s computation and memory capacity.
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e Event analysis. Event analysis deals with mapping motion trajectories (sequence data) to semantics (e.g.,
benign and suspicious events). Most traditional statistical learning algorithms cannot be directly applied to
variable-length sequence data, which may also exhibit temporal ordering. In addition, positive events (i.e.,
the sought-for hazardous events) are always significantly outnumbered by negative events in the training data.
In such an imbalanced set of training data, the class boundary tends to skew toward the minority class and
becomes very sensitive to noise.

To answer the above challenges, we have been working on five research tasks to advance fundamental theories
and develop statistical methods that can significantly improve the operation of wireless ad hoc camera networks,
quality of data fusion, and accuracy of event analysis. The five research tasks are summarized as follows:

1. Sensor-network resource management (Section 2). We have developed statistical methods to manage net-
works for conserving resources, including power at the sensor nodes, as well as network bandwidth and
other system resources at the server.

2. Statistical mobile-sensor data fusion (Section 3). We have devised algorithms to fuse spatially and tem-
porally overlapped data for reliable event detection. Our research focus is on enhancing the reliability of
existing object-tracking algorithms by performing both sensor-to-server data fusion and server-to-sensor
information dissemination.

3. Sequence-data to event mapping (Section 4). We have developed statistical learning algorithms that consider
both the primary and secondary structures of motion patterns in mapping sequence-data to events. In
contrast to the widely-used Hidden Markov Models (HMMs), our learning algorithms require a much
smaller amount of training data. .

4. Imbalanced training-data statistical learning (Section 5). We have designed both algorithmic and data-
processing approaches to modify class boundaries for improving event-recognition accuracy when positive
training instances are difficult to collect.

5. Synergistic integration—energy-efficient, distributed topology control (Section 6). We have developed scal-
able ad hoc networking protocols that are suitable for video surveillance networks comprising hundreds of
video cameras.

2. SENSOR NETWORK RESOURCE MANAGEMENT

In a distributed sensor network, cameras record continuous high-volume video streams. Because of the high
data volume and rapid rate, it is infeasible for an untethered, battery-powered sensor node to transmit a large
quantity of raw data to a server for processing.*® To conserve resources—network bandwidth, storage, and
CPU—many recent papers’ ! propose methods to reduce the amount of data delivered to the server. In these
schemes, provided that the server can answer queries within specified precision constraints, data communication
is not enacted.

A major shortcoming of the existing solutions is that they are often ad hoc, as explained in® by Widom and
Motwani, and are highly application-dependent. No unified solution exists for managing distributed streams. In
this task, we treat resource management in a sensor network as fundamentally a filtering problem: an effective
stream-filtering algorithm should filter out the maximum amount of data as long as the query-precision constraints
are met at the server. We introduce our Dual Kalman Filter (DKF) architecture!? as a general and adaptive
solution to the stream-resource-management problem.

Figure 1 depicts the role of our proposed DKF (Dual Kalman Filter) model in a typical sensor-network
architecture. A user (on the left-hand side of the figure) issues to the server an event query with certain precision
constraints. The server activates a KF, denoted as KF;, and at the same time, the target sensor activates a mirror
KF with the same parameters, denoted as KF,,. The dual filters KF,; and KF,, predict future data values. Only
when the filter at sensor KF,, fails to predict future data within the precision constraint (thus preventing KF,
from making an accurate prediction at the server) does the sensor send updates to KFs. For instance, if no
interesting event is taking place at a sensor, no data transmission is made to the server. When multiple events
are taking place at a sensor, multiple pairs of KF; and KF,, will be invoked to track the events. Significant



bandwidth conservation can be achieved if a reliable and accurate data prediction mechanism is employed, and
the server resources can be allocated to the sensors where actions are taking place. We plan to use the Kalman
Filter as such a mechanism for its simplicity, efficiency, and provable optimality under fairly general conditions.
Our preliminary results indicate that DKF shows promise in several scenarios with which we experimented.'?
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Figure 1. The DKF model

Preliminary Results

We have employed DKF in our multi-camera surveillance prototype for analyzing vehicle/human behavior in a
parking lot. One experiment that we have conducted is on moving-vehicle tracking. In our experiment, each
moving object had two attributes: namely, location (in terms of X and Y coordinates) and wvelocity (in terms
speed and angle of direction). We used a uniform random-number generator to generate different slopes of the
velocity vector at random intervals of time. We generated different speeds of the object at random time intervals
in a similar manner. Thus the object could randomly change its speed and heading, and then continue on that
linear path for a randomly generated length of time. The maximum speed of the object was limited to 500 units,
whereas the slope could arbitrarily change by any amount. We constructed a data set shown in Figure 2(a),
using the above model containing 4000 data points at a sampling rate of 100 ms.

We tested the performance of the Kalman Filter approach on two different state models:

e Constant KF model: The system is modeled such that the latest updated value is the best prediction for the
future. This model is conceptually similar to the standard cached approximation model. The measurement
consists of just the position of the object in the two-dimensional space, i.e., X coordinate and Y coordinate.

e Linear KF model: Here we take the rate of change of the position into consideration when predicting future
values.
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Figure 2. A Resource Conservation Example Using Kalman Filter.

Figure 2(b) shows comparative results of the two Kalman Filter models with the cached approximation
scheme. Measurements are taken in the form of position P(z,y). Given a precision constraint §, point P(z,y) is



updated to the server if an error in either X or Y value is greater than é. In both KF models, only the position
is recorded, not a measurement of the rate of change of coordinate values. As evident from Figure 2(b), the
percentage of updates is the same, whether using caching or the constant KF model. This is because the constant
model is similar to the caching scheme when the rate of change of values is not considered. However, if we use
the linear KF model, we see that utilization of the communication resource is cut down by approximately 75% at
a moderate precision width of 3 units. As the precision width increases, the communication resource utilization
drops, and all three models show comparable performances. We also observe that the DKF performs at least as
well as the caching scheme, even in a worst-case scenario.

3. STATISTICAL MOBILE-SENSOR DATA FUSION

The server receives video streams from distributed cameras, each of which has limited spatial and temporal
coverage, is potentially noisy, and is susceptible to occlusion and scene clutter. To achieve wide-area coverage,
data from cameras must be fused. Fusing spatially and temporally overlapped data is a challenging task, since
cameras may have different sampling rates and resolutions, and some cameras may be mobile.

We propose here a hierarchical
master-slave fusion scheme. Referring
to Fig. 3, at the bottom level, each
slave station tracks the movements
of scene objects semi-independently.
The local trajectories are then re-
layed to a master station for fusing
into a consistent, global representa-
tion. This represents a “bottom-up”
} analysis paradigm. Furthermore, as
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each individual camera has a limited
field of view, and occlusion occurs due
i to scene clutter, we also employ a “top-
down” analysis module that dissemi-
nates fused information from the mas-
Figure 3. Two-level hierarchical Kalman Filter configuration ter station to slave stations. This top-
down information dissemination pro-

cess assists in tracking, cross validation, and error recovery—if the camera should lose track of an object.
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Preliminary Results

We used the Kalman Filter!® ' as the tool for fusing information spatially and temporally from multiple cameras
to detect motion events. Suppose that a vehicle (or a person) is moving in the parking lot. Its trajectory is
described in the global reference system by P(t) = [X (¢),Y (), Z(t)]¥. The trajectory may be observed in camera
i, as p;i(t) = [z:(t),v:(t)]T, where i = 1,---,m (m is the number of cameras used). The goal is then to optimally
track, correlate, and fuse individual camera trajectories into a consistent, global description.*

We formulate the solution as a two-level hierarchy of the Kalman Filters. Referring to Fig. 3, at the bottom
level of the hierarchy, we employ for each camera a Kalman Filter to estimate, independently, the position p;(t),
velocity p;(t), and acceleration p;(t) of the vehicle, based on the tracked image trajectory of the vehicle in the

*There are two issues that need to be addressed here: registration and correspondence. First, to fuse measurements
from multiple sensors into one global estimate, two registration processes are needed: spatial registration to establish the
transformation among different camera coordinate frames, and temporal registration to synchronize multiple local clocks.
These techniques are well established in the literature, and we have developed algorithms to accomplish both spatial and
temporal registration.'® Second, it may be difficult to synchronize the activities observed in multiple cameras. The ques-
tion is how to disambiguate the correspondence of multiple trajectories. Spatial and temporal trajectory correspondence
can be established through the camera registration and stereopsis correspondence processes which are well established
techniques in photogrammetry and computer vision. For our discussion, we will assume that these problems can be
solved and we can achieve spatial and temporal registration of trajectories and disambiguate among multiple trajectories.
(Interested readers are referred to our recent paper'® for more details.



local camera reference frame. Or in the Kalman Filter jargon, the position, velocity, and acceleration vectors
establish the “state” of the system while the image trajectory serves as the “observation” of the system state. At
the top level of the hierarchy, we use a single Kalman Filter to estimate the vehicle’s position P(t), velocity P (),
and acceleration P(t) in the global world reference frame—this time, using the estimated positions, velocities, and
accelerations from multiple cameras (p;(t), pi(t), Di(t)) as observations (the solid feed-upward lines in Fig. 3).
This is possible because camera calibration and registration'®2° are used for deriving the transform matrices
(Timagecworid and Tyorideimage in Fig. 3). These matrices allow p;, measured in the reference frame of an

individual camera, to be related to P in the global world system.

An interesting scenario occurs when one (or more) cameras in the sensor network loses track of an object. This
can happen because of scene clutter, self- and mutual-occlusion, or the tracked objects exiting the field-of-view
of a camera, among many other possibilities. The camera could switch from a “track” mode into a “re-acquire”
mode by searching the whole image for telltale signs of the object; however, doing so inevitably slows down
event-processing and introduces a high degree of uncertainty in the resulting event description. Instead, we allow
the dissemination of fused information to individual cameras (the dashed feed-downward lines in Fig. 3) to help
guide the reacquisition process. The Kalman Filter, being a flexible information-fusion algorithm, can readily
use the fused information (instead of sensor data) for maintaining and updating state vectors. This hierarchical
feed-upward (for sensor data fusion) and feed-downward (for information dissemination) filter structure thus
provides a powerful and flexible mechanism for joining sensor data spatially.

-

Figure 4. (a) A simulated stalking behavior in a parking lot and (b) trajectories of the sample stalking behavior. (c) and
(d): similar data fusion results for vehicular motion. In these figures, the ”-” is the fused trajectory; ”.” is the tracked
trajectory from camera 1; ”x” is the tracked trajectory from camera 2; and ”0” is the tracked trajectory from camera 3.

We have collected hours of video using multiple video cameras in a parking lot. The video frames depicted both
human and vehicular motion. The motion patterns for vehicles included entering, exiting, turning, backing up,
circling, zig-zag driving, and many more. For human motion, we recorded actions involving both individuals and
groups, with patterns such as following, following-and-gaining, stalking, congregating, splitting, and loitering,
among many others. Some of these patterns (like zig-zag driving and stalking) were acted out by our group
members, while others represented behaviors commonly observed in the parking lot. Due to space limitations,
we show only two sample results here. Sample results for tracking the movements of people in a parking lot
are shown in Fig. 4(a) and (b). Of the three cameras we used, the views of two were partially occluded by
parked carst. The individual camera trajectories could therefore be broken. However, by using our two-level
filter structure, we were able to fill in the gap, smooth out sensor noise, and fuse individual trajectories into a
complete, global description. Fig. 4(c) and (d) show the analysis of a vehicle’s driving pattern when two cameras
were used. Note that even with a very small overlap in the fields-of-view of the two cameras and a circling motion
covering a large spatial area (hence, each camera observed only a part of the motion trajectory), we were able
to fuse the individual camera trajectories to arrive at a complete description.

tThe camera positions in these figures indicate only the general directions of camera placement. The actual cameras
were placed much farther away from the scene and always pointed to the parking lot.



4. SEQUENCE-DATA TO EVENT MAPPING

A sequence data s is defined as an ordered set of items: aj . ..a,. These items are logically contiguous and each
item a; denotes a set of attributes varying according to different applications. Given a set of sequences S, that
can be partitioned into a labeled subset L and an unlabeled subset U, the task of sequence-data learning is to
learn a discriminative function f from set L using algorithm &. Then, using §; = f(u; € U), we can predict the
label for unlabeled sequence u; € U.

To conduct supervised learning with a small number of training instances, the discriminant approach has been
shown to be much more effective?! than the generative approach (as in HMMs). In particular, SVMs require
only those boundary instances (support vectors) to participate in a class prediction, and hence require a much
smaller amount of training data than the other methods. Unfortunately, traditional kernel functions (such as
polynomial and RBF functions) that have been employed with SVMs assume a feature space of fixed dimensions.
They cannot be applied to sequence data, which are variable-length in nature. We thus design kernel functions
that can effectively handle variable-length sequence data.

To conduct supervised learning, we need first to extract useful information (features) from sequence data
to form representations.?? Although many representations have been proposed in the past (see Section C.1
for detailed discussion), we believe that the best representation should be event-dependent. Therefore, our
approach first extracts multi-resolution descriptors from sequence-data, and then relies on the algorithms that
we subsequently develop to learn the best descriptor-combination for a target semantic. For instance, a motion
pattern can be depicted as a sequence of symbolic strings at the coarse level, yet detailed information such as
velocity and acceleration is recorded at the refined levels. If an event concerns only the turning pattern of a
vehicle, then the coarse-level symbolic representation may be adequate; otherwise, proper secondary structures
should be used. To support multi-resolution learning, we have designed kernel functions to characterize similarity
at individual resolution-levels, and researched kernel-fusion mechanisms to integrate kernels at multiple levels.
For both individual kernel design and kernel fusion, we have proven the kernels to be mathematically valid and
verify them to be effective.

Preliminary Results

The kernel design task is to find a valid and meaningful kernel for sequence data in two steps. The first step is
to design a kernel for each sequence descriptor, and the second step to fuse multiple kernels in an optimal way.

Individual Kernel Design

In this thread, we design new kernels for sequence-data learning. SVMs are the most popular kernel-based
methods, but SVMs can be applied only to training data that reside in a vector space. The basic form of an
SVM kernel function which classifies an input data x is expressed as

fx) = Z aiyip(x;) - p(x) + b = Z a;yik(xi,x) + b (1)

where ¢ is a mapping function which maps input vectors into the feature space; operator ‘-’ denotes the inner
product operator; x; is the i*" training sample; y; is its class label; and o is its Lagrange multiplier. A kernel
function is represented by k, and the bias by b.

For sequence data, in particular variable-length sequences, we lack the basis function ¢ for mapping sequences
with various lengths to spaces of different dimensions. Fortunately, the embedding of a finite set of points is
entirely specified by writing a finite-dimensional kernel matriz. Put another way, as long as we have a positive
definite kernel matrix K, which characterizes the sequence-data similarity, we can use kernel methods.?®> Hence,
the design task is reduced to formulating a kernel matrix satisfying two requirements: the semantic requirement
and the mathematical requirement. Regarding the semantic requirement, Kernel matrix K must capture the local
and global structure similarity between the sequence data. As to the mathematical requirement, a valid kernel
matrix K must be symmetric and positive semi-definite?* to ensure that the projected feature space does exist.



A natural way to define the similarity between two sequences is
by using pair-wise string alignment scores.?? Two sequences with
variable lengths can be aligned by matching symbols at correspond-
ing positions and inserting “-” at the unaligned positions. An align-
ment is a mutual arrangement of two sequences, showing where the
two sequences are similar, and where they differ. The more aligned
two sequences are, the more similar they are. By performing align-
ment, given N sequences, we can build a matrix Hyxn, in which
H(i, j) is the pairwise similarity between sequences s; and s;. How-
ever, there is one potential problem with matrix H: though H is
symmetric, it might not be positive semi-definite.

To remedy the problem, we initially propose to consider tran-
sitive similarity when measuring pair-wise similarity. To motivate
our approach, Figure 5 provides an example of considering tran-

Figure 5. Example of Transitive Similarity  sitive similarity between data, with each node denoting one data
instance in the 2-D space. Assume p1, p2 and p3 form an equilateral
triangle, which means that the distances between them are the same. However, if we take data distribution into
consideration, we notice that more data are located between p; and p; than between p; and p», or p» and ps.
More likely, p; and p3 belong to the same class, and p is an outlier. Therefore, we need to define a kernel matrix
which can consider both pair-wise similarity and transitive similarity. Intuitively, a transitive relationship is help-
ful to characterize the similarity between data more accurately by considering data distribution. Furthermore,
we have proved the following two important propositions, which show that when a given similarity is symmetric,
taking transitive relationship into consideration will result in a legal kernel.

PROPOSITION 4.1. Denotew(i, j) as the similarity between sequence s; and s; by using pair-wise string alignment
scores. If a matriz H is defined as:

w6 ={ O s ©)

fors; =s;

then K = exp(H) is a semantically valid kernel, reflecting the similarity relationship between sequences, including
transitive similarity.

PROPOSITION 4.2. K, = exp(H) is a mathematically valid kernel, which is symmetric and semi-positive definite.

Kernel Fusion

After formulating individual kernels, the next step is fusing individual kernels. Each individual kernel extracts
a specific type of information from given data, thereby providing a partial view of the data. Kernel fusion forms
a complete picture of the relationship between different components of the original sequence-data. Assume R is
a relation between instances = and y and their parts, i.e., R~! decomposes an instance into a set of D-tuples.
Kernel K4(z4,yq) is the similarity between parts z4 and y4. For different contexts, not all levels’ descriptors
should be considered as having the same importance. We propose kernel fusion to provide the flexibility to learn
which level should be more important according to the target learning task. Possible fusion rules are weighted
sum and tensor product, since kernels have proven to be closed under sum and product. The weighted sum is
formulated as

D
Kfuse ZF(KL:KID) :deK(Ii' (3)
d=1
Tensor product formulation is defined as

Kiuse =F(K{,---,Kp) =K, ®---® KJ. (4)



5. IMBALANCED TRAINING-DATA STATISTICAL LEARNING

Skewed class boundary is a subtle but severe problem that arises in using an SVM classifier—in fact in using
any classifier—for real world problems with imbalanced training data. To understand the nature of the problem,
let us consider it in a binary (positive vs. negative) classification setting. Recall that the Bayesian framework
estimates the posterior probability using the class conditional and the prior.26 When the training data are
highly imbalanced, it can be inferred that the state naturally favors the majority class much more than the
other. Hence, when ambiguity arises in classifying a particular sample because of similar class conditional
densities for the two classes, the Bayesian framework will rely on the large prior in favor of the majority class
to break the tie. Consequently, the decision boundary will skew toward the minority class and cause a high
incidence of false negatives. Why do we care about remedying this problem? False negatives in a surveillance
application (i.e., failing to identify a suspicious event) can have catastrophic consequences.

While the Bayesian framework gives the optimal results (in terms of the smallest average error rate) in a
theoretical sense, one has to be careful in applying it to real-world applications, such as security surveillance and
disease diagnosis. The risk (or consequence) of mispredicting a positive event (a false negative) far outweighs
that of mispredicting a negative event (a false positive). It is well known that in a binary classification problem,
Bayesian risks are defined as:

R(ap|x) = App P(wp (%) + Apn P(wn|x) (5)
R(ap|x) = AppP(wp|x) + ApnP(wn|x)

where p and n refer to the positive and negative events, respectively, A, refers to the risk of a false negative, and
Apn s the risk of a false positive. The decision about which action (@, or a;) to take—or which has a smaller
risk—is affected not just by the event likelihood (which directly influences the misclassification error), but also
by the risk of mispredictions (A,p and Ayy).

Preliminary Results

Several attempts have been made to improve class-prediction accuracy of SVMs.?" 31 Given the class prediction
function of SVMs,

sgn f Zyzaz X Xz +b (6)

three parameters can affect the decision outcome: b ai, and K. Our empirical study®? shows that the only
effective method for improving SVMs, however, is through adaptively modifying K based on the training data
distribution.

To adaptively modify K, our prior work®? proposed using adaptive conformal transformation (ACT). Kernel-
based methods, such as SVMs, introduce a mapping function ® which embeds the Z (input space, or the space
formed by the features) into a high-dimensional F as a curved Riemannian manifold S where the mapped data
reside.?® A Riemannian metric g;;(x) is then defined for S, which is associated with the kernel function K (x,x')

by
0?K (x,x")
gij(x) = (W) o (7)

The metric g;; shows how a local area around x in 7 is magnified in F under the mapping of ®. The idea

of conformal transformation in SVMs is to enlarge the margin by increasing the magnification factor g;;(x)

around the boundary (represented by support vectors) and to decrease it around the other points. This could

be implemented by a conformal transformation of the related kernel K(x,x') according to Eq. 7, so that the

spatial relationship between the data would not be affected too much.?” Such a conformal transformation can
be depicted as

K(x,x') = D(x)D(x') K (x,x"). (8)

In the above equation, D(x) is a properly defined positive conformal function. D(x) should be chosen in such a
way that the new Riemannian metric §;;(x), associated with the new kernel function K(x,x’), has larger values
near the decision boundary. Furthermore, to deal with the skew of the class boundary caused by imbalanced



classes, we magnify g;;(x) more in the boundary area close to the minority class. In,*? we demonstrate that an

RBF distance function such as | |
X—X
Do) = 3 exp (-2 ©
k

kESV
is a good choice for D(x). By carefully adjusting T,f’s based on the support vector ratios, our preliminary results

show that ACT outperforms traditional methods on several datasets to correct the skewed boundary.

6. SYNERGISTIC INTEGRATION

In this research thread, our aim is to demonstrate the viability of scalable wireless camera networks via system
design, simulation and prototype deployment under realistic, representative terrain conditions. By “scalable,”
we mean that the network protocols must scale easily to hundreds of cameras in terms of both throughput
and energy efficiency. We show below that traditional wireless communication protocols are not suitable for
camera networks, and we will pursue the joint design of communication protocols with our data-fusion, and
event-recognition algorithms, which we have presented in the previous sections.

The task of designing communication protocols that are scalable has been addressed predominantly in terms
of scalability of network and transport layer protocols. The past effort has made good progress, but the scalability
problem is still far from being solved. One unique challenge in the sensor-network setting is that the performance
metrics and data characteristics in such a network are quite different from those of a traditional wireless network.
Our research activities to meet the challenge of new performance metrics and data characteristics are as follows:

1. Energy-efficient protocol design. While many personal multimedia systems (such as the cellular phone
system) as well as wired communication systems fall in the bandwidth-limited regime of network operation,
camera networks with severely limited energy supplies fall in the energy-limited regime of network operation.
Energy-limited wireless ad hoc networks have constituted a very active field of research in the past few years;
however, measures of system performance, such as system lifetime, have not been related to measures of network
capacity. In this task, we develop a new measure of capacity called “bits-per-Joule capacity” that measures
the maximum number of bits that a wireless camera network can transfer per Joule of energy deployed into the
network. We will use this useful metric to compare the performance of different network topologies for wireless
camera networks.

2. Data prioritization. The information content in camera networks is measured, not by end-to-end data rates,
but by semantic information content. In addition, the semantic information content must be relayed to the
server with the lowest end-to-end delay possible to alert the master site in a timely manner. This requirement
has important consequences in the design and choice of dynamic topology control protocols, which will be a
major emphasis of this task.

3. Topology control and network configuration. Not only must a video camera network operate with high energy
efficiency, but also the underlying network protocols must support camera mobility. Mobility of video cameras
is a very desirable feature because a group of cameras can be moved on vehicles to cover a desired area. Camera
mobility introduces significant challenges: When the cameras move around, the resulting network must remain
connected in order for the Kalman filter algorithms (in Section 3) to send the information reliably to the master
for data fusion. Mobile networks of video cameras admit the usage of only localized topology control protocols
whose localization increases with the amount of mobility. Nodes that run localized topology control protocols
use only the information in their own environment and set of immediate neighbors. As mobility increases,
information that can be transferred from remote ends of the network becomes stale (for determining properties
such as connectivity).

Preliminary Results

We discuss our preliminary results in two parts: bits-per-Joule capacity as a novel metric to measure the capacity
of ad hoc wireless networks, and distributed topology design for energy-efficient routing and neighbor discovery.
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Figure 6. (a) Bits-per-Joule sum capacity under one-to-one traffic model. (b) Enclosure of a node.

Bits-per-Joule Capacity

The bits-per-Joule capacity of a wireless ad hoc network is the maximum number of information bits transferred
(under a given traffic pattern) per Joule of energy consumed in the network. We have demonstrated in3* that
in terrestrial wireless environments, the bits-per-Joule capacity of a randomly deployed wireless network grows
as more nodes are deployed onto a fixed area, assuming that each node wishes to send traffic to a randomly
chosen destination node in the network. The main intuition behind this result is that as more nodes are deployed
onto a fixed area, the inter-nodal distances get shorter; hence, the transmit power levels can be reduced and
thus conserve energy at the nodes. However, at the same time, the relay traffic that each node has to carry
increases as the number of nodes in the network grows. The main result of** is that the gains due to transmit
power reduction outweigh the losses due to the relay traffic, and thus the bits-per-Joule capacity of a multi-hop,
sensor network increases as the number of nodes increases. This is the main promising result encouraging the
deployment of wireless networks on large scales for application scenarios in which energy is the limiting resource.

In Figure 6(a), we display the results for a network as we grow the network from 2 nodes to 30 nodes. The
graph shows the increasing bits-per-Joule capacity as a function of the number of nodes for 3 different topologies.
The first one is the complete topology in which every node can potentially transmit to any other node directly.
The performance of the complete topology provides a theoretical benchmark against which the performance of
practical topologies can be compared. The complete topology is not practically attainable because the channel
gains to all of the other nodes in a topology are typically not available. In ad hoc networks of portable and
mobile devices, each device is usually connected to only a few devices in its neighborhood. In the K-best-neighbor
topology displayed on this graph, each node has K neighbors where K ranges from 1 to 3. The minimum energy
topology (MET) that is shown here is the one in which every node has the global minimum energy path to every
other node in the network. We see that both the minimum energy topology and the 3-best-neighbor topologies
come appreciably close to the theoretical benchmark performance. Therefore, bits-per-Joule capacity also serves
as a useful metric to compare the performance of difference topologies and to determine the minimum number
of neighbors required by each node to capture a large percentage of the theoretical performance.

Distributed Topology Control

When cameras are deployed onto a new terrain, they must first establish communication with each other. Such
communication will enable in-network data fusion as well as exchange of soft probability estimates that can be
used for event recognition, for instance, if a subset of the cameras are observing the same area from different
angles. This type of communication with one’s neighbors is also required for the entire set of cameras to establish
a connected network in which the packets generated and fused among a group of nodes can be transferred in
a multi-hop fashion to the ultimate collection site or the headquarters. We developed in®® an algorithm, called
the “enclosure algorithm,” for fast, efficient, localized topology control for ad hoc networks. This architecture
combines the position estimates from various sources such as GPS receivers, or using different techniques such
as time difference of arrival (TDOA), time of arrival (TOA) and angle of arrival (AOA). With the availability of
a multitude of position estimation techniques and devices today, the enclosure algorithm3® has become a very
useful tool in neighbor discovery and dynamic link configuration in ad hoc networks.

The main idea behind the enclosure algorithm is illustrated in Figure 6(b). In this figure, we show a “transmit
node” (denoted by 1) that has found 3 neighbors in its search. Then, transmit node 7 computes a “relay region”



with each of these 3 neighbors (the boundaries of these regions are shown in the figure). We have shown that
in order to discover the global minimum energy links in a network, a node needs to search only its enclosure
and can drop the rest of the links from consideration as the remainder of the links are suboptimal from the
perspective of energy consumption. In mobile networks, via the use of network synchronization techniques, it is
possible to wake up all the nodes at the same time. Upon waking up, a node updates its enclosure by checking
whether it still detects presence of its neighbors from the previous cycle period of the network. If its neighbors
have shifted due to mobility (of themselves or of the transmit nodes), the enclosure algorithm can dynamically
compute the new region of enclosure. Via simulations,3®> we have demonstrated that the enclosure algorithm
can be run while incurring minimal overhead in energy consumption to track the neighbors in mobile networks
up to a certain displacement where the network can still track the neighbors. When mobility is extremely high,
the efficiency of the enclosure algorithm is reduced to that of recomputing the enclosure from scratch upon every
iteration. However, even at high mobility, we have demonstrated that the algorithm works albeit with reduced
efficiency.

Finally, the enclosure algorithm can also tolerate faults or failures of the nodes in the network. When a node’s
neighbors have dropped out of the network, the enclosure algorithm can detect such failures in the next network
iteration and re-compute the neighbor set. As a result, this algorithm is very suitable for military operations
and emergency rescue networks. We will further exploit the full power of the enclusoure algorithm by exploring
the information at the upper-layer data-fusion and event-recognition algorithms.

7. CONCLUSION

We have presented our event sensing paradigm and its five core research threads. We discussed preliminary
results, and briefly sketched our future research directions. We will focus on building a prototype to establish a
testbed for our future research and validation.
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