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ABSTRACT

We describe a software system for building three-dimensional (3D) models from colonoscopic videos. The system
is end-to-end in the sense that it takes as input raw image frames—shot during a colon exam—and produces the
3D structure of objects of interest (OOI), such as tumors, polyps, and lesions. We use the structure-from-motion
(SfM) approach in computer vision which analyzes an image sequence in which camera’s position and aim vary
relative to the OOI. The varying pose of the camera relative to the OOI induces the motion-parallax effect which
allows 3D depth of the OOI to be inferred. Unlike the traditional SfM system pipeline, our software system
contains many check-and-balance mechanisms to ensure robustness, and the analysis from earlier stages of the
pipeline is used to guide the later processing stages to better handle challenging medical data. The constructed
3D models allow the pathology (growth and change in both structure and appearance) to be monitored over
time.
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1. DESCRIPTION OF PURPOSE

Colorectal cancer, also called colon cancer, is the third most common form of cancer and the second leading
cause of cancer-related death in the Western world. It can take many years for colorectal cancer to develop and
early detection of colorectal cancer through regular screening greatly improves the chance of a cure. Among
many screening techniques, colonoscopy is still considered the “gold standard” method. This research is aimed
at developing the ability to construct 3D anatomic models of objects of interest (OOI, e.g., tumors, polyps, and
lesions) from colonoscopic videos. These computer models can find many uses in a computer-aided diagnosis
(CAD) system in colonoscopy to assist surgeons in visualization, surgical planning, and training.

2. METHOD

Our method is based on the principle of structure-from-motion (SfM) in computer vision research. The SfM
analysis uses the motion parallax effect—induced by varying the camera’s pose relative to the OOI—to deduce
a 3D object’s depth (or structure). By combining the inferred 3D structure with the object’s appearance
(color/texture) recorded in the video images, we arrive at a computerized 3D anatomic model. The flow chart
of our system is depicted in Fig. 1. Different modules and their functions are described in more detail below.

2.1 Distortion Correction and Camera Calibration

In video-endoscopy, difficulty in maneuvering the scope in a constricted body cavity results in large blind spots.
Hence, endoscopic procedures often employ cameras using lenses of a short focus length, fisheye lens for example,
to provide a large view volume. Such lenses cause significant distortion that degrades the accuracy of the
constructed 3D models. Camera calibration is an offline process used to estimate the intrinsic parameters and to
correct image distortion.1, 2 Figure 2(a) depicts fisheye distortion effect where straight lines have become barrel-
shape curves. Although clinicians may be accustomed to this type of distortion, it invalids many computer vision
based analysis and model building algorithms. To over come this problem, distortion correction2 needs to be
performed before any other image analyses. Figure 2(b) shows the corrected image.
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Figure 1. System overview

(a) (b)

Figure 2. Example of fish-eye lens distortion correction

(a)Original distorted image captured by a colonoscope (b)Corrected image



2.2 Feature Detection and Feature Matching

A key requirement of the SfM analysis is to establish the precise camera poses in the video sequence. As no
special tracking hardware, a magnetic tracker for example, is used in the conventional colon exam, the camera
pose must be inferred from the input images alone. In computer vision, this inference process is accomplished by
establishing 2D feature correspondences in multiple image frames. These corresponding 2D features in multiple
images result from the projection of the same 3D entity. As incorrect, arbitrary camera poses generally will not
produce the observed correspondence relations, it is possible to constrain the camera pose with enough such 2D
correspondences.

The 2D correspondence relationship can be produced by either continuous tracking or discrete matching.
Continuous tracking techniques cannot easily deal with large motion blur, water or bubble injection, and strong
glare reflection that are common in colonoscopic videos. Instead, we apply a SURF-based feature detector3 to
detect locally invariant features in a few clean snapshots of the anatomy and match these features across multiple
images to establish their correspondences. In contrast to the random drift shown over time by tracking methods,
the SURF detector has been shown to provide very precise feature locations. This precision is crucial for the
ensuing camera motion inference algorithm to accurately estimate the camera pose.

2.3 Outlier Filtering and Camera Motion Inference

This step uses the matched 2D image features in two views to infer the camera’s movement in between the views.
One crucial task is to eliminate outliers (mismatches). Although the classic RANSAC algorithm, one of the
most widely used outlier filtering techniques, has been successfully applied to many applications, we found that
the standard scheme does not always produce satisfactory results when applied to medical images. We therefore
propose a two stage outlier filtering scheme to tackle challenging medical data.

In the first stage, the normalized eight-point algorithm,4 together with a multi-RANSAC scheme, is performed
to detect outliers. At the end of each RANSAC run, a fundamental matrix candidate F which encodes the
camera movement information is generated. All feature correspondences that are correct (or compatible with
this 3 by 3 matrix F ) should satisfy the equation p

′
T Fp = 0 where p and p

′

are the point coordinates.1 A more
intuitive error measure is to compute the squared sum of the Euclidean distances of the feature points from their
corresponding epipolar lines. The point-line distances of both images are taken into account and the relation
can be described by d(p

′

, Fp)2 + d(p, FT p
′

)24 where function d(•, •) denotes the 2D Euclidean distance between
the two arguments.

Instead of setting a fixed threshold to detect outliers, we apply the box-plot method—a statistic method used
to identify outliers without any assumption of the underlying data distribution—to automatically determine the
outlier threshold. The box-plot method computes the lower quartile (the 25th percentile QL) and the upper
quartile (the 75th percentile QU ) of the data set. The difference between these two values (QU − QL) is called
the interquartile range or IQ . Any 2D feature with error distance larger than QU + 1.5 ∗ IQ is considered an
outlier and is excluded from further computation. The process repeats until no outliers are detected.

This multi-RANSAC scheme is motivated by one important observation — with the present of many outliers,
the final model (the fundamental matrix in our application) suggested by the classic RANSAC algorithm is not
a good description of the underlying data, but this semi-optimal result is good enough to help identify some
outliers. After eliminating these outliers, more accurate model estimations can be expected in the next runs of
RANSAC.

It is also well known as the least-square principle that the more features we use to estimate a model the more
likely the adverse effect of random Gaussian noise (in our case the noise causes slight, random perturbation to
the 2D feature locations) can be averaged out during the computation. This is one of the reasons we propose
to add a second stage process after the multi-RANSAC scheme. After outliers are removed from the feature list
in the previous stage, all the remaining features then serve as input to an overdetermined five-point algorithm,5

a state-of-the-art algorithm for solving the relative camera pose problem. Furthermore, since the five-point
algorithm’s outputs can be decomposed into the camera rotation (R) and translation (T ) parameters, we can
locate feature points in 3D space through light-path triangulation. We use these 3D point positions to further
filter out outliers in the second stage. As all 3D points should lie in front of the camera, whichever points that



Figure 3. Two-stage outlier filtering scheme

do not satisfy this constraint should be removed. This testing is referred to as identifying the cheirality of the
3D point cloud with respect to the camera.1 The whole procedure again is repeated a number of times until no
more outliers are detected. Fig. 3 summarizes this two-stage scheme.

2.4 Bundle Adjustment Using Double Dog-Leg Method

After all pairwise camera movement parameters have been computed, a nonlinear optimization method is applied
to polish the estimated results from the previous step by minimizing the reprojection error. This optimization
process is known as bundle adjustment that adjusts the bundle of rays between each camera center and the 3D
point cloud.1 The camera motion parameters and the 3D point positions are adjusted simultaneously so that
the rays intersect the cameras at locations as close as possible to all observed 2D features. We apply the Double
Dog-Leg (DDL) algorithm,6 a trust-region method which intelligently combines the Gauss-Newton method and
the gradient descent method. When employing a nonlinear optimization procedure, the convergence speed and
the quality of the final solution are heavily influenced by the quality of the initial camera movement parameters
and correctness of the 2D point correspondences. This was the reason why we proposed a sophisticated two
stage outlier filtering method in section 2.3 to obtain a reliable initial guess.

The way we employ the DDL to solve our problem is as follows: given a set of camera movement parameters,
from a sequence of N image pairs, we parametrize rotation (R) and translation (T ) by 3 variables each in between
two adjacent views. Because there is one global scale that should be shared by all partial structures, we take out
one degree of freedom from one of the T vectors to ensure that this constraint is satisfied. That is, the direction
of this particular T can change, but not its magnitude. The fixed magnitude enforces a fixed global scale. The
resulting number of parameters is therefore 6N − 1 in total. We will see in section 2.7 how this global scale can
be a great help for model registration.

2.5 Extended Polar Rectification

The goal of this step is to rearrange image pixels so that the corresponding points (that result from the projection
of the same 3D point) lie on the same image scan line. This configuration greatly reduces the search dimension
(from 2D to 1D) of finding the point correspondences in the stereo matching analysis. Among many rectification
algorithms, we chose the extended polar rectification due to its ability to handle all kinds of camera configurations,
including two special cases: (1) the camera moves forward or backward (a common movement in colonoscopy)
and (2) the camera experiences a pure side way motion.

The extended polar rectification proposed by Häming and Peters7 filled in details about how to use polar
rectification when epipoles are at (or close to) infinity. Explicit thresholds and implementation details are
described in their paper to detect extreme cases. Unlike Pollefeys’ polar rectification algorithm8 in which the
orientation is determined using line homographies computed from the fundamental matrix or from the camera
projection matrices, Häming’s approach uses the fundamental matrix directly for orientation determination. We



Figure 4. Determine the orientation

will use Figure 4 as an example to demonstrate how fundamental matrix can be used directly to determine the
orientation. Given an point x in image1, the epipolar line that passes through this point can be determined by
computing the cross product of the point x and the epipole e.

l = x × e (1)

The corresponding epipolar line in image2 can also be determined though the fundamental matrix F and
epipolar geometry.

l′ = Fx (2)

Both line equations l and l′ separate the image planes into positive and negative regions. Given one correct
pair of point correspondences, we can determine the sign s by making the following equation hold true.

sign(l · p) = s · sign(l′ · p′) = s · sign((Fx) · p′) (3)

Once the sign s is computed, the oriented fundamental matrix F o is equal to sF . Having the oriented
fundamental matrix F o, the correct epipolar half-line can be easily determined. Now, for any given point x in
the first image, a point x′ is considered to be on the correct epipolar half-line if the following equation hold true.

sign((e × p) · x) = sign((F op) · x′) (4)

2.6 Stereo Matching and Depth Inference

A dynamic programming (DP)-based stereo matching algorithm9 is applied to establish point correspondence
at each pixel in the input images. Once point correspondences are established, light-path triangulation is used
to locate the actual 3D points and build a local model. Unlike traditional stereo matching algorithms using
only rectified images as inputs, to improve the robustness we explicitly incorporate additional information and
constraints derived from the previous steps to guide the stereo matching process. These constraints include clean
features from the outlier filtering procedure and the camera motion parameters from the bundle adjustment
procedure (Fig. 1).

In more detail, given a set of reliable 2D point correspondences, we employ the Delaunay triangulation
to partition the input images into small, localized regions. Furthermore, we explicitly examine the planarity
hypothesis of these localized regions in the 3D space. To perform the planarity test robustly, adjacent triangles
are first merged into larger polygonal patches and then the planarity assumption is verified. Once piecewise
planar patches are identified, point correspondences within these patches are readily computed through planar
homographies. These point correspondences established by planar homographies serve as the ground control
points (GCPs) in the final DP-based stereo matching process. As Bobick proved in9 that GCPs not only
improve the final results, but also speed up the matching process.



−15

−10

−5

0

5 −10
−5

0
5

10

−19

−18

−17

−16

−15

−14

−13

Figure 5. Results of constructing two point clouds using unified scale

Finally, we add a front propagation routine after some GCPs are established through homography computa-
tion to include more reliable GCPs. Our front propagation scheme works as follows: (1) Use all GCPs detected
from the homography computation as seeds and (2) Perform a front propagation from these seeds until an edge
or a predefined dissimilarity threshold is reached. The assumption is that the neighbors of a pair of reliable
corresponding points are very likely to form corresponding pairs as well if these neighbors have similar intensity
values and they are not located on the opposite sides of an object boundary.

The threshold used to determine whether the difference between two pixels is small enough is a function of the
distance between the current pixel’s coordinate and the coordinate of this pixel’s original seed point. Equation
5 describes how the threshold is computed at location x whose original seed point is s.

threshold = (int)(255 ∗ e−(
dist(x,s)

σ
)2) (5)

By adjusting the σ value in Equation 5, we can control the maximum allowed distance for any seed to
propagate. Given any σ value, there is a corresponding minimum dist(x, s) which will make the computed
threshold equals zero. In other words, after passing this distance, any pair of pixels can be considered a match
only if these points’ intensity values are exactly the same. In reality, to enhance the robustness, intensity values
are usually computed by applying sum of square distances (SSD) over small windows centered at these points.
The chance for two non-correspondent points to have the same SSD values is small. We argue that this case
only happens when the image intensity and color is homogeneous. Feature matching in homogeneous regions is
considered a challenging, if not unsolvable, problem for all stereo algorithms.

2.7 Uni-scale Model Registration

The final step is to register partial 3D models constructed from multiple two-view analyses into a more complete
3D model. Because a global scale had been determined during bundle adjustment, we treat each partial two-view
model as a cloud of 3D points, and these point clouds are related by rigid-body transforms in space. To solve the
registration problem, instead of applying the commonly used iterative closest point (ICP) algorithm10 which can
be time consuming and error prone due to lack of point correspondences information, we solve a simple rigid-body
transformation problem with the help of some reliable ground control points computed from 2D SURF features.
The process is efficient, as we already have a good initial guess of the inter-frame camera movement from the
previous steps. Please note that even with a consistent global scale, there are still a few point correspondences
that do not locate closely in 3D space due to noise. Therefore, RANSAC is required when we estimate the
rigid-body transformation parameters. Figure 5 depicts such case. Two 3D anchor points generated from real
medical data are shown in this figure.

3. EXPERIMENTAL RESULTS

We present some results using data from real colon examinations in this section. Fig. 6 summarizes some
intermediate results of the two-view analysis. The leftmost figure in Fig. 6 shows a pair of rectified images where



Figure 6. Intermediate results of the two-view analysis: (Left to right) Rectified images, GCPs after planar homography
computation, GCPs after the front propagation process and the final disparity map

Figure 7. (Left to right) One input image example, three sample depth maps using two-view analyses and the final depth
map

the correspondent SURF features are connected by color lines. As the goal of rectification is to align epipolar
lines with the images’ scan lines, corresponding features should lie horizontally. This is what we observed in
Fig. 6 (with less than 0.5 pixel discrepancy in height). This high accuracy demonstrates the success of the
sequence of routines described from section 2.1 to section 2.5. The other three figures from left to right in
Fig. 6 depict detected GCPs using Delaunay triangulation and planar homographies, detected GCPs after
the front propagation process, and the final disparity map with the diverticulum structure circled. After point
correspondences are extracted from the disparity map, these points are transferred from the rectified images back
to their original image coordinate system and the depth map is then computed using light-path triangulation.

The leftmost image in Fig. 7 shows one input image in a sequence depicting an outpouching, hollow structure
called a diverticulum. Three sample depth maps generated using two-view analyses are shown in the middle.
The right most image shows the final depth map after fusing all partial depth maps using the model registration
scheme with a consistent global scale. The brighter regions in a depth map represent areas that are closer to the
viewpoint. As can be seen, the merged result successfully captures the diverticulum structure.

4. NEW OR BREAKTHROUGH WORK TO BE PRESENTED

Few end-to-end structure-from-motion (SfM) systems, like ours, exist in the computer vision field, and to the
best of our knowledge our system is the only one specifically designed for medical data.

5. CONCLUSIONS AND FUTURE WORK

We apply computer vision based structure-from-motion (SfM) techniques to build 3D anatomic models of interest
from colonoscopic videos. No attempt was made to replace well-established virtual colonoscopy techniques, which
require different types of input data taken before the colonoscopy procedure for pre-screening purpose. Instead,
our techniques have the potential to build significant local structures during the procedure and can provide useful,
complementary information. The encouraging preliminary results suggest that we look into the possibility of



Figure 8. Expert system overview

applying our techniques on other endoscopic related applications. The model building system can later serve as
a data acquisition routine to generate 3D information for annotation. These annotated models together with 2D
video data can be used to train an expert system (Figure 8).
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