
VCME: A Visual Interactive Environment

for

Computational Modeling Systems�

Yongmao Cheny Terence R. Smith Yuan-Fang Wang Amitabh Saranz

Department of Computer Science
University of California

Santa Barbara, CA 93106, USA
e-mail:fyongmao, smithtr, yfwang, sarang@cs.ucsb.edu

�Work supported in part by NASA grant NAGW-3888.
yWork supported in part by NASA grant NGT-30159.
zCurrently working at Hewlett Packard-ISO, India. Email : saran@india.hp.com

1

Abstract

In previous work, we have described the concept of acomputational modeling system(CMS) that is based on
a comprehensive conceptualization of scientific modeling activities. A CMS involves an integrated computational
modeling environment (CME), that embodies this conceptualization and in which a scientist may carry out, at an
appropriate level of abstraction, any operation involved in the process of symbolic model construction. The key
contribution of the current paper is the translation of the CME into graphic terms and, in particular, the design and
implementation of a visual language for supporting the top-down construction of scientific models. We describe the
design and implementation of avisual CME (VCME) for our CMS. The VCME supports the construction and use
of representations of any modeling concept that a scientist may require in the iterative process of building symbolic
models of phenomena. In particular, the VCME supports a new computational approach to the top-down construction
of computational models. Theflowchart editor, which is the main component of the user interface in supporting
such constructions, also supports the bottom-up process of model construction. A unique feature in our system is its
ability to provide generic support for resources under a standard, coherent framework that makes easy integration of
arbitrary sets of data and tools,distributed over the network, and provide support for their interoperability at the CME
level. Our design and implementation integrates multiple user interface modes, code generators, visual language, data
manipulations, computational model processing, and communication with other tools. This provides the user with a
powerful software development environment that facilitates the complex procedures in the construction, testing, and
application of scientific models.

2

1 Introduction

A major challenge for the computational and information sciences is to provide integrated support, based on digital

technology, for the modeling activities of scientists involved in numerically-intensive and data-intensive applications.

In response to this challenge we have developed the notion of acomputational modeling system(CMS) [1].

1.1 Computational Modeling System (CMS)

A CMS involves two major components. The first component is an integratedcomputational modeling environment

(CME) in which a scientist may represent any symbolic modeling activity. In particular, a CME is intended to provide

an environment in which a scientist may engage in the iterative process by which symbolic models of phenomena

are constructed, evaluated, and applied. The second component involves appropriate computational support for the

modeling activities represented in the CME. Apart from supporting the construction and manipulation of scientific

modeling concepts at appropriate levels of abstraction, such support should permit the easy integration of arbitrary

sets of data and tools, distributed over the network. We term this component thedistributed resource access system

(DRAS).

There are three general requirements for a CME. First, it should be based on a general and relatively complete

model of the process of constructing, testing, and applying symbolic models of phenomena. Second, the modeling

operations carried out in the CME should be provided with efficient computational support from an extensible set of

computational modules in the CMS. Third, the CME should be represented to the scientific modeler in terms that are

simple and expressive and that conceal irrelevant computational details.

The focus of the current paper is on the graphical representation of the CME and, in particular, on a visual lan-

guage that supports the construction of a relatively simple conceptualization ofmodels. Graphical support in a CME

is an important issue since the sets of concepts, the representations of these concepts, and the manipulation of the

representations that are employed in scientific modeling enterprises are typically large in number and frequently com-

plex. Furthermore, models of phenomena that are constructed and manipulated on the basis of these concepts are also

typically large and complex. Graphical representations of the constructions and manipulations in a CME offer the

possibility of minimizing much of this complexity from the viewpoint of a user and provide a framework to access

network-wide resources.

We term the visual representation of a CME thevisual computational modeling environment(VCME) of the CMS.

A key issue in the design of an appropriate VCME is to provide scientists with a visual representation of the modeling

process, expressed at the conceptual level of the modeling application.

There are two main contributions of the paper. The first is the design and implementation of a VCME that rep-

3

resents a visual translation of a CME based on a general and relatively complete model of the scientific modeling

process. The second contribution is a visual language that is intended to facilitate the top-down construction of models

of scientific phenomena. The class of models that are supported by this visual language is relatively broad and is based

on representations of an important class of concepts that are representable in a CME.

1.2 Related Work

It is useful to review briefly the nature of support for scientific modeling activities provided by current graphics and

visual computing technology. Such support may be classified into three major categories. The first category involves

visual languagesthat may be employed for representing programs, data, and the structure and behavior of complex

systems. The second category involves specificgraphical interface toolsthat have been developed to support various

programming environments and tailored to support scientific modeling activities. Finally, the third category pertains

to mechanisms and tools that provide access todistributed resources.

The class of visual languages [3, 4] includes languages for handling visual information, such as GRAIN [5]; for

supporting visual interaction, such as PSQL [6] and ICDL [7] and HI-VISUAL [8]; for programming with visual

expressions, including data flow diagram languages that provide views of a computation in terms of the flow of data

from one filter to another, such as LabVIEW [9] for science and PROGRAPH [10] for general-purpose; and for

dealing with visual objects that are themselves visually represented, which are often termed “iconic visual information

processing languages” [4]. However, these visual languages are essentially programming languages that may be

employed in writing programs that support specific applications, and there is no database support.

There are also visualization tools that have been developed for the graphical representation of specific computing

environments. Examples of such systems include the graphical user interface to Khoros, which is a software environ-

ment for supporting research in image processing [11, 12, 13, 14]; scientific programming systems like AVS [15] and

IBM Data Explorer (IBM DX) [16, 17, 18], which are similar to the Khoros system; and Tioga [19], which is a visual

programming system for scientific DBMS management applications.

With respect to providing a graphically-represented environment for the support of scientific modeling, there are

several problems associated with the languages and systems listed above. Most importantly, neither the languages nor

the systems are based on general scientific modeling principles. At best, some of the systems, such as Tioga, IBM DX,

are based on partial models of specific modeling activities.

Other problems include a typical lack of support for high-level data and computation abstraction, and particularly

for abstractions relating to the concept of a “model”. In existing systems, the user must typically construct application

models using file-based data and functions. In IBM DX, for example, the data model is based on low-level file, such

4

as image data, or map data. Hence the concept of a model is hidden in the low-level data structures and files. But data

in VCME is supported through a hierachical object-oriented model represented by abstract and concrete R-structures

and their instances.

For model construction, Khoros and IBM DX allows users to group modules to form higher-level modules, re-

ferred to as bottom-up construction. VCME, however, supports two ways of doing this, bottom-up and top-down

construction. The top-down is a more natural way to design a computational model for scientists and engineers.

Most current systems also lack the full range of computational support necessary for scientific modeling activities.

The languages, for example, provide inadequate database support and do not provide support for distributed model

development. IBM DX provides support for interactive visualization and analysis of both observed and simulated data.

Our system not only supports data interaction, but also provides a interactive model for executing modules at local and

remote locations. Most systems [21, 22, 23, 24, 25] are either based on evolutionary extensions to existing database

technology, or require a considerable amount of custom coding tailored to the application [35, 34].

A promising and general approach to integrating distributed data is offered by theCommon Object Request Broker

Architecture(CORBA) [37] of the Object Management Group (OMG) [36]. The use ofObject Request Broker(ORB)

to bind components together offers substantial savings in design, implementation, and maintenance efforts. The func-

tionality offered by CORBA, however, is not yet complete. Current efforts are focussed on value-added services to

augment the basic ORB. Web-based tools are increasingly becoming common. However, most ([29, 28, 31]) provide

access to remote data but none for external tools and legacy systems. Then there are systems that deal exclusively

with the integration of tools, without a conceptual basis for organizing application data. PCTE[33], for instance, pro-

vides a set of C and Ada specifications that can be used by tools for process control, distribution and accounting. In

QUEST[32], the system has been made to support a defined set of tools that assist in analyzing geophysical datasets.

Finally some complete systems like SHORE[38], which provides a merger of object-oriented and file system tech-

nologies, and Harvest[27] which also provides object-oriented extensions to define type hierarchies and complex data

access methods, exist but they lack a unified computational environment that supports the iterative process by which

symbolic representations of application phenomena are constructed, evaluated and applied, features that the CME and

DRAS are well capable of supporting.

The paper is structured as follows. In order to make the paper relatively self-contained, we first provide a concrete

example of the scientific modeling process in Section 2. This example is employed in the remainder of the paper.

Although we have described elsewhere [1] a simple, general, and relatively complete basis for the modeling operations

in a CME, we briefly summarize this basis for the sake of completeness. Section 3 then describes the functionality,

architecture, and application of a VCME that embodies this basis. Finally, we describe the design and implementation

5

of the visual language for the top-down construction of scientific models in Section 4, Distributed Resource Access

System (DRAS) of VCME in Section 5, Code Generation specification in Section 6, and conclude with details of a

specific implementation of a VCME in the following section.

2 Support for Modeling in a Computational Environment

We may characterize the process of constructing and investigatingsymbolic modelsof phenomena as one in which

concepts that characterize both the phenomena under study and the process of modeling itself are represented and

manipulated in a symbolic manner. The CME of a CMS is an environment in which both concepts can be achieved.

A reasonable approach to designing and implementing a CME is to:

1. characterize the nature of the symbolic modeling process in terms of a conceptual basis that is reasonably

“complete” with respect to a broad range of modeling activities;

2. design a CME that incorporates this conceptual basis;

3. provide efficient support based on digital technology for such environments;

4. design and implement graphical representations of a CME that facilitates its use in complex modeling applica-

tions.

Before discussing graphical representations of a CME, we provide a brief overview of a conceptual basis for a CME.

Further details of this treatment of a CME may be found in [1].

We motivate this overview by first describing a specific modeling application drawn from the hydrological sci-

ences. This is an instructive example, since we believe that a CME and its visual representation should be capable of

representing the full range of modeling activities embodied in the example.

2.1 An Example of Scientific Modeling

In Figure 1, we represent a simplified view of some of the entities and procedures employed in constructing a model of

a hydrological phenomenon. The goal of the modeling procedure is to predict the flow of water at various locations in

a river basin. For simplicity, we have indicated only one of the many feedback loops involved in the modeling process.

In Figure 2, we provide brief descriptions of the modeling operations that are implicit in Figure 1. Important classes

of modeling activities include:

1. the extraction of relevant information from “datasets”;

6

Manaus

SELECT JOIN

DEMs

Model 1
Model 2
......
Model n

FLOW MODEL

SELECT

Point Time Rain

RAINFALL

Point Time Rain

SELECT INTERPOLATE

CREATE
STORMS

COMPUTE
SURFACE FLOW

Time

Discharge

MODIFY
MODEL

SURFACE

DERIVE
DRAINAGE

COMPARE
OBSERVED

HYDROGRAPHS

Figure 1: A Graphical Representation of a Simple Modeling Process

2. the construction and application of “models” of the flow of water;

3. the evaluation of the modeled flows;

4. the iterative improvement of the components of the modeling process;

5. the communication of the results of the modeling process.

It is reasonable to interpret these modeling activities in terms of procedures by which investigators represent and

manipulate a large body of modeling concepts; choose from among alternative concepts and representations; and

seek new concepts and representations. We briefly illustrate this interpretation in terms of the hydrological modeling

example of Figure 2.

In relation to the example, scientific issues concerning the choice or discovery of concepts and representations for

the concepts arise in steps 3, 7, 9, 10, and 14. For example, a question of some interest for a scientific investigator

concerns the manner in which the surface represented in the display of step 2 determines the magnitude and direction

of surface runoff. To answer this question, an investigator may employ concepts that characterize the nature of the

surface and the interactions between the surface and the flow of water. Examples of such concepts includesurface

slope, channel segment, channel segment contributing area, anddrainage basin. If these concepts are to have relevance

7

1. Get the digital elevation models (DEMs) that intersect the Manaus area.
2. Join this set of DEMs into single DEM and display it.
3. Create a general class of representations for river channel segments and contributing slopes of the drainage system

implicit in a DEM.
4. Create and store an instance of this class of representations from the DEM constructed for the Manaus area and

store
5. Find time-slices of rainfall from hour 1 to hour 12 on January 21 1989 for rain-fall records within the Manaus

area.
6. Create a rainfall raster for each of the previous datasets using a rainfall interpolation routine.
7. Create a general class of representations for rainstorm events.
8. Find and store all rainstorm events that can be found in the rainfall raster just created.
9. Create a general class of representations for the flow vectors of water on the drainage surface.
10. Construct a model for predicting the surface flow vectors of water over a drainage surface in response to some

rainstorm event.
11. Apply the flow prediction model to the specific drainage surface and rainfall event just constructed.
12. Using the map of predicted surface flow vectors, compute the hydrograph that would occur at the downstream end

of the highest order channel-segment on the drainage surface.
13. Display a plot of this hydrograph and compare statistically the predicted and observed hydrographs.
14. Create a class of modeling-schemas that encapsulate the sequence of operations in steps 1-13 above.
15. Run this schema iteratively using variants of the flow model from step 10 until the predicted and observed hydro-

graphs are in reasonable agreement.

Figure 2: A Hydrological Modeling Process Represented in Natural Language

in a modeling process in which observations on landsurfaces are represented bydigital elevation models(DEMs), it is

necessary that they possess concrete representations that can be extracted from DEMs.

There are, however, many modeling situations for which neither a “standard” set of concepts nor a “standard”

set of representations for concepts has been defined. An important activity in such cases may be the discovery of

an appropriate set of concepts and representations. Hence in steps 3-4 of our example, the investigator may (1)

create new classes of representations for concepts relating to landsurface characterization; (2) extract instances of

such representations by transforming DEMs; and (3) evaluate the representations using visual transformations. A

transformation is a mapping from one set of representation domains (R-domain) to other set of R-domain. Similar

remarks apply with respect to observations on rainfall events and flow events (steps 7-10). In relation to step 10, for

example, an investigator may choose to characterize surface water flows in terms ofsurface flow vectorsinvolving

representations oftime, location, and themagnitudeanddirectionof flows. For the purpose of predicting flows over

landsurfaces represented in terms ofchannel segmentsandchannel segment contributing area, it may be appropriate

to construct classes of flow representations in whichsurface flow vectorsare decomposed intochannel segment flow

vectorsandoverland flow vectors.

For reasons of convenience, the investigator may wish to employ concepts and representations of concepts that

describe theprocess of modeling itself. Such representations could be manipulated during the process of model eval-

uation and iterative improvement. In particular, once a representation for the entire process has been constructed, it

may then be modified, versioned, transformed, and executed as a unit, as in steps 14-15 of Figure 2.

8

A key element in many modeling situations involves the application oftransformationsto concept representations.

In terms of our example, the use of transformations arises in steps 2, 3, 4, 5, 6, 11, 12, 13, and 15. In steps 2 and 4,

for example, we note that the various procedures on the DEMs may be interpreted as transformations in which one

set of representations of landsurfaces is mapped into other sets. Thedisplaycommand in step 2, in particular, may be

viewed as a transformation that maps the representation of a DEM into a representation that is visually meaningful.

In step 11, it is necessary to select and applysolution proceduresto the representation of the flow generating process.

The effect of applying such procedures may be interpreted in terms of transformations that map representations of land

surfaces, rainstorm events, initial flows over the surfaces, and the flow-generating models into representations of flows

over surfaces at various times.

Information may be extracted from such flow representations by the application of further transformations. It

may, for example, be desirable to compute representations ofhydrographsat various locations onchannel segments

(step 12). The visualizations and comparisons of the observed and computedhydrographsthat occur in the model

evaluation step (13) may be interpreted as transformations. The comparison of observed and computed hydrographs

may, for example, be viewed as a transformation from pairs of representations of hydrographs into representations of

statistical measures.

2.2 A Conceptual Basis for the Symbolic Modeling Process

We believe that it is critical to base computational support for scientific applications, such as the example illustrated

in section 2.1, on the basis of a sound model of the scientific modeling process. We now present a brief description of

such a model.

A key aspect of our model of scientific activity is its focus on the nature, representation, and use ofconceptsas

the central components of symbolic modeling activities. In particular, this approach leads directly to the design and

construction of a CME in which it is possible to construct relatively high-level expressions for any symbolic modeling

activity. The approach places no constraints on the sets of concepts that may be defined nor on how they may be

represented. Furthermore, it does not constrain the order in which scientific modeling activities are carried out.

Scientific modeling is a complex enterprise comprising a large range of activities. Apart from observation and

measurement-related activities,thecore activity of modeling activities is the construction and manipulation ofsymbolic

representations of phenomena. As we argue in [1] it is natural to view the process by which symbolic models of

phenomena are constructed as a self-reflective process in which an enormous space of concepts, representations of

concepts, and transformations between the representations are explored. More specifically, the process may be viewed

as one involving the

9

1. the choice or discovery of sets of concepts;

2. the choice of representations for the concepts, the definition of associated transformations, and the creation of

representations of concept instances;

3. the application of transformations to representations of concept instances;

4. the construction of interpretative mappings from symbolic representations into “phenomena”.

The viewpoint also captures the fact that scientists typically employ concepts relating to theprocess of modeling

itself, as well as concepts relating to the phenomena under investigation. A good example of such a concept is that of

a model. Although these concepts play an important role in such activities as the evaluation of models and exchanges

of information concerning models, they are poorly supported in current computational environments. Not only does a

CMS permit support for the concept of a model, but it also permits the construction of many classes of models from

previously defined concepts.

2.2.1 Representational Structures and Scientific Modeling

It is possible to construct a relatively simple conceptual basis of fundamental activities that support scientific modeling

[1]. This conceptual basis involves the idea ofrepresentational structures(R-structures). R-structures provide a

language for constructing and manipulatingrepresentations of conceptsand are the foundation on which the CME of

a CMS is constructed.

We define arepresentational structure(or R-structures) for a concept to be a triple[D; T ; I] in which (1)D is

the representational domain(R-domain) of the R-structure; (2)T is a set oftransformationsthat may be applied to

D; and (3)I is a finite subset of instances ofD. The R-domainD of an R-structure contains a set ofrepresentations

for all instances of the concept. Since an R-domainD will typically contain a large or even infinite number of such

representations, an element ofD will typically be specified in terms of a schema that defines the set of representations

in some implicit manner.T , or thetransformationsof the R-structure, is a set of representations of transformations

that may be applied to the representations in the R-domainD. Any transformationt in T is the cartesian product of

D1,...,Dn to cartesian product ofD0

1
,...,D0

m
. Here,Di (i = 1; n) andD0

j
(j = 1;m) are R-domain.I is a finite set of

representations from the R-domain that are given inexplicit formand that have particular significance in the modeling

enterprise. In general, R-structures are given a name so that they may be referred to as entities.

We illustrate these ideas with an R-structure for representing the concept ofPolygons. A representation forPoly-

gonsmay be constructed in terms of an R-structure namedPolygons::Points.

Figure 3 illustrates the R-structure ofPolygons::Pointsthat contains three parts,[D; T ; I].

10

R-structure: Polygon::Points

D :

T:

I:

<Points, ... , Points>

Polygons. area

Polygons. perimeter

Polygons. centroid >

: Polygon::Points > Real

: Polygon::Points Points

: Polygon::Points > Real

Polygon1 : <p1, p2, p3, p4, p5>
Polygon2 : <p1, p6, p2, p7, p8>

= [D, T, I]

Figure 3: An example of concrete R-structure ofPolygons::Points

The R-domain ofPolygons::Pointscontainsconcreterepresentations of polygons as sequences of pointshp1; :::; pni

that may be interpreted as the vertices of the polygon. The pointspi (i = 1; n) may be viewed as representations from

the R-domain of an R-structurePoints. The notationPolygons::Pointsindicates that the concrete representation of the

concept ofPolygonsis in terms of concrete representations of the concept ofPoints. There may be multiple concrete

representations of concepts. For example,Polygonsmay also be represented in terms ofLinesegmentsor Half-planes.

In order to make this representation of the conceptPolygonsaccord with our intuition concerning polygons, it is

necessary to associate with the R-domain ofPolygons::Pointsexpressions that represent constraints, such as “no two

edges of the boundary intersect, except at their end points”. The set of transformationsT on the representations of

polygons might include, for example,Polygons.area, which maps a representation of a polygon into a representation

of its area, and other transformations such asPolygons.perimeterandPolygons.centroid. Finally, we might wish to

construct a specific setI of polygons that are frequently encountered in some modeling activity.

As noted in [1], it is of value to differentiate betweenconcrete R-structuresandabstract R-structures. The former

correspond to the concrete, manipulable representations of concepts. Since for many concepts there are multiple,

equivalent concrete representations, it proves useful to define anabstractR-structure over the set of all equivalent

concrete R-structures. Such abstractions facilitate the construction of new concrete R-structures and may be used to

support the notion of inheritance.

If one views R-structures as representations of phenomenological or methodological concepts, then the process

of constructing symbolic models of phenomena may be viewed as one in which a particular set of R-structures is

inductively constructed and explored. R-structures are “evaluated” in terms of interpretations that map R-domain

elements and the associated transformations into either the phenomena of interest or the process of modeling. Hence

we may characterize the process by which scientific representations of phenomena are constructed and evaluatedin

11

terms of R-structuresas a process in which scientists (1) construct, evaluate and apply collections of R-structures for

modeling both the phenomena in specific domains of application and the phenomena of the modeling process itself;

and (2) constructspecific instancesof R-domain elements and apply sequences of specific transformations to sets of

instances of R-domain elements. “Useful” R-structures are retained and their value communicated to other scientists

while others are abandoned.

R-structures may be constructed that permit scientists to represent, as first class entities, any reasonable concept

that is useful in the modeling process. We may, for example, construct specific R-structures whose R-domains contain

representations of primitive “abstract” entities, such as integers, real numbers, boolean values, and character strings;

abstract entities, such as simple and complex geometrical figures; abstract mathematical models, such as partial dif-

ferential equations; “empirically derived” entities, such as datasets obtained by various observational means; transfor-

mations (e.g. procedures, algorithms, and statistical operations); and scientificmodeling schemasthat are defined in

terms of the representations and transformations of other R-structures and scientificprojects.

2.2.2 Supporting the Concept ofmodelsand Projects

Two important, high-level concepts that arise in scientific modeling applications and that may be represented in terms

of R-structures aremodelsandprojects. We briefly indicate how such representations may be constructed. We first

note, however, that our definition of the concept of a model is not intended to be complete in any sense, but is aimed

at capturing the essence of a significant class of scientific models. A great advantage of the approach supported by R-

structures is that the definition of concrete representations of some concept in no way proscribes the use of alternative

representations.

Out notion of the concept of a model is intended to capture the idea of sequences of modeling operations that

transform sets of input representations into sets of output representations. Such sequences are illustrated in Figures 1

and 2. Furthermore, we generalize this notion of a model to one ofmodeling schemasin which one may represent any

symbolic modeling operation. Hence a modeling schema may include not only the operation of applying transforma-

tions to concept representations, but also modeling operations such as the creation of R-structures or the accessing of

R-structure instances. Figure 4 illustrates the model as a R-structure. The R-domain of the model is directed graph

which represents the computation process. The setT of transformations associated with some R-structureModeling-

Schemas::Graphsincludes operations that permit one toconstruct, run, test,andmodifyinstances of modeling schemas

in an interactive manner. In Figure 4 the trasformationModel.run maps graph with some instances od R-domains to

other instances of domains.Model.run does not change the graph, but only derives the results from the computation

graph (a flowchart) with the input instances (called instatiation). Examples of transformations related to the modifi-

12

D :

T:

I:

= [D, T, I]R-structure: Modeling-Schemas::Graphs

Directed Graph

Model .run > D’1 X ... X D’m: {Graph} X D1 X ... X Dn

Model .modify >: Graph Graph

Surface-Flow : Directed Graph
Color-Map : Directed Graph

Figure 4: Model is an R-structure

cation of modeling schemas include transformations that permit one to concatenate two modeling schemas or to set

break points for testing purposes. Examples of transformations related to the running of modeling schemas include

run. The setI of the R-structure contains explicit representations of specific instances of the modeling schema.

Figure 5 is an instance of the R-structureModeling-Schemas::Graphs. In Figure 5 we illustrate such a modeling

schema for the hydrological modeling example. This modeling schema is intended to characterize a simplified version

of the modeling schema of Figure 2 in which the only modeling operations are theapplicationof transformations and

theaccessingof R-domain elements. In particular, this modeling schema does not involve thecreateoperation, and

the graph of the modeling schema has no cycles.

It is natural to represent modeling schemas as graphs in which the nodes may represent instances of R-domain

elements or transformations and the edges represent data flows between the nodes. An instance of a modeling schema

may be viewed as a representation of a specific modeling process. Such representations permit one to represent a spe-

cific modeling process or model as a unit, and to facilitate the iterative creation, testing, modification, and applications

of models.

The concept of aproject is currently the highest level concept that we represent in terms of an R-structure. It

permits one to define the idea of subprojects and the interrelationships between related projects in terms of the sharing

of various R-structures and their component elements. Aproject may be represented in terms of a subset of the

available R-structures that is sufficient for the iterative modeling and database activities in some domain of scientific

application.

The R-structure,Projects, incorporates an R-domainD whose elements are tuples[e1; e2; :::] in whiche1 is a any

admissible subset of R-structures (exceptprojects) ande2 is a subset of instances of modeling schemas. Other elements

13

accessSurface_Flow

Surface
 Flow

Tempo-
 ral

Spatial

Rainfall
 Map

Rainfall_Map.extraction
apply

access DEM

DEM.union

drainage
surface

Surface_Flow.solve_method
apply

surface
 flows

Set of
Storms

Set of
DEMs

interpolated
 map

Rainfall_Map.interpolation
apply

Rainfall_Map.findstorm
apply

a DEM

DEM.display
apply

 a
rainfall
 map

DEM

DEM.drainage_surface
apply

hydrograph

Figure 5: Modeling SchemaSurface-Flow-1for Figure 1

of the tuple may be used to represent other aspects of a project such as the researchers of the project, the problems

under study, and the duration of the project. An example of transformation inT of the project isFindSubprojects

which gives a list names of allsub-projectfor specific givenproject name. Another example of transformation in

T is calledFindParentwhose output is theprojectname for given asub-project. The set of instancesI of projects

contains explicit representations of actual projects. One may view such R-structures as defining the access of groups

of researchers to various subsets of the existing set of R-structures.

2.3 Computational Modeling Environments

We define a CME to be an integrated modeling environment that is based on the notion of R-structures. The basic

operations that must be represented in a CME to permit scientists to construct R-structures for appropriate sets of mod-

eling concepts include: (1) the definition, creation, manipulation and storage of new R-structures and their constituent

parts; (2) the application of transformations to R-domain elements in general and to R-domain instances in particular;

14

and (3) the search for specific R-domain elements and transformations that satisfy appropriate constraints.

This basic functionality may be represented in terms of a simplecomputational modeling language(CML) [1]

that possesses a small set of simple commands. This set includes the commandscreate, delete, modify, access, store,

which may all be applied to R-structures, R-domains, transformations, and instances, as well as the commandapply,

which applies transformations to R-domain elements.

3 A Visual Computational Modeling Environment

Given the complex nature of modeling environments, expressive graphical representations of the support for model

construction and testing is likely to be of great benefit to a scientist. In this section, we provide an overview of the

architecture, functionality, and use of a VCME. The goal is to show how we may construct a relatively straightfor-

ward graphical interface that supports all the functionality of a CME based on our model of the scientific modeling

activity. This interface involves two components. The first is a graphical environment for creating and manipulating

projects, models, R-structures, and R-domains and transformations in an R-structure. The second component, which is

described in Section 4, is a visual language for supporting the top-down construction ofmodeling schemas::graphs,

an important class of R-structures that provide representations of our concept of models. This visual language may

be viewed as a special but important component of the VCME that supports both the top-down and the bottom-up

construction of models.

3.1 Functionality of the VCME

The VCME is based on our conceptualization of the scientific modeling process in terms of R-structures and transfor-

mations of R-structures. In our current design and implementation, the VCME takes the form of a graphical modeling

environment, running under X-windows, in which users may create their own workspace and construct graphically the

entities and transformations of an application using a toolbox of graphical symbols.

In the terminology of R-structures, a user has access to the graphical representations of operations for creating,

registering, accessing, browsing, and searching R-structures and their various components (i.e., their R-domains, trans-

formations, and instances of R-domain elements.). The user may also apply transformations to instances of R-domain

elements. In particular, there is support for such operations on the special classes of R-structures that correspond to

models and projects.

In terms of the more traditional terminology, the VCME provides access to the following functionalities:

1. Project management: A project in a CMS is viewed as an instance from the R-domain of a special R-structure

for Projects(i.e., as a data element of a special type). The project manager provides support for the user to

15

create and register a specific project. The user can also search and browse through projects, and displays models

related to a particular project.

2. Model management: A model in a CMS is viewed as an element from the R-domain of a special R-structure for

modeling schemas. The representation of models comprises a general description, a set of input data domains

(R-domains), an output data domain (R-domain), a set of functions (transformations), information character-

izing, for example, the results of the model simulation, and a model ID. Basic modeling operations, such as

create, update, access, andmodel-execution, are supported by themodel-editor.

3. Function management: In a CMS, functions take the form of transformations between R-structure elements.

These functions or transformations may be constructed graphically using a flowchart editor. This editor sup-

ports the definition of both “primitive” functions and functions defined using other functions, which we term

“complex” functions.

4. Data management: In a CMS, data take the form of instances of R-structure elements. In general, such elements

are best represented in terms of a complex data model, rather than a simple relational model. Since complex

objects are created with the application of “constructors”, such asset, tuple, list,andsequenceconstructors, the

VCME provides graphical representations of these constructors, as well as supporting operator inheritance.

In addition to the above functionalities, the VCME also provides browsers that allow the user to visualize data,

metadata, functions, models, and projects. The browsing activities that are supported include: the display of R-

structures and their components, including R-domain elements and associated transformations; viewing both system-

defined and user-defined meta-data; and visualizing the results of executing a model or, more generally, the results of

applying a transformation to data domains.

3.2 A High-Level Computational Modeling Language (CML)

We describe here the simple, largely declarative language CML for expressing scientific modeling and database oper-

ations. Based on the concept of R-structures, CML is designed to express at the conceptual level, easily and naturally,

most of the operations that are employed in iterative model development, while hiding irrelevant computational issues.

This section gives a brief overview of some primitive language constructs.

The primary functionalities of CML include the definition, creation, manipulation and storage of new R-structures

and their constituent parts; the application of transformations to R-domain elements in general and to R-domain

instances in particular; and the search for transformations and specific R-domain elements that satisfy appropriate

constraints. CML includes a small set of simple commands. The core CML commands arecreate, delete, modify,

16

accessandstore(R-structures, R-domains, transformations, relationships, and instances) andapply(transformations

to R-domain elements).

Thecreatecommand in CML permits the construction of abstract and concrete R-structures, and the components

of such structures. In creating an R-structure, it is necessary to associate the appropriate R-domains, transformations

relations and instances with the R-structure. It is possible to specify a set ofsuperdomains, that is R-structures

from which this R-structure will inherit concrete representations, transformations and constraints. In particular, the

R-domain of a super R-structurecontainsthe R-domain of any sub R-structure. For example, DEM can be created by

the following (wherepegrepresentspoint elevationgrid):

CREATE DEFAULT CONCRETE R-STRUCTURE DEM::peg
SUPER R-STRUCTURES =fRectangularGrid Maps::pegg
R-DOMAIN = [name:string, resolution:integer,

location:[L1:point, L2:point, L3:point, L4:point],
P E:set of [Location:point, Elevation:real]]

CONSTRAINTS =� � �
TRANSFORMATIONS =fdisplay dem(DEM::peg):bool,� � � g

The user may also “name” the elements by values of typestring. Although these names play the same role as

object identifiers, this provision in CML provides flexibility and ease in scientific modeling activities. For example,

if Y holds an identifier of aDEM element, the command “CREATE ELEMENT Manaus IN DEM VALUE = Y” creates a new

nameManausfor the element. While each element in an R-structure can have 0, 1, or more user defined names, they

must be unique in an R-structure and all its substructures, i.e., consistent with the inheritance hierarchy.

A key operation in CML is the application of transformations to elements from R-domains. Such applications may

be expressed in CML in terms of theapplycommand. Suppose the variableY holds a set ofDEM element identifiers.

The command “APPLY DEM.union TO Y” results in a (new) element of typeDEM ; it also returns the identifier of the

new element which can be stored in another variable to be used later. Theapply command has a large number of

important applications which include the creation ofdatasetsin an R-structure. The following example shows how we

may create a new explicit instance of an R-domain element of the R-structureDEM SLOPESusing the transformation

DEM .computeslope:

CREATE ELEMENT IN DEM SLOPES VALUE = APPLY DEM.computeslope TO Y

The important but simple commandaccessin CML allows queries on R-structures, their four main components

and elements of their components. We illustrate with examples relating to the access of datasets. Assume that the

abstract R-structureDEM has already been defined and thatManausis a variable holding a spatial object identifier.

Using the predicateintersecton pure spatial objects, we can find all DEMs whose spatial projection overlapsManaus:

Y = ACCESSf X IN DEM
WHERE DEM.spatialprojection(X) INTERSECT

spatialprojection(Manaus)g

17

Message
manager

GUI

CML code
generator

CMS

Model
manager

Flowchart
 manager

R-Structure
 manager

manager
Project

Figure 6: The VCME architecture

Local variables can be declared and used in the body and their scopes are withinbegin–end. New domains and

elements can also be created with scopes within the function but they are not persistent unless explicitly saved (by the

storecommand).

Further details of the language can be found in [2]. With the brief description of the language, we now discuss the

organization of VCME.

3.3 Architecture and Windowing Systems of the VCME

The architecture of our VCME is depicted in Figure 6. It comprises seven components, each of which is represented

graphically by a display window. The user interacts with the VCME through these graphical window systems to

manage projects, models, functions, and data. These components, their associated display windows, and supported

functionalities are:

1. A project managerthrough which the user may access, create, modify, and delete projects. The project manager

also communicates with the model manager and the flowchart manager (described below) to update the metadata

records and functions in its models.

When a user first enters the VCME, the project manager creates a window in which all predefined projects

are displayed (e.g., Figure 7). The project manager supports three types of operations: creating new projects,

browsing existing projects, or invoking the flowchart editor. A new project is created by supplying the owner and

application names. A short comment can be added to facilitate keyword search. The project manager registers

18

Figure 7: The project manager window

the new application project in the display window and saves the information in the system's metadata record.

The project manager allows the user to select an existing project by clicking on the project icon and creating a

model management window. It invokes the model manager for displaying models within the selected project.

The project manager also allows the user to access the flowchart manager which invokes the flowchart editor,

the R-structure manager, the function library, and message display for editing a particular model in the selected

project.

2. A model managerand its associated window provide a graphic environment for browsing, creating, and deleting

models (Figure 8). The model manager also provides access to the data and procedures of a specific model by

loading the flowchart work environment.

There are two stages in the creation of an application model. The first stage is to create models in the model

manager window by supplying the model name and a short comment for keyword search. This process only

registers a model name and keywords in the system metadata records and causes the model to be linked with

the associated project. This process, however, does not specify the computational procedures and R-structures

used in the model, which means that the model is “empty”. In the second stage, the user invokes the flowchart

editor, the R-structure manager, the function library, and the message display to expand the internal structure of

the model (Figure 9).

19

Figure 8: The model manager window

3. AnR-structure manager is used to create, register, access, browse, and search R-structures and instances of R-

domain elements. This R-structure manager window includes three sub-windows: one for abstract R-structures,

another for concrete R-structures, and the third for instances of R-domain elements. Once the user selects a

particular abstract R-structure, the concrete R-structure window displays all associated concrete R-structures.

Similarly, when the user selects a concrete R-structure, the instance window displays all R-domain instances

associated with the particular concrete R-structure.

The user may create a concrete R-structure in the appropriate sub-window by supplying the concrete R-structure

name and the name of its super R-structure (Figure 10). The domain of a concrete R-structure may be specified

in three different ways: (1) with a domain name that has been previously defined; (2) with an external name

defined by another package, e.g., MATLAB; and (3) using a CML script in which the user specifies the domain

structure (Figure 10).

In general the creation of abstract R-structures is automated. When the user creates a concrete R-structure, the

system checks whether an associated abstract R-structure exists. If it does not, the system creates an appropriate

abstract R-structure automatically. The user may also create an abstract R-structure manually by providing the

abstract R-structure and the super R-structure names, and supplying the signatures of the associated transforma-

tions.

20

Figure 9: The VCME's model editing environment: the flowchart editor, the R-structure manager, the function library,
and message display.

In the lower part of the workspace in Figure 10, the user may define the transformations associated with the

concrete R-structure. The operation of saving an R-structure definition invokes a code generator (described

below) that automatically derives a CML script encoding the data domains and transformations of the R-structure

and saves the script in the DBMS (see Figure 11).

4. A function-library manager and its window which contains a catalog of functions (transformations) and mod-

els. The user can create new functions or register routines from other systems, such as Khoros or Grass. Another

use of this window is to browse the hierarchy of the function library.

5. A flowchart managerwhose window provides a “complete” graphical programming environment for the defini-

tion of transformations and models. On creating a transformation, the R-structure manager provides appropriate

R-structures as inputs and outputs of the transformation. On creating a model, the model manager registers the

model in a model base.

When a flowchart is created by linking data domains and transformations, the flowchart manager performs

checking on the number of parameters and the consistency of the data types. The flowchart manager creates the

model schema and relays it to the CML code generator. It also communicates with the message manager for

21

Figure 10: Creating a concrete R-structure.

displaying on-line help and error/warning messages.

6. A message managerand its window are used for on-line help and display messages generated within the VCME

and from the CMS. For example, a message may be sent from the CMS to the GUI for error reporting.

7. A code generation managerand its window generate the CML script based on information sent from the R-

structure, flowchart, and model managers. The code generator also sends the model schema to the CMS for

storage.

Finally, a “general manager” coordinates the activities of the preceding seven managers withing the VCME, as

well as communication with the environment outside of the VCME.

4 A Visual Language for Top-down Model Construction

A central feature of the VCME is support for both top-down and bottom-up model construction. As indicated in

section 2, it is reasonable to view a large class of scientific models as directed graphs in which nodes are instances

22

Figure 11: The CML code which encodes the concrete R-structure specified in Figure 10, generated automatically by
the code generator

of R-domain elements or transformations, and arrows represent the directions of data flow. This idea is illustrated in

Figure 5. There are clearly many ways in which scientists may create instances of models like the one in Figure 5.

Typically, these involve various combinations of top-down and bottom-up constructions with iterative refinement.

Based on our interactions with applications scientists, we believe that top-down model construction is an especially

important approach, representing in some sense the reductionist approach adopted by many scientists. In such an

approach, higher-level phenomena and the associated modeling concepts are represented (“explained”) in terms of

lower-level phenomena and concepts.

In this section, we discuss support for the top-down construction of classes and instances of models in the VCME.

In particular we describe a visual language that supports the top-down design of models represented as graphs. The

top-down construction divides a coarse model into successively finer sub-models in which nodes are R-structures and

transformations.

4.1 The Top-down Construction of Models

In a top-down modeling process, a scientist approaches a modeling problem by first specifying high-level inputs and

outputs that are to be linked (explained) by some model. The detailed mechanisms linking the desired outputs to the

specified inputs may not be initially understood and is typically represented by a black box. Successive refinements of

the model are intended to define the details of the mechanisms in an iterative manner. During the process of making

such details explicit, as noted above in the description of the hydrological modeling example, a scientist may well

23

find it necessary to employ new concepts. In the terms of our conceptual model of scientific activity, this requires the

definition of new R-structures.

The goal of the visual language is to support the iterative refinement process by which an initial black box linking

high-level inputs and outputs is decomposed into sequences of intermediate inputs and outputs and the associated

transformations. The use of this visual language in VCME is supported by operations that include the construction of

R-structures.

The flowchart editor of the VCME allows the user to define the input and output data domains, and to place an icon

with a model name between these inputs and outputs for representing a decomposable transformation or model. The

user then decomposes the icon and replaces it with R-domain elements, transformations, or other such decomposable

icons, which flesh out the specific structure of the original icon or black box. Continuing in this manner, the user may

create a sequence of decompositions, each representing a specific computation, until a level is reached at which the

computation is fully specified in terms of existing R-domain elements and transformations. We call a decomposition

level is terminated flowchart if it is fully specified. This means that any icon in this level represents an existing R-

domain element, or an executable transformation coded by Fortran, C, C++, etc., or a predefined CML program. A

terminated flowchart does not include any decomposed icon. During the iterative process of model specification, the

user may at any time employ the functionality of the general VCME to construct any new R-structures or R-structure

components that may be required by the modeling activity.

Such a process is shown diagrammatically in Figure 12, in which the first few steps of model development are

illustrated. In the first-level decomposition, the user specifies input and output domains that are to be linked by the

modelHydrograph. In this level the iconHydrographin flowchart is a black box. Successive refinements of the model

are intended to define the details of the modelHydrographin another flowchart aditor window. The process of deriving

drainage surface from domainDEM is a new transformation which is still a black box whose detailed computation

is specified in Figure 13. Similarly, the black boxRainfall processis specified in Figure 13. The transformations,

AccessSurfaceFlowandSurfaceFlowSolveare existing Fortran programs that do not need continued decomposition.

In particular, the combination of Figure 12 and Figure 13 leads to the relatively detailed data flow diagram illustrated

in Figure 5. We may view Figure 5 as representing a fully specified model (assuming the existence of an appropriate

set of R-structures and transformations).

4.2 An Illustration of Top-down Flowchart Construction

The flowchart manager employs layered window canvases for expressing each level of model decomposition: a decom-

position icon (D-icon) is used to represent a decomposable model or transformation; a transformation icon (T-icon) is

24

Surface
 Flow

Tempo-
 ral

Spatial

hydrograph

DEM Rainfall
 Map Spatial

Tempo-
 ral

Surface
 Flow

hydrograph

D_in

D_out

Computational
Model Computational

Model

access Surface_Flow

apply
Surface_Flow.solve_method

surface
Flows

DEM

DEM
Process

Rainfall
 Map

Rainfall
Process

drainage
 surface

Set of
Storms

Figure 12: The first few steps of in the development of the hydrology model.

used to represent an executable function; and a data icon (Dt-icon) is used to represent input, output, or intermediate

data domains.

Again the hydrological example may be used to illustrate how the visual language for top-down flowchart con-

struction may be employed to support the construction and testing of models. Figures 14 and 15 show the initial and

final snapshots of the flowchart editor window during a hierarchical, top-down model design process. We may view

this process as occurring in five main steps.

STEP 1 Specifying the model signature.The signature of a model includes its input data, output data, and a D-icon

labelled with the name of the model. In the hydrology example, input icons are created by dragging DEM and

RAIN1 data from the concrete R-structure window to the flowchart canvas. Similarly, the output HYDR data

(the hydrograph that results from applying the model to the input data) is created by dragging the concrete R-

structure HYDR to the canvas. The D-icon linking the inputs and outputs is named COMDIS. The user then

links the COMDIS icon to the model input and output icons, completing the construction of the initial flowchart

25

DEM
Process

access DEM

DEM.union

Set of
DEMs

a DEM

DEM.display
apply

DEM.drainage_surface
apply

Rainfall
Process

Rainfall_Map.extraction
apply

interpolated
 map

Rainfall_Map.interpolation
apply

Rainfall_Map.findstorm
apply

 a
rainfall
 map

Figure 13: Decomposition of the hydrology model to a certain level of detail.

(see Figure 14.)

STEP 2 Constructing the second level flowchart.In the second step, the user expands the D-icon by double clicking on

the COMDIS icon to create a new flowchart editor window. This editor is similar to the original flowchart editor

but represents the first recursive step in the process of a top-down model design. In order to reduce ambiguity,

the input R-structures in the new window are labelled DCINPUT1, DCINPUT2, etc. with reference to the

decomposition icons in the original window. Hence in the current example, which involves the two inputs DEM

and RAIN1, the inputs in the new window are labelled DCINPUT1 and DCINPUT2, as shown in Figure 15.

As illustrated in Figure 15, the user employs intermediate data domains and transformations to produce the

model output. The intermediate data domain are “equal travel distance map” (ETDM) and “grid rain in area of

Santa Barbara” (rainSB). The intermediate transformations involve the as yet undefined transformations COM-

dem, which maps the DEM data into the ETDM, and COMrain which maps RAIN1 data into rainSB. These

transformations are initially represented as D-icons. The third transformation employed by the user, “discharge”

is a predefined function that is an executable FORTRAN program registed in the function library. The icon for

“discharge” is a T-icon created by dragging the discharge function from the function library and as such it cannot

be further decomposed.

STEP 3 Constructing the remainder of the flowchart.The user repeats the previous steps until no more D-icon remain

in any flowchart canvas. During this process the user may need to use the general functionality of the VCME

26

Figure 14: The flowchart editor window

Figure 15: The flowchart editor window for icon “COMDIS” after decomposition

27

W0

Ti
T1 Tn

Wi

Ti1
Tij

W1

T11 T1k

Wn

Tn1
Tn2

Tns

Level 0

Level 1

Wi1 Wij

Level 2

Wn11

Figure 16: Top-down flowchart construction as a window tree

for creating appropriate R-structures. At this point, the process of initial model design is complete. Figure 16

illustrates the process of top-down flowchart construction. The windows created in the process form a tree where

the head of the tree is the original flowchart window representing the top-level, abstract model description, while

the tail of the tree is the concrete model with all data domains and transformations instantiated. In Figure 16,

W0 in level 0 of decomposition is the root window that includes D-iconT1; T2; ::: ; Tn. WindowWi in level 1

represents D-iconTi. Ti1; ::: ; Tij in windowWi all are D-icon which need to be defined by other flowcharts.

A window is called a leaf if it does not contain any black box (D-icon).Wn11 in level 2, for example, is this

kind of leaf window.

STEP 4 Code generation.Generating codes for a complex hierarchical flow diagram is in general a complex procedure.

In particular, the number of levels of decomposition may be very large, and the graph representing such a

flowchart may not be simple, since a node may represent another graph (or flowchart). We discuss briefly

the main steps in the procedure for generating codes for the hydrological example. Before considering top-

down code generation we describe a simple case of code generation processing for flowchart, without nesting

decomposed icon or called case of non-hierarchical flowchart. We call simple process of code generation whose

process can be expressed as follows:

(a) Type checking: in the event of linking data domain to transformation by drawing arrow, the code generator

will perform the type checking operation.

(b) Link record: If the link from one icon to another is valid (only one case is invalid: link between two data

domains), this link is recorded in a temporary place. Otherwise, an error message is sent to the message

28

window saying an invalid link was performed.

(c) Deriving code:

� Checking if defined flowchart is a connected graph; if not, send error message.

� Writing code: Starts from input domain, following the data-driven rule to derive the code, i.e. any

function in flowchart will be called if its input data are ready.

� Continuing code generation until last icon is reached.

(d) Send CML code to DRAS.

For the complex case of nested hierarchical flowcharts:

� Starting at the root-level windowW0:

Using above simple process of code generation, the generator develops the followingCML code:

HYDR = apply COMDIS to DEM, RAIN1

� After deriving full script for this level all D-icons will be considered, i.e., to consider next level:

For all of D-icon, load the corresponding flowchart and derive script following the simple code process, for

example, when the code generator identifies the D-icon “COMDIS”, it accesses the icon's decomposition

window as indicated by a D-icon pointer and generates the following procedure:

proc COMDIS (DCINPUT.1, DCINPUT.2, HYDR)

{

ETDM = apply COMdem to DCINPUT.1

rainSB = apply COMrain to DCINPUT.2

HYDR = apply discharge to ETDM, rainSB

}

� If more D-icons remain, the above process is repeated.

In Figure 16, the main CML code is derived from the flowchart in windowW0 in level 0. The following is

access to flowchart in windowW1 that specifies D-iconT1. Then go toW2 and so on. Then go to next level.

The flowchart in windowWn11 does not contain any black box, so no continuing needed for this flowchart. The

process will stop when all leaves window are reached.

29

The final body of codes is relayed to the DRAS. At model construction time, the real data elements of the R-

structures are not yet defined. When running the model, the system prompts the user to instantiate the models

by dragging appropriate elements of R-structures to the R-structure icons in the flowchart. In the preceding

example, if the user drags the element “dem” to DEM1 and the element “rain” to RAIN1, and the model is

registered as CompHygraph, then the code generator sends the string

run :: CompHygraph (dem, rain)

to the DRAS to cause execution of the model.

This concludes our discussion of the functionality and construction of the CME. A very important feature of the system

is the support it provides for the access and manipulation of the data and computational programs (in C, Fortran - both

stored as physical files), distributed on the network. We will now discuss how this support is provided in CMS and

how it can be easily used through the CME.

5 Distributed Resource Access System in VCME

Until now, we have discussed how the modeling environment is organized and the process of modeling is supported in

the CME. A key point to note here is that modeling scientific applications (an example is shown in Figure 1) requires a

seamless integration of an extensible collection of external software tools and data stores, whose formats and behavior

cannot be fixed a priori. This is particularly a challenge in the case of modeling activities that involve numerically-

intensive and data-intensive applications. Not only should such support involve the integration and interoperability of

data, diverse software packages, and distributed computing resources, but it should do so at a level of abstraction at

which irrelevant computational details are hidden from the user. Thus, a CMEmust provide adequate support for such

a distributed environment.

5.1 Requirements for Computation Support to CME

A first and clear requirement in this regard is tobridge the gap between the high level modeling constructs and the low

level details of system implementation. Researchers faced with the task of using computers to develop and test complex

models of phenomena typically work with a series of high level abstractions that are correctly interpreted only within

the particular conceptual framework in which they are used. The construction, manipulation, and evaluation of models

must therefore be described at a level such that the actual variables, routines, procedures, and even data sets used to

represent the model are transparent with respect to the modeling tasks that are illustrated in Figure 1.

30

A second requirement is forinteroperability among the distributed data resourcesthat are used to support such

modeling activities. The computational support used by members of scientific research teams is typically heteroge-

neous and distributed over a wide area network. It is clear that, in such an environment, scientists must copy (ftp) files

to their local site and deal with the idiosyncrasies of the access method, host information, local storage capacity, and

local file management. Also, data may have to be duplicated at several sites, introducing the problem of maintaining

consistency of such data.

A third requirement is to provide auniform and generic interface to many different sets of tools, such as software

packages and computing devices. A user may require access to a large number of tools, such as compilers (C and

FORTRAN), numerical packages (MatLab and Mathematica), geographical information systems (Arc Info, Grass),

and image processing systems (Khorus). Dealing with these external tools is typically a difficult task because tool

interoperability occurs at the granularity of a physical file. Users must modify locally-available programs and tools

to address issues like site license restrictions for software, execution environments (path information, environment

variables), and data format conversions across tools.

5.2 Resource Abstractions in DRAS

The DRAS has been designed to provide access to “external” data and tools in a distributed environment. In order

to hide the heterogeniety of data and provide a consistent view, we have used R-structures to build a conceptual

framework for an integrated computational environment. R-structures provide a high-level schematic view of physical

datasets, and the functional aspects of external tools. Their instances have a representation that is “hidden” (from

CMS), and hence are treated as black boxes and are managed as plain (binary or ASCII) files. In the example of

Figure 14, data such as DEM and RAIN records are stored as follows. R-domain of external resources contain the

following additional fields :

ACCESS METHOD : which can be one of FTP, Gopher, NFS, HTTP, CMS-RAP.

HOSTNAME : Internet address of the machine for the resource

PORT NUMBER : Port Number at the remote site for connection

FILENAME : Host specific file name

TYPE : Tool/ASCII/Binary/C/FORTRAN - different values

depending on the context they are used.

Having specified the R-domains for the R-structures, we have two more key components in our model:domain

instancesandtransformationson domain instances. Instances are typically the datasets like Rainfall and Soil, and tools

31

like FORTRAN executables containing some Erosion Model or interactive packages like Mathematica and MatLab.

Typical transformations would be Read, Write, Invoke or Terminate.

The DRAS comprises two key components : theTool Management System(TMS) and theData Access System

(DAS). In providing computational support, the diverse set of software tools used in the construction of models must be

integrated into a coherent unit. Since most tools cannot be modified and it is not possible to make a priori assumptions

about their behavior, such integration requires that communication with, and interfaces to, various tools be handled

in a manner that is transparent to the user. Such support is provided by the TMS. By tools, we actually refer to any

software package (like MatLab, Mathematica, Khorus) or an executable program that supports a standard-I/O interface

(keyboard/terminal). Most of the legacy systems fall into this latter category. TMS allows users (interactive user or

application programs) to execute, in one environment, scripts (or programs) for other software tools. This is done by

executing the tools in the background while redirecting I/O. The design goal of the TMS was that it be built without

altering the implementation of the tools since users typically do not have access to the source code; and without any

specific assumptions about the set of tools to be supported, i.e., there should exist a capability for configuring new tools

into the system dynamically at the users' request. Establishing interprocess communication with tools is a non-trivial

task in UNIX. To overcome this, it uses the UNIX concept of pseudo-terminals which ensures that the integration of

any software that supports a standard I/O interface can be integrated into the system with ease. Further details of the

TMS can be found in [2].

The DAS forms the lowest level of theAmazoniaarchitecture, as shown in Figure 17.

It deals with the idiosyncrasies of accessing information scattered across the network. Given the nature and char-

acteristics of scientific data, any realistic approach to the problem of data access, precludes a centralized solution.

Therefore, the DAS is built on a distributed architecture. It provides the following three basic features :

� a configurable and uniform interface to heterogeneous data access mechanisms

� support for data filtering and remote tool execution

� support for high-level data abstractions.

DAS is built on the client-server paradigm with a CMS site (DAS client) requesting data or tool access from a remote

site (DAS server). The DAS uses its own new protocol, the CMS-Resource Access Protocol (CMS-RAP) to serve

as its transport mechanism to transfer messages across participating sites on a network. CMS-RAP is built over the

Hyper-Text Transfer Protocol (HTTP) which provides a clean interface to heterogeneous data access mechanisms

(FTP, Gopher, WAIS) and is based on the client-server paradigm too. Also, the widespread use and easy installation

of new HTTP daemons makes the DAS implementation open and scalable. For this reason, we have built the DAS

32

COMPUTATIONAL

MODELING

ENVIRONMENT

TOOL MANAGEMENT SYSTEM

DATA ACCESS SYSTEM

DISTRIBUTED RESOURCE

M

A
T
L
A

B

F
O
R
T
R
A
N

HTTP FTP GOPHER NFS

CMS−RAP

(TMS)

(DAS)

command

result result

command

ABSTRACT
RESOURCE VIEW

(ARV)
STANDARD PROTOCOLS

ACCESS SYSTEM

Figure 17: The architecture of DRAS

without resorting to the use of any peculiarities of particular HTTP daemons; or making modifications within the

protocol itself.

5.3 Working Example

A very typical situation would be the following : a scientist at Santa Barbara (in the “cs.ucsb.edu” domain) wants to

execute the Hydrology Model. The Rain Data needed as one of the inputs is available locally, but the data for Slope

Length (for California) is stored by EOS scientists atSeattle. The output of the Hydrology Model is the Hydrograph

data, which is viewed by the scientist in Santa Barbara using MatLab (located in the Math department). This is

represented in Figure 18. Using CMS, such a complicated scenario is handled just by the specification of R-Structures.

NAME : slope_length

ACCESS : CMS-RAP (default)

HOST : boto.earth.washington.edu

FILE : /eos/DATA/california/SlopeLength

When the CMS executes the Hydrology Model, the system calls an “open” on the “slopelength” file. This invokes

the DAS library, which dereferences theslope length , as shown above. Subsequently, the CMS-RAP is used to

33

Figure 18: Interactive Execution of Models

communicate with the hostboto in Seattle, Washington, the slope data for Santa Barbara is read, along with the rain

data which is available locally. The output of the Model (hydrograph) are displayed interactively on a CMS window,

as shown in Figure 18. The lower left window (window id : wrun) is the interactive window which pops-up when

a model is run. It displays the Model/transformations sent to the TMS/DRAS for execution and the data received as

output. The scientist has control over the operations to be performed, using the 5 buttons provided. The “MORE”

button is used to display further data from the TMS which cannot all fit on the window. As the example illustrates,

each transformation in the model is executed by the TMS sequentially. The “NEXT” button is used to initiate the

execution of successive transformations (in our case, the execution ofMatlab after the execution of theHydrology

Model. The “SEND” button is the most important feature of the VCME. This brings out the real interactive support

for the scientist executing a model. The user can type inputs needed by the model during execution and “send” them to

the model (waiting on the user for input) through the TMS. On receiving the input, the execution resumes and further

data/inputs, if any, are displayed on the window. We have 2 kinds of ways in which the user can exit from an executing

model. Using “DONE”, the execution of the current transformation can be forced to end, automatically initiating the

execution of the next transformation in the model. In our case, it is very useful to test the intermediate outputs of a

34

new transformation e.g.,Hydrology . The user can click “DONE” midway, and initiate the execution of Matlab on

the data output so far to determine the partial correctness of the result. This is typically helpful in computationally

intensive applications that might complete in hours, where the user might like to test data during the initial runs.

Finally, the “QUIT” button is used to end the execution of the complete model.

To display the hydrograph, the user needs to configure MatLab as follows :

NAME : MatLab

ACCESS : CMS-RAP (default)

HOST : tool.math.ucsb.edu

FILE : /usr/bin/math/matlab

TYPE : Tool

Hydrograph is a concept for which the user has a R-structure defined, with several transformations associated with it.

One of them for displaying data using MatLab, is as follows:

Display_Data(file)

{

SOFTWARE : Matlab

begin

LOAD $file -ascii

PLOT ($file)

end

}

When the user executesDisplay Data(hydrograph) , the transformation above is invoked. The first line

SOFTWAREinitiates a request to DRAS. The TMS subsequently dereferences MatLab, and sets a remote process at

“tool.math.ucsb.edu” invoking MatLab. The commands (between thebegin andend), are then passed interactively.

The TMS considers these commands as character strings, and does not interpret them for semantic consistency. Mat-

Lab loads and displays the hydrograph which the DRAS displays at the user CMS window. The advantage of this

approach is that the application developers can write many such small scripts and form a library. This library can be

used by high-level clients directly without any knowledge of the underlying tools being invoked.

35

6 The Implementation and Use of the VCME

In this section, we describe the key elements in the implementation of a VCME on SUN workstations running the

UNIX Operating System under the X-Window environment. The implementation employed the Tcl/Tk Toolkit and

the C programming language. This version of the VCME provides graphical display of the model design process

and the interactive manipulation of complex objects and computational flowcharts. It employs metadata records for

supporting the GUI, and supports automated CML code translation from the GUI specification. We also indicate how

a user interacts with the VCME.

6.1 Database Support for VCME

R-structures provide a language for constructing and manipulating representations of concepts and are the foundation

on which the modeling environment of a CMS is constructed. Due to the hierarchical nature of the relationships

between R-structures and the association of transformations with specific R-structures, the CMS data model lends

itself to a convenient implementation based on object-oriented approaches following the ODMG specifications [41].

Object-oriented technology has been used in the development of techniques for integration of heterogeneous data

management systems. In particular, [40] shows that the object paradigm not only solves the integration problems but

also extends its scope. Furthermore, the inheritance mechanism of the object-oriented paradigm provides flexibility in

accommodating tailored views of underlying applications.

Based on the object-oriented framework, R-structures of VCME are mapped ontoclasseswhich preserve the

relationship between the R-structures. Further, R-domains are mapped to ODMGtypes. Primitive data types such as

INTEGERs, REALs, and CHARACTERs are defined in ODMG. Complex types involving the set, tuple and sequence

constructors are mapped onto Set, Structure, and List respectively of ODMG. Transformations defined on R-structures

are mapped ontomethodsdefined for the corresponding classes. The application of a transformation on an R-structure

instance is analogous to the invocation of a method on the corresponding object. Instances of R-structures map onto

objectsbelonging to classes. In implementing VCME we used the OODBMSO2 [39] because it supports ODMG

93. We have taken particular care to ensure that the functionality of the CMS is not limited to that provided byO2.

For this, we have developed an interface providing high-level functions to manipulateO2 objects. This interface is

built primarily on ODMG specifications and is sufficiently generic to accommodate any standard OODBMS. We will

discuss howO2 is used in the following sections.

36

Function TableFlowchart TableR-structure Table

Model Table

instances of
r-structures function base

Project Table

Figure 19: VCME's metadata structure

6.2 Metadata of the VCME

The five important management entities: projects, models, flowcharts, function libraries, and R-structures are recorded

in a hierarchical metadata structure as depicted in Figure 19. The implementation employs complex tables in which

an entry can be a simple data item, a pointer, or a set of data, to store the system metadata (vs. the simple table used

in relational database where entries are simple data elements). Five such tables are used in our VCME: an R-structure

table, a function table, a flowchart table, a model table, and a project table. These tables are stored in theO2 database

system. At run time the VCME general manager loads the metadata records fromO2 and maintains them in the local

file system. Updates to the metadata records become persistent when they are restored inO2 at the end of an interactive

session.

Figure 20 illustrates the system metadata tables for the hydrological modeling example given in section 2. In

Figure 20, the project table contains a list of application domains. When the system first starts up, the project window

pops up and a set of project icons, corresponding to the application domains in the project table, await the user's

selection. If the user clicks the “Hydrology” icon, the GUI manager will read in the model table associated with the

hydrology project and display the hydrology application models in the model window. In Figure 20, for example, there

are two such models,channelandrasters, for the hydrology drainage basin computation.

The structures of the computation procedures carried out in these models are depicted as flowcharts, which are

stored in the flowchart table and linked with the particular models by pointers as depicted in Figure 20. When the user

clicks on the icon “model-1” in the model window, the flowchart manager will parse the flowchart table and display

37

Environment Table

Hydrology

GIS

Function Table

COMPDIS
UNION

Flowchart Table
CompHydrograph

DEM --> CompLink

CompLink --> LINK

R-structure Table

DEM

RAIN {R1,..., Rn}

{D1,..., Dn}

Hydrology

R-structure temp. file

DEM

Elements temp. file

D1

Model Table

channel
rasters

Figure 20: The system management tables in the VCME system

the flowchart in the flowchart editor canvas. The detailed description of the data and functions used in the computation

are found in the R-structure and function tables, respectively. The real data sets, e.g., the DEM and RAIN data sets

used in the hydrology example, are stored in UNIX files, which are accessed at run time by the CMS kernel.

A model is represented graphically as a flowchart. A flowchart comprises a set of objects that can be a data domain,

a transformation, or (recursively) another model flowchart. The connections of a data domain to a transformation or

a transformation to a data domain are also considered as objects. In a flowchart this connection is depicted as an

arrow with the direction indicating the data flow. A model table comprises records of all the models associated with a

particular project, including the model name, input domains, output domains, user comments, and flowchart pointers.

For example, the model table for the hydrology project is shown in Figure 21. The model table is automatically

generated by the model manager, except for the model name and user comment fields, by parsing the flowchart table

and extracting the input and output domain names and the flowchart pointers.

A flowchart is drawn by the user with the aid of the flowchart editor. The system manager creates a flowchart

table for manipulating and displaying flowcharts. Furthermore, the CML script encapsulating the functionalities of a

flowchart is automatically derived and stored in the flowchart table. As shown in Figure 22, which depicts the flowchart

table of the hydrology project, a flowchart table contains the window IDs (a root or a decomposition window), the

object names (a data domain icon or a transformation icon), the object states (a data domain or a transformation, or

38

Model Table

model name input
domain

output
domain comment flowchart

pointer

CompDisc-1

CompDisc-2

DEM, RAIN HYDROGRAPH Hydrology ap-
plication using
algorithm-1

CHANNEL
RAIN

HYDROGRAPH Using
algorithm-2

Flowchart-1

Flowchart-2

Figure 21: The model table in VCME system

obj name windowIDstatus location connectto connectfrom

Flowchart Table

DEM1 data .0 90, 74 COMPDIS

RAIN1 data .0 298, 74 COMPDIS

COMPDIS .0 210, 157 HYDR DEM1 RAIN1

COMdem

decomp

decomp

decomp

.0.5

.0.5

102, 102 ETDM DEM1

COMrain 252, 109 RAIN1 rainSB

ETDM data

data

.0.5

.0.5

.0.5

102, 173 discharge COMdem

rainSB 253, 173 discharge COMrain

discharge transf .0.5 181, 237 ETDM rainSBHYDR

HYDR data 182, 306 discharge

Figure 22: The flowchart table with data examples

a decomposition icon), the locations of icons in the flowchart, the input icon connection lists, and the output icon

connection lists.

6.3 Code Generation

Automated code generation is a desirable feature of a CMS because it improves user productivity, promotes code

reuse, facilitates documentation, and provides a means of rapid algorithm prototyping [20]. We have found, in line

with the claims of Rich and Waters [26], that most of the benefits of automatic code generation may be traced to code

reuse and ease of maintenance.

The GUI-driven code generation process of our VCME is shown in Figure 23. The system metadata records with

R-structures, transformations, library functions, and pre-defined models form the basis of the generator. Supplemental

user information and the flowchart derived from the flowchart editor are inputs to the generator to produce automati-

cally a CML script which encapsulates the functionalities of the flowchart. Three types of codes are produced by the

code generator. The first type is code generated using the textual information supplied by the user; an example being

the codes for the creation of a concrete R-structure using the R-structure name, its super R-structure name, its domain

specification, and associated transformations.

The second type involves the CML scripts that are generated in response to a graphical flowchart specification

39

USER

Supplemental
User-Supplied
Information

Flowchart
Drawing

METADATA

Transformations

Functions

Models

R-structures

Code
Generator

CML Code

Figure 23: An overview of the code generation process

Abs-R-Str

Elements

Conc-R-Str

R-structure Window

Functions

Transformations

Function-lib

Models

Model Window

Flowchart Editor

Code
Generator

CML code

drag
drag

drag

Message Window

The input domain
is no match to
this transformation

Figure 24: The processing of code generation for a flowchart

1. The third type involves control commands and special text strings for use by the Tool Management System of the

DRAS and other tools. Examples include the generation of source codes in the form of UNIX commands, such as for

the invocation of an external tool like Arc/Info or the initiation of communications with remote servers, and special

text strings for use by the Tool Management System, such as a network address of an external tool or dataset.

Code generation from a flowchart is illustrated in Figure 24. In this process, the flowchart editor controls the

drawing of a flowchart. The user drags-and-drops R-structures from the R-structure display window to the flowchart

editor canvas for specifying the input, output, and intermediate data domains of a model. The user can also instantiate

library functions and transformations from the library function window and reuses predefined models. Once a link

is created between a data domain and a function, the code generator performs type consistency checking. The type

information is obtained from the model table for the particular R-structure and the transformation signatures from the

1The current implementation still requires additional verification and validation algorithms for type checking, and drawing consistency checking.

40

function table.

When the code generator receives the command “DERIVE CML” from the flowchart editor, the generator parses

the flowchart to generate the corresponding CML script and relays the script to DRAS. Starting from the top-level

flowchart, the process of generating CML scripts comprises the following steps:

1. Graph structure validation: If the flowchart is made of multiple pieces, an error message is sent to the message

window and the process stops, otherwise, it continues to next step.

2. Topological sort: The code generator consults the edge records stored in the flowchart table and derives a linear

ordering of transformations in the flowchart.

3. Derivation of CML script: Starting with the first transformation in the linear order, to the last transformation,

use the CMLapplyconstruct to execute the particular transformation to the input data domains to generate the

output domain. When a D-icon is reached, the code generator accesses the icon's decomposition window as

indicated by the D-icon pointer and recursively generates the CML script for this decomposable procedure.

4. Registration of CML scripts in CMS: After the CML script for the last transformation is derived, the code

generator sends the whole CML script to DRAS. In our current system, we implement VCME and DRAS

communication using a client-server model, so that VCME and DRAS can run on different hosts in a distributed

environment.

Since the elements of R-structures are not instantiated at the time of flow-chart editing, the input data to the

flowcharts are only generic R-structure names. Before executing a model, the system prompts the user to instantiate

input data domains by dragging an element of the particular R-structure to the R-structure icon in the flowchart. After

data instantiation, the code generator sends a string containing the data file name to DRAS for retrieving the data file.

The code generator also specifies a file name for the VCME to store the returned result.

7 Concluding Remarks

The most important contribution of this paper is a description of the design and implementation of avisual com-

putational modeling environment(VCME). The VCME essentially provides the graphical user interface to the full

functionality of acomputational modeling system(CMS). A CMS [1] supports the construction and testing of sym-

bolic models of a broad range of phenomena. In particular, the VCME is a translation of an integrated computational

modeling environment (CME) that is based on a comprehensive conceptualization of the scientific modeling process

underlying a CMS. This conceptualization employs the concept of representational structures (R-structures).

41

The VCME permits a scientist to carry out, at an appropriate level of abstraction, any operation involved in the

process of symbolic model construction, testing, and application. In general, the VCME permits a scientist to construct

and manipulate, easily and with the use of graphical tools, representations for any modeling concept that might be

required, as well as explicit instances of such representations and the transformations that operate on these instances.

In particular, the VCME incorporates a new visual language whose use greatly facilitates the top-down (as well as the

bottom-up) construction of scientific models. Such models are represented in terms of a special class of R-structures

calledmodeling schemas, which in turn are constructed from the components of an iteratively-constructed set of R-

structures representing appropriate scientific modeling concepts.

Both the design and implementation of the CMS/VCME have involved close collaborations with several environ-

mental science research groups. We are currently collaborating with these groups on the implementation of full-scale

modeling applications from the environmental sciences in terms of our current version of a CMS/VCME. Our experi-

ence to date, although limited, is that the use of a CMS/VCME greatly facilitates the iterative and complex process of

constructing scientific models.

References

[1] T.R. Smith, J. Su, A.E. Abbadi, D. Agrawal, G. Alonso and A. Saran (1995) Computational Modeling System,

Information System, Vol. 20, No. 2, 127-153.

[2] T.R. Smith, J. Su, and A. Saran (1994) Virtual Structures – A Technique for Supporting Scientific Database

Applications, 13th Int' l. Conf. on ER Approach, UK,Lecture Notes in Computer Science, Vol. 881.

[3] N.C. Shu (1988) Visual Programming,Van Nostrand Reinhold Com., New York, 14-15.

[4] S.K. Chang (1987) Icon Semantics: A Formal Approach to Icon System Design,International Journal of Pattern

Recognition and Artificial Intelligence, Vol. 1. No. 1. 103-120, Apr.

[5] S.K. Chang, J. Reuss and B. H. McCormick (1978) Design Considerations of a Pictorial Database System,

International Journal on Policy Analysis and Information Systems, Vol.1, No. 2, 49-70.

[6] N. Roussopoulos and D. Leifker (1984) An Introduction to PSQL: A Pictorial Structured Query Language,

Proceeding of the 1984 IEEE Computer Society Workshop on Visual Languages, Hiroshima, Japan, 77-87.

[7] C.F. Herot (1980) Spatial Management of Data,ACM Transaction on Database System, Vol. 5, No. 4, 493-514.

42

[8] M. Hirakawa, N. Y. Monden, M. Tanaka and T. Ichikawa (1986) HI-VISUAL: A Language Supporting Visual

Interaction in Programming,Visual Language, edited by S.K. Chang et al., Plenum Presh, 233-259.

[9] National Instruments Corporation (1987) LabVIEW: a demonstratin,National Instruments Corp., 12109 Tech-

nology Blvd., Austin, Texas 78727-6204.

[10] S. Matwin and T. Pietrzykowski (1985) PROGRAPH: A preliminery report,Computer Languages10. 91-126.

[11] J. Rasure, et al. (1988) XVision: A Comprehensive Software System For Image Processing Research, Education

and Applications,ACM SIGGRAPH User Interface Software Symposium, Banff, Alberta, Canada.

[12] J. Gold (1989) Digital and Imaging,Advanced Imaging, VV, 24-28.

[13] C.G. Masi (1989) Imaging with Icons,Test and Measurement Woild, VV, 85.

[14] A. Wilson (1989) A Picture's Worth a Thousand Lines of Code,Electronic System Design, VV, 56-60.

[15] C. Upson, et al. (1989) The Application Visualization System,IEEE Computer Graphics and Applications.

[16] B. Lucas, et al (1992) An Architecture for a Scientific Visualization System,Proc. 1992 IEEE Visualization

Conference, Boston, MA.

[17] IBM (1995) IMB Visualization Data Explorer QuickStart Guide,Second Edition.

[18] IBM (1995) IMB Visualization Data Explorer User's Guide,Six Edition.

[19] M. Stonebraker, et al (1993) Tioga: Providing Data Management for Scientific Visualization Applications,Proc.

1993 VLDB Conference, Dublin, Ireland.

[20] J. Rasure, D. Argiro, T. Sauer, and C. Williams (1990) Visual Language and Software Development Environment

for Image Processing,International Journal of Imaging Systems and Technology, Vol.2.183-199.

[21] A. Wolf (1990), How to Fit Geo-Objects into Databases — An Extensibility Approach,Proc. of the First Euro-

pean Conference on GIS, Amsterdam.

[22] W. Waterfeld and H.-J. Schek (1992), The DASDBS Geo-Kernel - An Extensible Database system for GIS,Three

Dimensional Modeling with Geoscientific Information Systems, Kluwer Academic Publishers, Ed. A. K. Turner,

69-84, Netherlands.

43

[23] A. Segev (1993), Processing Heterogeneous Data in Scientific Databases,Proceedings of the NSF Scientific

Database Projects, AAAS Workshop on Advances in Data management for the Scientist and Engineer, Ed. W.

Chu, Boston, MA.

[24] C. B. Medeiros and F. Pires (1990), Databases for GIS,SIGMOD Record, Vol.23, No. 1, 107-115.

[25] C. V. Jones (1990), An Introduction to Graph-Based Modeling Systems, Part I: Overview,ORSA Journal on

Computing, Vol.2, No. 2, 136-151.

[26] C. Rich and R.C. Waters (1988) Automatic Programming: Myths and Prospects,IEEE Computer, VV. 40-50.

[27] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber and M. F. Schwartz (1994) The Harvest Information

Discovery and Access System,Proc. 2nd Int. WWW Conf., Chicago.

[28] Shelley G. Ford and Robert C. Stern (1994) OmniPort: Integrating Legacy Data into the Web,Proc. 2nd Int.

WWW Conf., Chicago.

[29] L. Shklar, H. Marcus, A. Sheth and S. Thatte (1994) The “InfoHarness” System for Integrated Information

Access and Management,Proc. 2nd Int. WWW Conf., Chicago.

[30] G. Mathews and S. S. Towheed (1995) NSSDC OmniWeb: The First Space PhysicsWWW-Based Data Browsing

and Retrieval System,Proc. 3rd Int. WWW Conf., Germany.

[31] K.J. Maly et al (1995) Mosaic + XTV = CoReview,Proc. 3rd Int. WWW Conf., Germany.

[32] E. Mesrobian, R. R. Muntz, J. R. Santos, E. C. Shek, C. R. Mechoso, J. D. Farrara and P. Stolorz (1994) Extracting

spatio-temporal patterns from geoscience datasets,Proceeding IEEE Workshop on Visualization and Machine

Vision, June, 92-103, Seattle.

[33] F. Long and E. Morris (1993) An Overview of PCTE: A Basis for a Common Tool Environment,Tech. Report

Carnegie Mellon University, Pittsburg, CMU/SEI-93-TR-01-ESC-TR-93-175.

[34] Y. Ioannidis, M. Livny, E. Haber, R. Miller, O. Tsatalos and J. Wiener (1993) Desktop Experiment Management,

IEEE Bulletin of the TC on Data Engineering, Vol.16, No. 1.

[35] J. B. Cushing, David Hansen, David Maier and Calton Pu (1993) Connecting Scientific Programs and Data Using

Object Databases,IEEE Bulletin of the TC on Data Engineering, Vol.16, No. 1.

[36] R. G. G. Cattell et al (1994) The Object Database Standard ODMG-93: Release 1.1,Morgan Kaufmann.

44

[37] Object Management Group (1992) The Common Object Request Broker: Architecture and Specifications -

91.12.1 Revision 1.1,OMG Document.

[38] M. J. Carey, and D. J. DeWitt, M.J. Franklin, N.E. Hall, M. McAuliffe, J.F. Naughton, D.T. Schuh,

M.H. Solomon, C.K. Tan, O. Tsatalos, S. White and M.J. Zwilling (1994) Shoring Up Persistent Applications,

Proc. ACM SIGMOD, 383-394.

[39] C. Lecluse, P. Richard and F. Velez (1988) O2: An Object-Oriented Data Model,Proc. ACM SIGMOD, Chicago.

424-433.

[40] E. Bertino, M.Negri, G. Pelagatti and L. Sbattella (1994) Applications of Object-Oriented Technology to the

Integration of Heterogeneous Database Systems,Distributed and Parallel Databases, Vol.2, No. 4, 343-370.

[41] Keith A. Carlson (1994) Use of Object-Oriented Constructs in a Computational Modeling System for Earth

Scientists,Masters Thesis, Computer Science Department, University of California, Santa Barbara.

45

