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Abstract. In this paper, we present novel image-derived, invariant fea-

tures that accurately capture both the geometric and color properties of

an imaged object. These features can distinguish between objects that

have the same general appearance (e.g., di�erent kinds of �sh), in ad-

dition to the typical task of distinguishing objects from di�erent classes

(e.g. �sh vs. airplanes). Furthermore, these image features are insensi-

tive to changes in an object's appearance due to rigid-body motion, a�ne

shape deformation, changes of parameterization, perspective distortion,

view point change and changes in scene illumination. The new features

are readily applicable to searching large image databases for speci�c im-

ages. We present experimental results to demonstrate the validity of the

approach, which is robust and tolerant to noise.

1 Introduction

The advent of high-speed networks and inexpensive storage devices makes the
construction of large image databases feasible. More and more images are now
stored in electronic archives. In line with this, however, is the need for tools to
help the user browse and retrieve database images e�ciently and e�ectively.

Most existing image indexing and retrieval systems, such as Virage [4], QBIC
[5], and Photobook [6], are able to do between-classes retrieval. That is, they can
distinguish between images of di�erent classes. For example, an image of a �sh
as a query retrieves a list of images in the database containing an image similar
to a �sh (the query and the generated results are classi�ed as belonging to the
same class of objects). Images that belong to other classes, such as airplanes, are
appropriately excluded from the list. However, these systems do not allow the
user to retrieve images that are more speci�c. In other words, they are unable
to perform within-a-class retrieval. For example, the user may want to retrieve
all images of rainbow trouts (characterized by the number and location of �ns,
and by the color of their body). Current systems will likely fail with this query,
generating lists of images containing various species of �sh. The problem is that
a rainbow trout appears very similar to other species of �sh, and the features
adopted by current systems are not descriptive enough to handle this type of
scenario. Hence, there is a need for a system that enables within-a-class retrieval,
which discriminates between images within the same class of objects. In addition,
environmental changes such as an object's pose and lighting should be not be a
factor in measuring similarity.

To perform within-a-class retrieval in image databases, the system should be
able to discriminate between imaged objects that have very similar appearance.
The key to building such a system is in designing powerful, highly discriminative
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image features that can discriminate small variations among objects. These vari-
ations, however, should not include changes that are not intrinsic to an object,
so that an object that is stretched, for example, should not be distinguished
from its original form. Many digital library applications will �nd within-a-class
retrieval particularly useful. Potential scenarios include searching for �sh in an
aquarium database, leaves and 
owers in a botanical image database, and lo-
gos in a catalog. Despite the similar appearance of objects within each of these
databases, and despite possible changes in pose and scene illumination, our new
image features should be able to discriminate between di�erent imaged objects
within a database, while correctly matching the same ones.

Our contribution is in developing novel image-derived features that enable
both between-classes and within-a-class retrievals. Not only do the new features
discriminate between imaged objects that look very di�erent, they can also dis-
tinguish between imaged objects with very similar appearance. Furthermore,
these image features are insensitive to environmental changes such as rigid-body
motion, a�ne shape deformation, changes of parameterization, perspective dis-
tortion, view point change and changes in scene illumination. These image fea-
tures can be applied to image indexing, search and retrieval for large image
databases, where high accuracy and environmental insensitivity is an issue.

Although segmentation (contour extraction) is not addressed, our strategy
still has many practical applications, particularly when there is absolute control
of the image database (e:g:, when the database is a collection of imaged objects
photographed with an uncluttered background, such as catalogs), and the object
of interest in the query image is pinpointed (or drawn) by a human.

We propose invariant features that capture only the essential traits of an
image, forming a compact and intrinsic description of an imaged object. Envi-
ronmental factors such as pose and illumination are ignored. Hence, it is more
e�cient than, say, aspect-based approaches where multiple aspects of the same
model have to be remembered. The new invariant features analyze the shape of
the object's contour as well as the color characteristics of the enclosed area. The
analysis involves projecting the shape or color information onto one of many
basis functions of �nite, local support (e:g:, wavelets, short-time Fourier analy-
sis, and splines). Invariance of the descriptors is achieved by incorporating the
projection coe�cients into formulations that cancel out many environmental fac-
tors. The invariant features produced by the new framework are insensitive to
rigid motion, a�ne shape deformation, changes of parameterization and scene
illumination, and/or perspective distortion. Furthermore, they enable a quasi-
localized, hierarchical shape and color analysis, which allows for the examination
of information at multiple resolution scales. The result is an invariant framework
which is more 
exible and tolerant to a relatively large degree of noise.

Excellent reviews on invariants are presented in [7, 8].

2 Technical Rationale

We will illustrate the design of invariant image features using a speci�c sce-
nario where invariants for curves are sought. For shape invariants, these directly
apply to the silhouette (contour) of imaged objects in a database. For illumi-
nation invariants, the same technique applies by linearizing internal regions by
a characteristic sampling curve and computing invariant color signatures along
the characteristic curve. In both cases, the invariant signatures produced can be
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examined at di�erent resolution scales, making the invariant features both 
ex-
ible and noise tolerant. The particular basis functions we use in the illustration
are the wavelet bases and spline functions. However, the same framework can be
easily extended to other bases and to 3D surfaces.

A�ne Invariant Parameterization We �rst look at the problem of point
correspondence when attempting to match two curves (or contours) under an
a�ne transformation. For each point selected from one curve, the corresponding
point on the other curve has to be properly identi�ed. In de�ning parameterized
curves c(t) = [x(t); y(t)]T , the traditional arc length parameter, t, is not suitable
because it does not transform linearly (or it is not invariant) under an a�ne
transformation. Two parameterizations which do, are described in [2]: (1) The

a�ne arc length, is de�ned as: � =
R b

a
3
p
_x�y � �x _y dt where _x; _y are the �rst and

�x; �y are the second derivatives with respect to any parameter t (possibly the

intrinsic arc length); and (2) the enclosed area parameter, � = 1
2

R b

a
jx _y� y _xj dt,

which is the area of the triangular region enclosed by the two line segments from
the centroid to two contour points a and b.

Seemingly, a common origin and traversal direction on the contour must also
be established. However, it can be easily shown that a di�erence of starting
points is just a phase-shift between the invariant signatures of two contours.
Similarly, two contours parameterized in opposing directions are just 
ipped,
mirror images of each other. Hence, a match can be chosen that maximizes
the cross-correlation between the two signatures. This, together with the use
of an a�ne invariant parameterization, implies that no point correspondence is
required when computing the a�ne invariants of an object's contour.

RigidMotion and A�ne Transform Consider a 2D curve, c(t) = [x(t); y(t)]T

where t denotes a parameterization which is invariant under a�ne transform, and
its expansion onto the wavelet basis  a;b =

1p
a
g( t�b

a
) [3] as ua;b =

R
c a;bdt: If

the curve is allowed a general a�ne transform, we have: c0(t) =mc(�t+ t0)+ t
where m is any nonsingular 2� 2 matrix, t is the translational motion, t0 rep-
resents a change of the origin in traversal, and � represents the possibility of
traversing the curve either counterclockwise or clockwise 2. It follows that:

u0a;b =
R
c0 a;bdt =

R
(mc(�t+ t0) + t) a;bdt

= m
R
c(t0) 1p

a
g(
�(t0�t0)�b

a
)dt0 +

R
t a;bdt = m

R
c(t0) 1p

a
g(

t0�(�b+t0)

a
)dt0

= m
R
c(t0) (t0)a;�b+t0dt

0 = mua;�b+t0 :

(1)

Note that we use the wavelet property
R
 a;bdt = 0 to simplify the second

term in Eq. 1. Ifm represents a rotation (or the a�ne transform is a rigid motion
of a translation plus a rotation), it is easily seen that an invariant expression
(this is just one of many possibilities) can be derived using the ratio expression��u0a;b����u0c;d�� =

jmua;�b+t0 j

jmuc;�d+t0 j
=

jua;�b+t0 j

juc;�d+t0 j
: (2)

The wavelet coe�cients u0a;b and ua;�b+t0 are functions of the scale a and the
displacements b and �b+ t0. If we �x the scale a, by taking the same number of
sample points in each curve, we can construct expressions based on correlation

2 In the implementation, the parameter is computed modularly over a closed contour.
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coe�cients to cancel out the e�ect of a di�erent traversal starting point (t0) and
direction (�t). Let us de�ne the invariant signature of an object, fa(x), as:

fa(x) =
jua;xj

jua;x+x0 j
and f

0
a(x) =

��u0a;x����u0a;x+x0

�� = jua;�x+t0 j��ua;�(x+x0)+t0

�� ; (3)

where x0 represents a constant value separating the two indices. Then one
can easily verify that when the direction of traversal is the same for both con-

tours, f 0a(x) =
jua;x+t0 j
jua;x+x0+t0 j = fa(x + t0). If the directions are opposite, then

f 0a(x) =
jua;�x+t0 j
jua;�x�x0+t0 j =

1
fa(�x�x0+t0)

. As the correlation coe�cient of two sig-

nals is de�ned as
Rf(x)g(x)(� ) =

R
f(x)g(x+ �)dx

kfk � kgk
:

We de�ne the invariant (similarity) measure Ia(f; f
0) between two objects

as Ia(f; f
0
) = max�;� 0fRfa(x)f

0
a(x)

(� ); Rfa(x)
1

f0a(�x)

(�
0
)g : (4)

It can be shown [1] that the invariant measure in Eq. 4 attains the maximum
of 1 if two objects are identical, but di�er in position, orientation, and/or scale.

Other invariant features may still be derived where the same technique can be
employed to measure similarity, making it independent of the parameterization
used. For simplicity, we only show the invariant expressions from this point on.

It is known that the area of the triangle formed by any three ua;b changes
linearly in an a�ne transform [7]. Hence, we have the following invariants 3 :����u0a;b u0c;d u0e;f

1 1 1

��������u0g;h u0i;j u
0
k;l

1 1 1

����
=

����ua;�b+t
0
uc;�d+t

0
ue;�f+t

0

1 1 1

��������ug;�h+t
0
ui;�j+t

0
uk;�l+t

0

1 1 1

����
: (5)

Perspective Transform Allowing an arbitrary view point and large perspec-
tive distortion makes the problem much harder as the projection is a non-linear
process, involving a division in computing 2D coordinates. Extending the curve
to 3D makes it even more di�cult. A simpli�ed model is possible, using a parallel
or quasi-perspective (a�ne) model, but this holds only to a certain degree under
a small perspective distortion. We provide a more rigorous treatment of perspec-
tive invariants. The projection process can be linearized using a tool which is
well-known in computer graphics, the rational form of a basis function.

We will use NURBS (Non-Uniform Rational B-Spline) for illustration. The
rational form of a b-spline function in 2D (3D) is the projection of a non-rational
b-spline function in 3D (4D). Speci�cally, let C(t) = [X(t); Y (t); Z(t)]T =P

iPiNi;k(t) be a non-rational curve in 3D where Pi's are its control vertices
and Ni;k(t) are the non-rational spline basis. Its projection in 2D will be:

c(t) =

�
x(t)

y(t)

�
=

"
X(t)

Z(t)
Y (t)

Z(t)

#
=
P

i
piRi;k(t); where Ri;k(t) =

ZiNi;k(t)P
j
ZjNj;k(t)

; (6)

and pi's are the projected control vertices in 2D, and Ri;k are the rational bases.
We can now formulate the problem of �nding perspective invariants as a

curve �tting problem. Intuitively, if a 2D curve results from the projection of
a 3D curve, then it should be possible to interpolate the observed 2D curve

3 Some may require a smaller number of coe�cients. For example, for wavelet bases

where
R
 a;bdt = 0, Eq. 5 can be simpli�ed where only four coe�cients are used.
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using the projected control vertices and the rational spline bases and obtain a
good �t. If that is not the case, then the curve probably does not come from
the projection of the particular 3D curve. Hence, the error in curve �tting is a
measure of invariance. (Ideally, the error should be zero.) Perspective projection
produces:

p
0
i =

"
X0
i

Z0
i

Y 0
i

Z0
i

#
=

"
r11Xi+r12Yi+r13Zi+Tx
r31Xi+r32Yi+r33Zi+Tz

r21Xi+r22Yi+r23Zi+Ty

r31Xi+r32Yi+r33Zi+Tz

#
(7)

R
0
i;k =

(r31Xi + r32Yi + r33Zi + Tz)Ni;k(t)P
j
(r31Xj + r32Yj + r33Zj + Tz)Nj;k(t)

: (8)

where rij 's and Ti's are the rotation and translation parameters, respectively.
Image invariant de�ned by the goodness of �tting is I =

R
t
(d(t)�Pi p

0
iR

0
i;k(t))

2;

where d(t) denotes the distorted image curve. Note that in Eq. 6, the shape
of a 2D curve is determined by the projected control vertices and the rational
spline bases, both of which are unknown. By using rational bases, our approach
minimizes I by a two-step gradient descent which maintains the linearity of the
whole formulation and drastically reduces the search e�ort.

We �rst assume that all Zi's are equal, which is equivalent to approximating
the rational bases using the corresponding non-rational bases. This allows us
to estimate the 2D control vertex positions. A�ne invariant parameters can be
used as an initial estimate for point correspondence, which will be adjusted in
succeeding steps to account for perspective foreshortening.

Observe that dI =
P

i(
@I
@p0

i

dp0
i
+ @I

@R0
i;k

dR0i;k); suggesting that minimization

can be broken into two stages: (1) that of updating 2D control vertex positions
(dp0i); and (2) that of updating rational bases (dR0i;k).

The estimated 2D control vertex positions are used to constrain the unknown
rotation and translation parameters using Eq. 7. A linear formulation results
using at least six 2D control vertices estimated from Eq. 6. (For a planar 3D
curve, four 2D control vertex positions will su�ce.) The motion parameters
allow Ri;k's to be updated using Eq. 8.

The updated Ri;k's allow a better prediction of the appearance of the curve
in images, and any discrepancy in the predicted and actual appearance of the
curve is used in a gradient search to further verify the consistency. The prediction
involves updating the parameterization t and the 2D control vertex positions pi,
which are then used to estimate the unknown motion parameters through Eq. 7.

Hence, a recursive process results to re�ne the positions of the 2D control
vertices, the shapes of the rational spline functions, the parameterization, and
the 3D motion parameters, until a convergence is achieved.

Variation in Lighting Condition We now consider the case when the im-
aged objects are illuminated by light sources of di�erent numbers, positions,
and types. For simplicity, we will consider three spectral bands of red, green,
and blue. Generalizing to an n-band illumination model is straightforward.

Assuming two 2D images di�er only by scene illumination (i:e:; no geomet-
rical changes), we can linearize interesting (or important) 2D regions by well-
known techniques. We can then treat the problem as an illumination invariance
problem for points along a curve.

In addition, we can include the a�ne or perspective case, to produce an
invariant which is insensitive to both geometric (a�ne or perspective) and il-
lumination changes. By solving for the deformation and translation parameters
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from the a�ne or perspective invariants, we can reconstruct the same transfor-
mation for any point or curve between two images. Hence, any curve constructed
from one image can be matched, point by point, to its corresponding curve in
the transformed image. Illumination invariants for curves can then be applied,
to verify if the two image regions, as the de�ned by the curves, are the same.

Let L(t) denote the perceived image color distribution along a curve. We have
L(t) = [r(t); g(t); b(t)]T =

R
[fr(�); fg(�); f b(�)]T s(�; t)d�, where � denotes the

wavelength, and fr(�) the sensitivity of the red sensor (similarly for the green
and blue channels). We assume a Lambertian model, and that the re
ected
radiance functions, s(�; t), are modeled as a linear combination of a small number
of basis functions sk(�), whence, s(�; t) =

P
k �k(t)sk(�); where sk(�) denotes

the k-th basis function for representing the re
ected radiance properties, and
�k(t) are the space varying expansion coe�cients. Then using an analysis which
is similar to that employed in the a�ne case, we have

ua;b =

Z
L a;bdt =

"
Lr
1 L

r
2 � � � Lr

k

L
g
1 L

g
2 � � � Lg

k

Lb
1 L

b
2 � � � Lb

k

#"
v1a;b
� � �

vka;b

#
= Lrgbva;b ;

where
"
Lr
k

L
g

k

Lb
k

#
=

Z
�

"
fr(�)sk(�)

fg(�)sk(�)

fb(�)sk(�)

#
d� and v

k
a;b =

Z
t

�k(t) a;bdt :

Similarly,

u
0
a;b =

2
4Lr0

1 Lr0

2 � � � Lr0

k

L
g0

1 L
g0

2 � � � Lg0

k

Lb0

1 Lb0

2 � � � Lb0

k

3
5" v1a;�b+t0

� � �

vka;�b+t0

#
= (L0rgb)(va;�b+t0) :

Then it is easily shown that the following expression is invariant under di�erent
lighting conditions (similar to Eq. 5):����u0a1;b1� � � u0ak;bk�T�u0a1;b1� � �u0ak;bk�

�������u0c1;d1� � �u0ck;dk�T�u0c1;d1� � �u0ck;dk�
���=
����ua1;�b1+t0

� � � uak;�bk+t0

�T�
ua1;�b1+t0

� � � uak;�bk+t0

��������uc1;�d1+t0
� � �uck;�dk+t0

�T�
uc1;�d1+t0

� � �uck;�dk+t0

���� (9)

3 Experimental Results
We conducted various experiments to test the validity of the new invariant fea-
tures. Each experiment was isolated, which individually examined the perfor-
mance of each image feature. However, the features can potentially be combined
to make a powerful image retrieval system that can do within-a-class retrieval.

General A�ne Transform with Change of Parameterization Fig. 1 shows (a) a
shirt with a dolphin imprint and (b) a deformed version of the same imprint (an
a�ne transformation). The extracted patterns are shown in (c). The second-
order b-spline function of a uniform knot vector was used in the basis expansion.
The invariant signatures shown in (d), which were aligned by maximizing the
cross-correlation, are clearly quite consistent.

Perspective Transform Our formulation, though recursive in nature, is nonethe-
less linear and achieves fast convergence in our preliminary experiments. The
number of iterations needed to verify the invariance was small (about 3 to 4)
even for large perspective distortion. In Fig. 2, (a) shows the canonical view of
a curve embedded on a curved surface (a cylindrical pail) and (b) another per-
spective. We extracted the silhouette of the car from both images and the depth
values for the silhouette in canonic view were computed. Curve �tting and in-
variant signature (after �ve iterations) thus computed are displayed in Figs. 2(c)
and (d), respectively. Our invariance framework produces consistent results for
general, non-planar 3D curves, all with a small number of iterations.
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Fig. 1. (a) Original image, (b) deformed image, (c) extracted original (solid) and de-

formed (dashed) patterns, and (d) the invariant signatures plotted along the contours.

Change of Illumination To illustrate the correctness of the invariance formula-
tion under illumination changes, we placed di�erent color �lters in front of the
light sources used to illuminate the scene and verify the similarity of illumina-
tion invariant signatures. Fig. 3 shows the same cookbook cover under (a) white
and (b) red illumination. For simplicity, we randomly de�ned two circular curves
(indicated by the red and green circles) and computed the invariant signatures
along these two curves under white and red illumination. It should be noted that
the particular example we show here only serve to demonstrate the correctness
of the framework. In real applications, we can linearize the image to obtain an
invariant signature for the whole image. The invariant pro�les computed from
the white (solid) and red (dashed) illumination are shown in Fig. 3(c) for the
curve de�ned by the red circle and (d) for the curve de�ned by the green circle.
As can be seen from the �gure, the signatures are quite consistent.

Hierarchical Invariant Analysis The additional degree of freedom in designing
the basis function enables a hierarchical shape analysis. Fig. 4(a) shows the orig-
inal and noise-corrupted shapes. As shown in Fig. 4(b)-(c), our approach, which
analyzes the shape at di�erent scales locally, will eventually discover the simi-
larity, even though the similarity may manifest at di�erent levels of details. In
this case, scale 8 produces more consistent signatures than the others.

Future Work The performance of each image feature is very encouraging, prompt-
ing us to combine these image features to make a powerful image retrieval system
that can do within-a-class retrieval. Results will be presented in a future paper.
Applications include searching through specialized image databases, which con-
tains imaged objects with very similar appearance (e:g:, botanical databases and
aquarium databases). In fact, these features have already been applied to object
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Fig. 2. (a) Canonical view, (b) another perspective, (c) 2D image curve (solid) and the

curve derived w. perspective invariant �tting (dashed), and (d) their shape signatures.

7



0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20
Invariant signatures for white (solid) and red (dashed) cookbook cover images

Along the red circle
0 5 10 15 20 25 30 35 40 45 50

0

2

4

6

8

10

12
Invariant signatures for white (solid) and red (dashed) cookbook cover images

Along the green circle

(a) (b) (c) (d)

Fig. 3. The same cookbook cover under (a) white and (b) red illumination, and the

invariant signatures computed under white (solid) and red (dashed) illumination (c)

along the red circle and (d) along the green circle.

recognition experiments where perspective distortion, color variation, noise, and
occlusion were all present [1]. In that experiment, the database comprised of dif-
ferent models of airplanes, many of which had the same general shape. Perfect
recognition was achieved for that particular database and test images.

4 Conclusion

We presented a new framework for computing image-derived, invariant features,
ideal for image indexing and retrieval. These features provide high discriminative
power and are insensitive to many environmental changes. Preliminary results
show promise as a useful tool for searching image databases.
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