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ABSTRACT
We propose a distributed, multi-camera video analysis paradigm
for aiport security surveillance. We propose to use a new class
of biometry signatures, which are called soft biometry including a
person’s height, built, skin tone, color of shirts and trousers, motion
pattern, trajectory history, etc., to ID and track errant passengers
and suspicious events without having to shut down a whole termi-
nal building and cancel multiple flights. The proposed research
is to enable the reliable acquisition, maintenance, and correspon-
dence of soft biometry signatures in a coordinated manner from a
large number of video streams for security surveillance. The intel-
lectual merit of the proposed research is to address three important
video analysis problems in a distributed, multi-camera surveillance
network: sensor network calibration, peer-to-peer sensor data fu-
sion, and stationary-dynamic cooperative camera sensing.

1. INTRODUCTION
Objectives. Our project is aimed at developing a robust and in-

telligent video analysis paradigm for large distributed camera net-
works, such as the surveillance camera networks that are routinely
deployed at all major airports around the world these days. The pro-
posed paradigm is to enable the reliable acquisition, maintenance,
and correspondence of a new class of biometry signatures (soft bio-
metry, to be defined later) in a coordinated manner from a large
number of video streams. Theoretically, we propose to research
novel algorithms in sensor calibration, data fusion, and cooperative
sensing in distributed, multi-camera networks. In practice, we are
working with our industrial partner to perform “rubber-meets-road”
validation by deploying our soft biometry video-analysis system in
major US airports for security monitoring.

Motivation. On September 4th 2004, three terminals at Los An-
geles International Airport were shut down for more than three
hours. Apparently, a passenger bypassed a security checkpoint
without being properly searched. Three connected terminal build-
ings were evacuated with all passengers inside re-screened. This
incident had happened at a most inopportune time—the busy Labor
Day travel weekend, and delayed about a hundred flights, inconve-
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nienced thousands of passengers, and caused major traffic tie up on
the surrounding San Diego and Santa Monica Freeways.

What is troubling is that this was not an isolated incident, and
similar incidents had occurred many times before: At Miami In-
ternational Airport on November 14th, 2002, two passengers by-
passed security when they strolled through an exit lane. Five con-
courses were evacuated and some 40 flights were delayed for more
than three hours. At Chicago O’Hare International Airport on Oc-
tober 16th, 2002, the United Airlines terminal was evacuated after a
man avoided a security checkpoint by entering the terminal through
an exit. At San Louis Lambert International Airport on October
4th, 2002, a passenger managed to walk away from a checkpoint
with a suspicious bag before the security agents could act. All pas-
sengers in the East Terminal were forced to be re-screened. At
Dallas-Fort Worth International Airport on January 8th, 2003, a
man bolted through a passenger checkpoint and disappeared into
the crowd. The action forced the evacuation of thousands of people
from three terminals. At Seattle-Tacoma International Airport on
January 5th, 2003, TSA security personnel stationed at an exit lane
fell asleep and left the exit unguarded. Hundreds of people who
had already passed through security checkpoints, including those
who had boarded planes, were brought back and re-screened. The
perpetrators of these incidents were never caught.

While fixing such security lapses appears unglamorous and mun-
dane in the grand scheme of national security and combating terror-
ism, it is important for at least two reasons: (1) The above incidents
might turn out to be false alarms; however, the resulted emotional
stress, scheduling chaos, traffic tie up, and financial toll are very
real and compelling, and (2) as we learned from our industrial part-
ners at Proximex Corp., who attended a gathering of airport security
personnel of major US airports last fall in Detroit, that dispatching
security agents to track down false alarms consumes a significant
portion of their budgets and ties down agents who could have per-
formed other more useful tasks in securing an airport. Hence, an
automated, or even semi-automated, surveillance and identification
system—that quickly narrows down the search area of the errant
passengers, avoids forced shutdown and evacuation, and improves
public safety—is solely needed.

So what kind of technologies can be employed to deal with these
types of incidents? While significant strides have been made in bio-
metry, such as fingerprint, iris scan, voice identification, and face
recognition, these techniques are not suitable for many reasons.
Finger print, iris scan, and voice identification are more applica-
ble to cooperative subjects. They are applied under a controlled
environment, with a slow speed, and for a relatively small passen-
ger volume. Hence, these definitely are the wrong approaches for
identifying an errant passenger in a busy terminal building. Even
the vaunted face recognition techniques are of little practical use



here. The perpetrators in the above cases very likely were ordinary,
law-abiding citizens who might have made an honest mistake or
were in a real hurry to catch their flights. They were not criminals
or terrorists with existing biometric profiles that can be searched for
and compared. Even if they were, no face detection and recognition
technique that we are aware of is capable of reliably correlating FBI
mug shots with airport surveillance videos that might be available
in these cases. It is extremely difficult, if not impossible, even for
humans to ID a face image, taken with a low resolution surveillance
camera covering a large area, of a moving subject appearing at a
great distance, with varying lighting and body pose, and with sig-
nificant occlusion and ingenious disguise of facial features. Hence,
it is not reasonable to expect a face recognition system to achieve
such an impossible feat in the foreseeable future.

Specific Tasks. We argue that a new class of biometry, which
we term soft biometry including a passenger’s height, built, skin
tone, color of shirts and trousers, motion pattern, trajectory his-
tory, etc., can be inferred from airport surveillance videos and used
to track and ID errant passengers without having to shut down a
whole terminal building and cancel multiple flights. We call these
signatures “soft” biometry because they change over time, are not
unique traits of a person, and are not legally accepted ID signa-
tures like fingerprint or DNA. Nonetheless, soft biometry does offer
significant merits in the video-analysis scenarios identified above:
that many such signatures are not expensive to compute, do not re-
quire the cooperation of the surveillance subjects, can be sensed
at a distance in a crowded environment, serve as a good screen-
ing tool to narrow down the search for suspects, and have wide
applications beyond airport security surveillance. For example, in
a crowded amusement park, missing children can be searched for
by their height, cloth colors, and motion history. In an industrial
factory or a college campus, soft biometry can augment paging for
localizing people and equipment.

One might suspect, and we concur, that it is not very difficult to
compute some of these soft biometric signatures from individual,
properly-segmented image frames. The real challenge is in design-
ing a robust and intelligent video-analysis system to support the
reliable acquisition, maintenance, and correspondence of soft bio-
metry signatures in a coordinated manner from a large number of
video streams gathered in a large camera network. Our research
thus aims at developing novel video-analysis methods to support
data fusion and event analysis tasks [1, 3] in distributed, multi-
camera surveillance networks. We identify below three research
tasks to advance fundamental theories and develop algorithms that
can significantly improve the operation of large camera networks,
quality of data fusion, and accuracy of event analysis.

• Task A: Sensor network calibration. In order to correctly corre-
late and fuse information from multiple cameras, calibration is of
paramount importance. Cameras deployed in a large network have
different physical characteristics, such as location, field-of-view
(FOV), spatial resolution, color sensitivity, and notion of time. The
difference makes answering even simple queries exceedingly diffi-
cult. For example, if a subject moves from the FOV of one camera
to another, which has different color sensitivity and operates under
dissimilar lighting conditions, drastic changes in color signatures
do occur. To reliably compute soft biometry to assist the identifica-
tion of subjects across the FOVs of multiple cameras therefore re-
quires careful color calibration. We have developed and integrated
a suite of algorithms for spatial, temporal, and color calibration
for cameras with both overlapped and non-overlapped FOVs.
• Task B: Peer-to-peer sensor data fusion. As cameras have limited
FOVs, multiple cameras are often stationed to monitor an extended
surveillance area, such as an indoor arrival/departure lounge or an

outdoor parking lot. Collectively, these cameras provide complete
spatial coverage of the surveillance area. (A small amount of oc-
clusion by architectural fixtures, decoration, and plantation is of-
ten unavoidable.) Individually, the event description inferred from
a single camera is likely to be incomplete. (E.g., the trajectory of a
vehicle entering a parking lot is only partially observed from a cer-
tain vantage point.) We have developed algorithms to fuse video
data from multiple cameras for reliable event detection.
• Task C: Stationary-dynamic cooperative camera sensing. To
achieve effective wide-area surveillance with limited hardware, a
surveillance camera is often configured to have a large FOV. How-
ever, once suspicious persons/activities have been identified through
video analysis, selected cameras ought to obtain close-up views
of these suspicious subjects for further scrutiny and identification
(e.g., to obtain a close-up view of the license plate of a car or the
face of a person). Our solution is to employ stationary-dynamic
camera assemblies to enable wide-area coverage and selective focus-
of-attention through cooperative sensing. That is, the stationary
cameras perform a global, wide FOV analysis of the motion pat-
terns in the surveillance zone. Based on some pre-specified cri-
teria, the stationary cameras identify suspicious behaviors or sub-
jects that need further attention. The dynamic camera, mounted on
a mobile platform and equipped with a zoom lens, is then used to
obtain close-up view of the subject to reliably compute soft biom-
etry signatures. We have studied research issues to enable coop-
erative camera sensing, including dynamic camera calibration and
stationary-dynamic camera sensing using a visual feedback para-
digm.

Significance and Impact. Significant progress has been made
in video surveillance. Mature technology is increasingly being ap-
plied to real-world problems and spawns new commercial opportu-
nities. The momentum started back in 1997, when DARPA began
a three-year program to develop video surveillance and monitor-
ing (VSAM) technology. The pace accelerated after the September
11 Attack. While extensive research has been conducted on many
component technologies, our research makes contribution in three
specific aspects of robustness, integration, and validation.

2. TASK A: SENSOR NETWORK CALIBRA-
TION

To fuse data in a network of multiple cameras, it is important
that a consistent notion of space, time, and color is established to
facilitate the exchange of sensor data. These correspond to spatial,
temporal, and color calibration. Spatial calibration is a problem
that has been thoroughly researched in computer vision. We have
also developed temporal registration techniques to determine the
time skew between cameras’ clocks by matching the trajectories of
the same object observed in multiple video streams. In this paper,
we present our color registration algorithm.

Color registration is difficult because the “sensed” color and the
“true” color of an object can be drastically different. Three impor-
tant factors, the physical content of the scene, the illumination of
the incident light, and the characteristics of the camera, affect color
sensing. The ability of a vision system to diminish, or in the ideal
case, remove color variation from fluctuation in source illumina-
tion and receiver characteristics, and therefore “see” the physical
scene precisely, is called color constancy. Many color constancy
algorithms exist dating back a couple of decades, including grey-
world algorithms, retinex methods, linear decomposition, gamut
mapping, Bayesian correlation, and many others.

Color perception is an extremely complicated and nonlinear sci-
ence. To simplify the analysis, many color constancy models as-



sume a single camera; a fixed, frontal surface orientation; and often
times, a point light source or spatially-invariant illumination. Or
color-constancy research is often confined to the Mondrian world—
a world of flat, frontally presented collages of color papers. In
contrast, in order to color register spatially-distributed surveillance
cameras operating under different lighting conditions and with vary-
ing color sensitivity, our scheme needs to take into consideration
variation in surface orientation, extended light, secondary reflec-
tion, and limited spatial resolution and varying color sensitivity of
multiple cameras.

We have developed a robust color calibration procedure as fol-
low: We quantize the entire color space into 11 bins (black, white,
red, yellow, green, blue, brown, purple, pink, orange, and gray).
These colors are usually referred to as culture colors. Representing
the entire color space using a small number of primitives is advanta-
geous for at least two reasons: (1) In most surveillance applications,
surveillance subjects occupy small screen areas, and hence, pixels
available to construct the color signature of an object are usually
quite limited. Coarse quantization of the color space (into 11 bins
in the case of culture colors) avoids random fluctuation of color
signatures due to insufficient pixel samples, and (2) culture colors
facilitate posing query as these colors are universally perceived and
widely used across multiple cultures.

For each sensor, we collect images of calibration markers that are
known to be of certain culture colors. (These can be as simple as
people wearing certain colored shirts walking around in the FOV of
the camera.) The sensed red, green, blue pixel values are recorded
in a table CCr,g,b

i,k , where 1 ≤ i ≤ 11, and 1 ≤ k ≤ ni, and ni

is the number of color samples collected for the i-th culture color.
We form the discrimination function of the i-th culture color for a
sensor as (this function can be different for different image regions
of a single sensor, for the same sensor operating under different
lighting conditions, and for different sensors)

fi(C
r,g,b) =

ni�

k=1

Φ(||Cr,g,b − CCr,g,b

i,k ||) (1)

where Φ is a suitable kernel function (e.g., Gaussian). (In real im-
plementation, we do not use all color samples in Eq. 1 as it is highly
inefficient. Instead we use kernel methods to locate support vectors
in classification.) A query color sample Cr,g,b is then assigned to
the culture color with the highest discrimination score. While this
scheme seems naive, we show elsewhere that its operation is sensi-
ble and corresponds closely to the notion of color similarity in the
real-world.

3. TASK B: PEER-TO-PEER MULTI-CAMERA
DATA FUSION

In a distributed camera network, the server receives video streams
from distributed cameras that each has limited spatial and temporal
coverage, is potentially noisy, and is susceptible to occlusion and
scene clutter. We propose here a hierarchical peer-to-peer fusion
scheme to deal with these problems.

Sensor data fusion refers to the task of combining multiple sen-
sor data in a complementary and synergistic way to improve data
availability, reduce noise, and improve robustness in the analysis.
Sensor data fusion can be for multiple sensors of the same or differ-
ent types and can occur at data, feature, and decision levels. Data
and feature fusion strategies are often used for combining hetero-
geneous sensor data, e.g., in fusing inertia, ultrasonic, and vision
sensors for mobile robotics applications, and in fusing multi-image
modalities (e.g., infrared and vision sensors) for target recognition
and scene interpretation. IBR (image-based-rendering) techniques

Figure 1: Two-level hierarchical Kalman Filter configuration.

can also be considered a data fusion strategy where a single sensor
or multiple sensors, often of the same kind, are used to to construct
an environment map. Decision fusion strategies have the root in
pattern recognition with many well-established algorithms that are
readily applicable. Our unique contribution is in using two-level hi-
erarchical Kalman Filters with both bottom-up and top-down analy-
sis for data fusion and information dissemination from and to mul-
tiple sensors, thus improving tracking reliability.

We used the Kalman Filter as the tool for fusing information
spatially and temporally from multiple cameras for event detec-
tion. Suppose that a vehicle (or a person) is moving in a surveil-
lance zone. Its trajectory in the global reference system is P(t) =
[X(t), Y (t), Z(t)]T . The trajectory may be observed in camera i,
as pi(t) = [xi(t), yi(t)]

T , where i = 1, · · · , m (the number of
cameras used). The goal is to optimally track, correlate, and fuse
individual camera trajectories into a consistent, global description.

We formulate the solution as a two-level hierarchy of the Kalman
Filters. Referring to Fig. 1, at the bottom level of the hierarchy, we
employ for each camera a Kalman Filter to estimate, independently,
the position pi(t), velocity ṗi(t), and acceleration p̈i(t) of the
object, based on the tracked image trajectory in the local camera
reference frame (“ˆ ” denote estimated quantities, and “˜ ” denote
quantities in homogeneous coordinates in Fig. 1). Or in the Kalman
Filter jargon, the position, velocity, and acceleration vectors estab-
lish the “state” of the system while the image trajectory serves as
the “observation” of the system state. At the top level of the hierar-
chy, we use a single Kalman Filter to estimate the object’s position
P(t), velocity Ṗ(t), and acceleration P̈(t) in the global world ref-
erence frame—this time, using the estimated positions, velocities,
and accelerations from multiple cameras (pi(t), ṗi(t), p̈i(t)) as
observations (the solid feed-upward lines in Fig. 1). This is possi-
ble because camera calibration and registration are used for deriv-
ing the transform matrices (Timage←world and Tworld←image in
Fig. 1). These matrices allows pi, measured in the reference frame
of a camera, to be related to P in the global world system.

An interesting scenario occurs when one (or more) cameras in
the sensor network loses track of an object. This can happen be-
cause of scene clutter, self- and mutual-occlusion, or the tracked
objects exiting the FOV of a camera, among many other possibil-
ities. The camera could switch from a “track” mode into a “re-
acquire” mode by searching the whole image for telltale signs of the



object. However, doing so inevitably slows down event-processing
and introduces a high degree of uncertainty in the resulted event
description. Instead, we allow the dissemination of fused infor-
mation to individual cameras (the dashed feed-downward lines in
Fig. 1) to help guide the reacquisition process. The Kalman Filter,
being a flexible information-fusion algorithm, can readily use the
fused information (instead of sensor data) for maintaining and up-
dating state vectors. This hierarchical feed-upward (for sensor data
fusion) and feed-downward (for information dissemination) filter
structure thus provides a powerful and flexible mechanism for join-
ing sensor data spatially.

4. TASK C: STATIONARY-DYNAMIC CO-
OPERATIVE CAMERA SENSING

To achieve effective wide-area surveillance and selective focus-
of-attention places conflicting constraints on the system configu-
rations and camera parameters. For instance, a large surveillance
FOV is achieved using a lens with a short focal length, whereas se-
lective focus-of-attention requires a lens with a long focal length,
and the ability to dynamically adjust the aim of the camera.

We propose cooperative sensing using a stationary-dynamic cam-
era assembly to achieve these two conflicting goals. In our design,
an extended surveillance area is covered by multiple stationary (or
master) cameras with wide FOVs to perform a global analysis of
the motion patterns in the surveillance zone. Based on some pre-
specified criteria, the stationary cameras identify suspicious behav-
iors or subjects that need further attention. These behaviors may in-
clude loitering around sensitive or restricted areas, entering through
an exit, leaving packages behind unattended, driving in a zigzag or
intoxicated manner, circling an empty parking lot or a building in
a suspicious and reconnoitering manner, among many others. A
dynamic (or slave) camera is mounted on a mobile platform and
equipped with a zoom lens; the aim and zoom of a dynamic cam-
era are both put under program control (or a PTZ camera). Once a
suspicious event/subject has been identified, the stationary cameras
will guide the dynamic cameras to focus on the region of interest
(e.g., the license plate of a car or the face of a person) for selective
attention and analysis.

A large number of R&D issues need to be addressed related to
the configuration, calibration, and operation of a stationary-dynamic
camera assembly. While many important research questions—ranging
from low-level image processing to high-level intelligent event analysis—
will be of interest to the CV community, we address two specific
problems that present unique challenges in using stationary-dynamic
cameras for video surveillance: (1) off-line calibration of both sta-
tionary and dynamic cameras, and (2) on-line selective focus-of-
attention by cooperative stationary-dynamic camera sensing.

While using dynamic PTZ cameras to augment stationary cam-
eras for surveillance is not new, our contribution is in making some
fundamental algorithmic improvement in calibration and operation
to make the idea practical, robust, and efficient. We contrast our
approaches with the state-of-the-art methods in off-line calibration
and on-line selective focus-of-attention. Davis and Chen [2] pre-
sented a technique for calibrating a pan-tilt camera off-line. The
technique adopted a general camera model that did not assume that
the rotational axes were orthogonal or that they were aligned with
the camera’s imaging optics. Furthermore, [2] argued that the tradi-
tional methods of calibrating stationary cameras using a fixed cal-
ibration stand were impractical for calibrating dynamic cameras,
because a dynamic camera had a much larger working volume. In-
stead, a novel technique was adopted to generate virtual calibration
landmarks using a moving LED. The 3D positions of the LED were
inferred, via stereo triangulation, from multiple stationary cameras

Figure 2: Selective focus-of-attention as visual servo.

in the environment. To solve for the camera parameters, an iterative
minimization technique was proposed.

Zhou et al. [4] presented a technique to achieve selective focus-
of-attention on-line using a stationary-dynamic camera pair. The
procedure involved identifying, off-line, a collection of pixel loca-
tions in the stationary camera where a surveillance subject could
later appear. The dynamic camera was then manually moved to
center on the subject. The pan and tilt angles of the dynamic cam-
era were recorded in a look-up table indexed by the pixel coordi-
nates in the stationary camera. At run time, the centering maneuver
of the dynamic camera was accomplished by a simple table-look-
up process, based on the locations of the subject in the stationary
camera and the pre-recorded pan-and-tilt maneuvers.

Compared to the state-of-the-art, our contributions are twofold.
In terms of off-line camera calibration:
1. Three pieces of information are needed to uniquely define pan
and tilt: position of the rotation axis, orientation of the axis, and
rotation angle. Although [2] assumes this general model, it explic-
itly calibrates only the position and orientation of the axis. Our
technique calibrates all these degrees-of-freedom (DOF).
2. Our results show that the iterative minimization technique of [2]
is computationally expensive and does not guarantee convergence.
Our technique solves for all intrinsic and extrinsic camera parame-
ters for both stationary and dynamic cameras using a closed-form
solution that is both efficient and accurate.
3. While the virtual landmark approach in [2] is interesting, we
will show that such a technique is less accurate than the traditional
techniques using a small calibration pattern (e.g., a checkerboard).
We argue that traditional techniques can also provide large angular
ranges for calibrating pan and tilt DOFs effectively.

In terms of on-line selective focus-of-attention:
1. In order for the procedure proposed in [4] to work, surveillance
subjects must appear at the same depth each time they appear at a
particular pixel location in the stationary camera. This assumption
is unrealistic in real-world applications. Our technique does not
impose this constraint, but allows surveillance subjects to appear
freely in the environment with varying depths.
2. [4] manually builds a table of pan and tilt angles, which is time
consuming. Furthermore, the process needs to be repeated at each
surveillance location, and it will fail if the environmental layout
changes later. Our technique does not use such a static look-up
table, but adapts automatically to different locales.

We formulate selective, purposeful focus-of-attention as a visual



servo problem. The framework is modeled as a feedback control
loop shown in Fig. 2. As mentioned, the stationary cameras per-
form visual analysis to extract the soft biometry signatures (color,
texture, position, and velocity) of the suspicious persons/vehicles.
A similar analysis is performed by the dynamic cameras under the
guidance of the stationary cameras. Soft biometry features of the
subjects (e.g., position and size of a car license plate or the face
of a person) are computed and then serve as the input to the servo
algorithm (the real signals). The real signals are compared with
the reference signals, which specify the desired position (e.g., at
the center of the image plane) and size (e.g., covering 80% of the
image plane) of the image features. Deviation between the real
and reference signals generates an error signal that is used to com-
pute a camera control signal (i.e., desired changes in the pan, tilt,
and zoom DOFs). Executing these recommended changes to the
camera’s DOFs will train and zoom the camera to minimize the
discrepancy between the reference and real signals (i.e., to center
the subject with a good size). Finally, as we have no control over
the movements of the surveillance subjects, such movements are
considered external disturbance (noise). This loop of video analy-
sis, feature extraction and comparison, and camera control (servo)
is then repeated over time.

5. EXPERIMENTAL RESULTS
We present sample video analysis results of using soft biome-

try signatures for video surveillance. These examples demonstrate
our existing capabilities in camera registration, background model-
ing, video tracking, multi-camera data fusion, sequence data (i.e.,
motion trajectories) analysis, and identification using skin tone and
clothing colors. These results show that (1) it is possible to auto-
matically analyze video footages to extract soft biometry signatures
and use the signatures to assist tracking and identification, and (2)
the analysis can be performed on real airport surveillance videos,
and real-world problems in airport access control can be facilitated
using video analysis and soft biometry. We have used real air-
port surveillance video footages in analysis tasks that are particular
to airport secruity surveillance. We have also used generic video
footages to demonstrate our tracking and foreground/background
modeling abilities.

Fig. 3 shows the results of using skin tone (one of the soft biom-
etry signatures) for detecting unauthorized “piggy-backing” access
patterns. In airports, access to sensitive areas requires authoriza-
tion and many doors are equipped with an access control system.
To unlock a door, a person must produce a special access card for
the card reader to scan. In rush hours many airport employees may
pass through a secured access door in a short time. Often, one
employee might swipe the card to allow multiple employees to en-
ter (piggy-backing); a practice is now disallowed due to tightened
airport security. To catch unauthorized piggy-backing access, a se-
curity camera is used to monitor the access door. Once the card
reader registers a scan, it is desirable, by examining the ensuing
video clips, to count how many people have gone through the door
before it closes. By correlating how many times access cards are
read and how many people are detected in the video, one is then
able to assert if piggy-backing access has occurred.

To accomplish automated piggy-backing detection, it is often not
enough to just analyze movements in the scene. Our experience
with real airport surveillance videos indicated that multiple people
can pass through the door in quick succession, resulted in over-
lapped silhouettes that are hard to separate. Advanced face detec-
tion algorithms have also not fared well because the video resolu-
tion is low, and hence, a face often occupies too small an image re-
gion to be reliably detected. Instead, we have used skin tone detec-

tion, coupled with shape (a face region should not be too elongated
like an arm region) and location (a face region is often close to the
top of a moving region) cues. These results (Fig. 3) demonstrate
that soft biometry can be a good compromise between sophisti-
cated face detection and recognition techniques and naive motion
detection algorithms (e.g., frame differencing or background sub-
traction) to achieve robust video analysis at a reasonable computa-
tional cost.

Fig. 4 shows the video analysis results of acquiring soft biom-
etry signatures of passengers passing through metal detectors to
establish a browsable departure record. Here, background clutter,
moving shadows, and the security agents’ abrupt and unpredictable
movements complicate the analysis. We have observed many times
in a 5-minute airport surveillance video clip that the security agents
entered the metal detector from both sides, to provide instructions
to the passengers waiting in line and to retreat back to his station
at the front of the detector. Hence, it is important that the visual
tracking algorithm isolates the movements of the security agents
and records only when a passenger passes through the metal detec-
tor, as shown in Fig. 4.

Fig. 5 shows a sample result of our tracking algorithm that uses
soft biometry signatures of clothing colors for tracking multiple
people. Sample image frames are displayed from left to right and
then from top to bottom and numbered from 1 to 8. Tracked targets
are identified by bounding boxes of different colors (yellow color
is used to represent unidentified objects due to entering, exiting,
and merging). Frames 2 and 4 show temporary occlusion of silhou-
ettes. The occlusion was quickly resolved in frames 3 and 5, when
silhouettes no longer overlapped. In frame 6, two of the targets had
exited the field of view of the camera, but were correctly reacquired
and recognized in frames 7 and 8.

Fig. 6 shows another examples of tracking multiple targets (both
vehicles and people) using soft biometry signatures. We have col-
lected hours of video using multiple video cameras in a parking
lot. The video frames depicted both human and vehicular motion.
The motion patterns for vehicles included entering, exiting, turning,
backing up, circling, zigzag driving, and many more. For human
motion, we recorded actions involving both individuals and groups,
with patterns such as following, following-and-gaining, stalking,
congregating, splitting, and loitering, among many others. Some
of these patterns (like zigzag driving and stalking) were acted out
by our group members, while others represented behaviors com-
monly observed in the parking lot. Sample results for tracking the
movements of people in a parking lot are shown in Fig. 6(a) and
(b). Of the three cameras we used, the views of two were partially
occluded by parked cars1. The individual camera trajectories could
therefore be broken. However, by using our data fusion algorithm,
we were able to fill in the gap, smooth out sensor noise, and fuse
individual trajectories into a complete, global description. Fig. 6(c)
and (d) show the analysis of a vehicle’s driving pattern when two
cameras were used. Note that even with a very small overlap in
the fields-of-view of the two cameras and a circling motion cover-
ing a large spatial area (hence, each camera observed only a part of
the motion trajectory), we were able to fuse the individual camera
trajectories to arrive at a complete description.

Fig. 7 shows sample foreground background identification re-
sults. Our experience indicated that correct foreground background
identification is one of the most critical elements in object track-
ing. It is customary to model the colors of background pixels as

1The camera positions in these figures indicate only the general
directions of camera placement. The actual cameras were placed
much far away from the scene and always pointed to the parking
lot.



Figure 3: Sample results of detecting unauthorized piggy-backing access patterns. In the top row, three legal single person entrance
scenarios are shown. In the bottom row, two piggy-backing access patterns are shown. The image on the bottom left shows two face
regions detected in a single frame. The two images on the bottom right show two face regions detected in different video frames
within a short time interval to trigger piggybacking alarm (the two face regions are marked as 0 and 1, respectively.)

mixture-of-Gaussian distributions—if the background is stationary
and the lighting condition is stable. This is often the case for in-
door surveillance. Then a foreground pixel (occupied by moving
objects) is identified as one with a pixel color that deviates signif-
icantly from the pre-established background color clusters. How-
ever, in outdoor surveillance scenarios, it is often difficult to dis-
tinguish foreground pixels from background pixels based purely on
color information. As background pixels often experience large
change in color attributes, just like their foreground counterpart.
This is the case shown in Fig. 7 that background pixels, such as
those depicting (a) ocean, (b) water foundation, and (c) vegetation
and shadow, all experienced significant changes in color. Hence,
a more sophisticated algorithm is needed to distinguish purpose-
ful object motion from random or periodical movements that of-
ten characterize outdoor background. Our algorithm, which uses
an image graph model (or random Markov field model) with be-
lief propagation and Bayesian learning, achieves satisfactory re-
sults shown in Fig. 7.

For calibrating PTZ cameras, while we use the same governing
equation as [2], we have developed a closed-form solution that is
much more accurate and efficient. We will illustrate two points:
1. Theoretically, under the same simulation conditions, our method
produces more accurate calibration results without failure, while
convergence cannot be guaranteed in [2].
2. Practically, our set up using a traditional calibration mark placed
near the camera produces more reliable results than the virtual land-
mark approach of [2], regardless of the calibration procedure used.

We verify the first claim as follow: We conducted 100 synthetic

Table 1: Comparison of calibration accuracy (For Davis and
Chen, 51% simulation runs failed to converge. If the simulation
did converge, 85 iterations were needed in average.)

[2] ours
Average % error in axis position 51.76% 35.48%
Average error in axis orientation 1.54 (rad) .22 (rad)

Figure 8: Comparison of calibration accuracy as a function of
experimental setup (using a CCD of 300 × 300).

experiments. In each experiment, we generated 50 3D calibration
marks randomly in an 8m × 8m × 8m volume (similar to the one
used in [2]). We projected these 50 landmarks using a synthetic
camera that closely mimicked the real-world Sony EVI-D30 PTZ
camera. We then applied both calibration procedures, [2] and ours,
to estimate the pan and tilt camera parameters using these 50 2D
and 3D coordinates. In all simulation runs, we had chosen the ini-
tial guess of Tp and Tt to be zero, and np and nt to be parallel to
the CCD’s y and x axes. We report the errors in calculating both
the axis position and orientation in Table 1 averaged over these
100 runs. For [2], we also recorded the percentage of times the
algorithm failed to converge, and if it did converge, the number of
iterations needed. As can be easily seen in Table 1 that under the
same experimental conditions, our algorithm obtained more accu-
rate results and did not suffer from convergence problem.

The second claim above deserves some explanation. We adopt



Figure 4: Sample results of acquiring soft biometry signatures of passengers passing through metal detectors. Snapshots of the
passengers were taken and soft biometry information on height and clothing colors was recorded. The left column shows that three
passengers passed through the metal detectors and their soft biometry signatures were correctly captured. The right column shows
that the analysis program did not confuse the security agents with the passengers (the agents’ snapshots and soft biometry were not
recorded).

the traditional method of constructing a planar checkerboard pat-
tern and then placing it at different depths before the camera to
supply 3D calibration landmarks. While [2] advocates a differ-
ent method of generating virtual 3D landmarks by moving an LED
around in the environment. The argument used in [2] to support the
virtual landmark approach is the need of a large working space to
fully calibrate the pan and tilt DOFs. While this is true, there are
different ways to obtain large angular ranges. Because θ ≈ r/d,
a large angular range can be achieved by either (1) placing a small
calibration stand (small r) nearby (small d) or (2) using dispersed
landmarks (large r) placed far away (large d). While [2] advocates
the latter, we adopt the former approach.

Our reason is that to calibrate Tp and Tt accurately, we want
their effects to be as pronounced as possible and easily observable
in image coordinates. This makes a near-field approach better than
a far-field approach. Another reason is that to provide the same
angular calibration range, using the same focal length and CCD,
would imply that the CCD’s fixed and limited spatial resolution
is used to cover either a small spatial range (r) in a near field or
a large spatial range in a far field. Hence, the spatial resolution
power necessarily becomes poorer when the calibration markers
are placed afar. Fig. 8 verifies the calibration error as a function of
the volume occupied by the 3D calibration marks. As we shrank
down the volume in front of the camera, the error in calibrating
Tp and Tt dropped for both techniques as expected; however, our

techniques outperformed [2] in all cases.
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Figure 5: Sample people tracking results using soft biometry signatures of cloth colors. Identified moving objects are enclosed in
colored bounding boxes. Yellow bounding boxes represent unidentified objects.

(a) (c)

(b) (d)

Figure 6: (a) A simulated stalking behavior in a parking lot and (b) trajectories of the sample stalking behavior. (c) and (d): similar
data fusion results for vehicular motion. In these figures, the “-” is the fused trajectory; “.” is the tracked trajectory from camera 1;
“x” is the tracked trajectory from camera 2; and “o” is the tracked trajectory from camera 3.

Figure 7: Sample foreground/background identification results. Pixels marked red are identified as foreground pixels. Even though
large color changes due to wave, water, and vegetation movements are observed in these pictures, the algorithm correctly eliminates
background motion from consideration.


