
Evaluation, Design and Application of Object Tracking Technologies

for Vehicular Technology Applications

Che-Tsung Lin and Long-Tai Chen

Mechanical and Systems Research Laboratories

 Industrial Technology Research institute

Chutung, Hsinchu, Taiwan 31040, R.O.C

{alexlin,ltchen}@itri.org.tw

Yuan-Fang Wang

Department of Computer Science

University of California

Santa Barbara, CA 93106

yfwang@cs.ucsb.edu

Abstract— Advances in video technology have enabled its wide

adoption in the auto industry. Today, many vehicles are

equipped with backup, front-looking, and side-looking cameras

that allow the driver to easily monitor the traffic around the

vehicle for enhanced safety. This paper reports our research on

evaluating many existing object tracking techniques, and

proposing a new tracker design and its application for 3D

environmental mapping in vehicular technology applications.

The contribution of our research is 4-fold: (1) We evaluate a

large collection of state-of-the-art trackers using multiple

criteria relevant to vehicular technology applications, (2) We

show how to derive useful evaluation metrics from public-

domain, real-world driving videos that do not come with

ground-truth information on pixel tracking, (3) we propose a

new tracker that is geared specifically for vehicular technology

application and show that it achieves tracking accuracy that

outperforms SIFT and is on-par with the state-of-the-art

optical-flow tracking algorithm, which has the best accuracy in

our evaluation. Furthermore, we show that our tracker is 600

times more efficient than optical flow and 7 times more efficient

than SIFT, and (4) we validated our new tracker design for 3D

environmental map building application and showed that the

new tracker can obtain comparable results as SIFT but at a

significant saving in runtime.

I. INTRODUCTION

Video cameras are becoming ubiquitous in the modern

societies. They are increasingly being adopted by the auto

industry for its falling price and improving capabilities.

This paper reports our research on using a vehicle’s onboard

video data for vehicular technology applications. More

specifically, this paper is about evaluating existing object

tracking techniques, and propose a new tracker design and its

application for 3D environmental map building during driving.

The contribution of our research is 4-fold: (1) We evaluate a

large collection of state-of-the-art trackers, taking into

consideration multiple criteria relevant to vehicular

applications, (2) We show how to derive useful evaluation

metrics from public-domain, real-world driving videos that do

not come with ground-truth information to validate pixel

tracking, (3) We propose a new tracker that is geared

specifically for vehicular technology application and show that

it achieves tracking accuracy that outperforms SIFT and is on-

par with the state-of-the-art optical-flow tracking algorithm,

which has the best accuracy in our evaluation. Furthermore, we

show that our tracker is 600 times more efficient than optical

flow and 7 times more efficient than SIFT, and (4) we validated

our new tracker design for 3D environmental map building

application and showed that the new tracker can obtain similar

results as SIFT but at a significant saving in runtime.

The particular application of 3D environmental map

building deserves some discussion. While Google's Self-

Driving Car [1] has many sensors to enable building such an

environmental map (e.g., GPS, gyroscope, shaft encoder, and

3D ladar), these sensors are often expensive and bulky;

requiring complex circuity to link together and on-board

computing and recording devices to function. In particular, 3D

data come from 3D laser radar that can be many times more

expensive than the host vehicle itself. In contrast, our 3D map

building pipeline has relied on a single, front-looking video

camera, but no other sensor to function. That is, we address the

most difficult and data-deprived scenario. We demonstrate that

the new tracker design can make video-based 3D environmental

map building much more efficient.

II. TECHNICAL RATIONALE

Traditionally, object tracking can be accomplished by either

a flow-based analysis or a feature-based analysis [2]. A flow-

based approach may provide a dense and regular (i.e., defined

on a pixel grid) motion field. However, (1) bland image regions

lacking surface texture present a significant challenge for robust

motion estimate everywhere [6], (2) it is arguable if a dense and

regular motion field is required for vehicular technology

applications. For example, if the goal is to track nearby objects

for collision avoidance, the focus could be placed on regions in

the center of the image and those exhibiting temporal changes,

but not every pixel, and (3) while most, if not all, flow

estimation algorithms were formulated based on the brightness

constancy constraint [2,7], it is highly nontrivial to make such

a framework robust and practical [6]. The formulation requires

expensive hierarchical processing to handle large object

displacement. To ensure robustness, many formulations were

proposed that end up solving a very large non-linear

optimization problem that can be time consuming and

algorithmically complex as to prevent their adaptation onto a

vehicle platform. For example, in a recent (2011) paper [6] over

20 flow-based algorithms were evaluated on some standard test

data sets. The runtime on a short, 8-frame sequence ranged from

a few minutes to a few hours, which makes them unsuitable for

a real-time application.

Instead, feature-based tracking does not usually produce a

regular flow field – as the feature detection mechanism is

designed to report only on image patches with significant local

intensity gradients. Such a method can produce a fairly dense

flow filed for textured regions though, if certain detection

sensitivity setting is properly adjusted. Furthermore, a large

variety of feature detectors and descriptors have been

developed in the recent past with varying complexity and

efficiency that can potentially be employed here. We have

evaluated a fairly comprehensive collection of modern-day

feature detectors and descriptors for vehicular technology

applications, including well-known designs such as SIFT [8],

SURF [9], USURF [9], FAST [10], and BRIEF [11]. The

selection intentionally includes some sophisticated designs,

such as SIFT and SURF, which employ clever mechanisms to

guard against incidental environmental changes in lighting,

scale, and pose, but can be slow, and some simpler ones, such

as FAST and BRIEF, which are without extensive safeguard

but are easy to implement and computationally efficient.

While the performance of SIFT and SURF has been studied

before [12], the focus was on accuracy and correctness, not

efficiency and complexity. Even when special implementation,

e.g., using GPU, can speed up SIFT [13] and SURF [14], such

special hardware is often unavailable on a vehicle’s onboard

computing system. It can be argued that many factors, such as

accuracy, efficiency, complexity, all play a role for a vehicular

application. It is therefore important to understand the trade-off

among these factors for the particular application scenario.

One important point to note is that a complete feature-based

tracker must encompass two components: a detection

mechanism and a description mechanism. The detection stage

answers the question of “where it is” and the description stage

answers the question of “what it is.” SIFT and SURF comprise

both a detector and a descriptor. On the other hand, FAST is,

strictly speaking, a detection mechanism while BRIEF a

description mechanism only. Certain enhancement need be

employed to make them a complete framework for tracking.

FAST corner detector uses a circle of 16 pixels (radius 3),

around a point p to classify if p is actually a corner. Each pixel

on the circle is given an integer label from 1 to 16 clockwise

starting from the pixel at the 12 o’clock position. If a set of n

contiguous pixels on the circle are all brighter than the center

pixel p plus a threshold value t or are all darker than pixel p

minus the threshold value t, then p is classified as a corner.

As the basic FAST formulation comprises only a detection

mechanism, we have augmented it with a description scheme.

The FAST descriptor follows the spirit of SIFT and SURF

where local histograms of gradients (HOG) are used for

describing the surface pattern. We use a neighborhood of size

16x16, which is partitioned into 2x2 non-overlapping blocks of

size 8x8 each. A gradient histogram is computed for each 8x8

block with the gradient directions quantized into four bins. Each

pixel in the block contributes its gradient direction, properly

weighed by its distance to the center of the block and the

strength of its gradient response. Concatenating these gradient

histograms produces a descriptor of length 2x2x4=16.

Comparing with SURF’s descriptor of length 64 and SIFT’s

length 128, the FAST descriptor is significantly shorter. The

tradeoff is then obviously in efficiency over sophistication.

BRIEF is a very simple descriptor, and its premise is that

image patches can be effectively classified on the basis of a

relatively small number of pairwise intensity comparisons. The

feature vector is a bit vector out of the test responses. For a local

image patch of size S by S, a test is performed as

𝜏(𝑝, 𝑥, 𝑦) = {
1 𝑝(𝑥) < 𝑝(𝑦)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1.)

where p(x) is the pixel intensity in a smoothed version of p at

pixel x = (u, v)⊤. Choosing a set of n pixel location pairs

uniquely defines a set of binary tests. BRIEF descriptor is then

defined to be the n-dimensional bit string

𝑓𝑛(𝑝) = ∑ 2𝑖−1𝜏(𝑝, 𝑥𝑖,𝑦𝑖)1≤𝑖≤𝑛 (2.)

BRIEF can be used to describe any image patch, or it is a

descriptor but not a detector. We have augmented the BRIEF

descriptor with a detector (FAST) to make a complete combo.

Again, the choice is aimed at deriving an efficient mechanism

for feature tracking. Hence, a goal of the evaluation is to see if

an efficient detector and descriptor combo can match the

performance of SIFT and SURF but at a much reduced

computation load to enable efficient tracking onboard a vehicle.

A. Evaluation Metrics from Real-World Data with no

Ground-Truth Pixel Movement Information

To make the evaluation relevant, we used videos collected

from real-world driving conditions. One such public-domain

data set is KITTI Vision Benchmark Suite [1,4,5]. KITTI Suite

contains many video sequences of driving in city streets,

residential neighborhoods, rural areas, and highways. KITTI

Suite does provide ground-truthed optical flow data, but only

for small number of image pairs. Furthermore, different

vendors will want to evaluate trackers on their own data sets,

collected using their own onboard cameras. To enable a more

general evaluation using KITTI and other video data sets, we

observe that in between two successive video frames separated

by less than, say, a few seconds during driving, the movement

of the vehicle can often be reasonably approximated as a simple

translation along the z (road) direction. If the scene is static,

such a z translation induces an image flow field that exhibits a

2D zoom pattern. This can be easily verified by considering a

3D point (X,Y,Z) and its location (X,Y,Z+Z) sometime (t)

later, where Z=Vt, and V is the speed of the vehicle.

Projecting the 3D point onto the image plane using the pinhole

model [2,21], we arrive at (f is the focal length):

𝑥′ = 𝑓
𝑋

𝑍 + ∆𝑍
= 𝑓

𝑋

𝑍 (1 +
∆𝑍
𝑍

)
≈ 𝑓

𝑋

𝑍
(1 −

∆𝑍

𝑍
) = 𝑥 −

∆𝑍

𝑍
𝑥

𝑦′ = 𝑓
𝑌

𝑍 + ∆𝑍
= 𝑓

𝑌

𝑍 (1 +
∆𝑍
𝑍

)
≈ 𝑓

𝑌

𝑍
(1 −

∆𝑍

𝑍
) = 𝑦 −

∆𝑍

𝑍
𝑦

𝑣𝑥 = 𝑥′ − 𝑥 = −
∆𝑍

𝑍
𝑥

𝑣𝑦 = 𝑦′ − 𝑦 = −
∆𝑍

𝑍
𝑦

 (3.)

This zoom model applies to both front-mounted and rear-

mounted cameras. While the magnitude of the flow vector

cannot be ascertained without knowing the speed of the vehicle

(V=Z/t) and the distance to the road object (Z), the direction

of the flow vector is nonetheless completely determined by the

pixel location, or

𝜃 = tan−1(𝑣𝑦/𝑣𝑥) = tan−1(𝑦/𝑥) (4.)

This observation then allows us to use for evaluation a large

number of video frames from KITTI Suite (and other datasets

as well) that depict a static scene, as we can examine the

directional error in the flow field even without ground-truth.

The evaluation results will be presented in the next section, but

the conclusion is that simple trackers such as BRIEF and FAST

can perform comparably well as the more elaborate trackers

such as SIFT, SURF and optical flow in these applications, but

at a fraction of the costs.

B. A New Tracker Design for Vehicular Safety

Note that FAST detector and BRIEF descriptor have little

protection against incidental scene changes. A generalization of

the BRIEF descriptor to tolerate in-plane rotation was proposed

recently and was shown to achieve comparable results with

SIFT in certain applications [19]. The idea is to record the pair

test results multiple times, each time on a patch that is a rotated

version of the original patch. By incorporating multiple

descriptors for different amounts of rotation, the BRIEF scheme

becomes more robust in matching.

 For vehicular safety application, we do not foresee in-plane

rotation as a common motion pattern. As argued before, 2D

zoom is prevalent. Hence, we propose here a variation of the

BRIEF descriptor, or ZBRIEF, that allows robust matching

with image zoom. To maintain the simplicity and efficiency of

BRIEF, ZBRIEF computes and records multiple BRIEF

descriptors at different zoom scales. More specifically, a test at

a zoom scale (z) is represent as:

𝜏𝑧(𝑝, 𝑥, 𝑦) = {
1 𝑝(𝑧𝑥) < 𝑝(𝑧𝑦)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.)

where zx = (zu, zv)⊤. ZBRIEF descriptor is then defined to be

the |z| by n-dimensional bit string (|z| denotes the number of

zoom levels and n the length of the BRIEF bit vector)

𝑓𝑧𝑛(𝑝) = ∑ 2(𝑗−1)𝑛 ∑ 2𝑖−1𝜏𝑗(𝑝, 𝑥𝑖,𝑦𝑖)1≤𝑖≤𝑛1≤𝑗≤|𝑧| (6.)

 Again, the evaluation results of ZBRIEF will be presented in

the next section. We summarize here that ZBRIEF is almost as

efficient as BRIEF and FAST but performs better than SIFT,

and close to the best optical-flow scheme we tested.

C. 3D Environment Building Using a Single Forward-

Looking Camera with ZBRIEF

As mentioned before, 3D environmental mapping is an

important advance to enhance 2D maps that are widely

available these days. However, projects such as Google's Self-

Driving Car [1] gather 3D data from 3D laser radar that can be

many times more expensive than the host vehicle itself. In

contrast, our 3D map building pipeline, which we called

PhotoModel3D, has relied on a single, front-looking video

camera, but no other sensor to function.

 PhotoModel3D employs a photo- and video-based analysis

paradigm known as structure from motion (SfM) [2,21]. The

principles are to exploit the motion parallax effect exhibited in

multiple images taken by a moving camera to infer the 3D scene

structures and the camera poses. PhotoModel3D (1) works with

both discrete images and continuous videos taken by a

consumer-market digital camera, camcorder, or camera phone,

(2) uses no special equipment (e.g., lens and tripod), active

projection, artificial lighting, prior camera calibration, and

man-made registration markers, (3) functions both indoor and

outdoor and over long range, unlike many commercial RGBD

devices that are mostly for indoor, short-range applications, (4)

requires no user training (just point and shoot), (5) is fully

automated and end-to-end (from photographs to fully colored

and textured 3D models) without manual intervention or data-

specific parameter tuning, (6) is a software-based solution that

runs on commodity Linux and Windows servers without the

need of special hardware (GPU, DSP, etc.) acceleration.

 A video-based 3D pipeline like PhotoModel3D often

involves detecting and matching features across the video

frames. These detection and correspondence processes must be

carried out with care as they form the basis of all ensuing

analysis. Our experience has been that the feature analysis

process can take anywhere from 15% to 40% of the total

processing time in SfM. Exploiting a fast feature tracker like

ZBRIEF can be advantageous in reducing computational power

on a mobile device and allowing appropriate client-server

partition of the 3D mapping pipeline.

III. EXPERIMENTAL RESULTS

To evaluate the feature detector and descriptor for tracking,

we manually selected from KITTI Suite 10 sequences, each

with 10 frames, where the vehicle was advancing steadily (no

turning) with no independently moving vehicles or pedestrians

on the road. For these 100 frames, we reasonably expected that

feature-based tracking should associate pixels in adjacent

frames in such a way that the resulting flow vectors obey the

zoom model in Eq. 3. We then compared the runtime and

accuracy of various feature detectors and descriptors and

identified the best parametric setting for them.

As SIFT, SURF and USURF are well-tuned algorithms, we

used the publicly available implementations without

modification [15,16,17]. The drawback for real-time use is their

complexity and inefficiency, which is difficult to remedy

without special hardware acceleration (e.g., GPU) that is often

lacking onboard a vehicle.

BRIEF: There are just a few parameters in BRIEF that need be

specified to complete the framework; namely, the smoothing

filter used, the patch size (S), and the length of the bit string (n).

While [11] suggested some reasonable default values for these

parameters, we have also conducted our own experiments to

determine the proper values for vehicular safety applications,

which turned out to be somewhat different from those

suggested in [11].

We have experimented with three levels of smoothing: (1) no

smoothing, (2) Gaussian smoothing with a filter of size 5x5 and

=1, and (3) Gaussian smoothing with a filter size of 9x9 and

=2. Of these, (3) was the setting recommended by [11]. We

have tried patch size from 21x21, 25x25, and all the way to

55x55 with the bit-string length at 128, 256 and 512, as

recommended by [11].

Two more parameters: a matching neighborhood size and a

matching threshold, were used for improved efficiency and

robustness. The same parameter values were used for all

trackers so as not to disadvantage any scheme unfairly. In

matching features detected in two frames, we used a matching

neighborhood size of 50, i.e., a feature in one frame was

matched only to a feature in the other frame that was less than

50 pixels apart. This was a reasonable domain constraint for

driving videos and was realized by building a KD tree of the

detected features using the ANN package [18] for efficient

nearest neighbor search.

However, within a 50-pixel radius to a feature there could

exist many candidate features for pairing in the other frame.

Instead of matching a feature to whichever feature in the other

frame that came close and had the most similar descriptor, we

insisted that the best match had to also “beat out” other potential

matches significantly, or the pairing had to be un-ambiguous.

This constraint was captured by the matching threshold. We

have used a matching threshold of 0.7 consistently for all

schemes, which implied that the Euclidean distance between

the best pairing candidate must be better than that of the second

best candidate even when the second best was shrunk 70%.

For these parameter combinations, we ran the BRIEF scheme

and recorded the runtime, pairing density (i.e., how many

detected features were matched) and the alignment error (in

degree) with respect to that predicted by the 2D zoom flow. Due

to the page limit, we only state our finding here without

presenting the data:

 The run time was proportional to both the detection

and matching density, but it did not vary significantly for

different patch sizes or feature lengths. Unlike the parameter

suggested by [11], we found 5x5 Gaussian kernel with =1

(instead of 9x9 Gaussian kernel with =2) seemed to achieve

the best balance of a reasonable runtime and high feature

density. A 9x9 Gaussian kernel with =2 tended to over-

smooth the images and caused the detected feature density to

drop precipitously.

 Both pairing density and direction error were

influenced by the patch size. The pairing density peaked around

25x25 to 31x31 for all levels of smoothing, while at the same

time the direction error dipped to the lowest point. This

observation implied that both small and large patches

performed worse than patches of a median size.

 Feature lengths of 256 and 512 were both better than

128. This was again in terms of both pairing density and

direction error. Performance difference between feature lengths

of 256 and 512 was quite small.

Based on these observations, we narrowed our choices to the

following two configurations: (1) smooth the input images

using a Gaussian kernel of size 5x5 and  and (2) use either

a patch size of 31x31 and a feature length of 256 (brief_31_256)

or a patch size of 25x25 and a feature length of 512

(brief_25_512).

ZBRIEF: We conducted experiments to see if adding the zoom

dimension improved the tracking performance. Note that we

have chosen 𝑧 ≥ 1 (i.e., zoom in only) for ZBRIREF. If the

camera is front-mounted, we expect that stationary road objects

to move closer (zoom in) over time. Hence, the pairing

operation compares the feature at scale z=1 (no zoom) in a

frame with features at all recorded zoom levels (𝑧 ≥ 1) in a

later frame. For a rear-mounted camera, we expect that

stationary road objects to move further away (zoom out) over

time. Hence, the pairing operation compares the feature at scale

z=1 (no zoom) in a frame with features at all recorded zoom

levels (𝑧 ≥ 1) in a previous frame. Hence, only features of 𝑧 ≥
1 need be considered.

 We tested on the best two configurations (brief_31_256 and

brief_25_512) obtained from the previous experiments and

used zoom levels from 0% (z=1) all the way to 30% (z=1.3), in

5% increment. Our observation was that the runtime increased

as more zoom levels were used, and this was to be expected

with a longer bit string. However, the matching density

increased and direction error dropped by using zoom. The best

zoom level seemed to at 20%. Based on the analysis, we have

chosen the final tracker configuration to be: (1) smooth the

input images using a Gaussian kernel of size 5x5 and and

(2) use a patch size of 31x31 and a bit string length of 256

(brief_31_256).

Comparison with Other Feature-based Methods: While

ZBRIEF improved on BRIEF, we need to compare our best

design - ZBRIEF with five zoom levels up to 20%, on a 31x31

patch with a bit string of length 256 - against SIFT, SURF,

USURF, and FAST. The results are shown in Table 1. SIFT,

SURF and USURF had built-in mechanism for image

smoothing, and hence, they were run on the original images.

FAST and ZBRIEF used images smoothed with a Gaussian

kernel of 5x5 and =1. We tried to keep the feature detection

density roughly the same, subject to what the public-domain

codes allowed [15,16,17].

 As can be seen, ZBRIEF had the highest pairing efficiency,

in that it converted the highest percentage of detected features

(37%) into pairs. ZBRIEF was the second fastest, about 40%

slower than FAST, but was twice as fast as USURF, four times

as fast as SURF, and seven times faster than SIFT. Furthermore,

ZBRIEF achieved the said speed-up while processing 58%

more featuresthan SURF and USURF and generating

significantly more feature correspondences than SIFT (30%

more), SURF (105% more) and USURF (80% more). FAST,

while efficient, was the least accurate, probably due to its short

descriptor.

 What was surprising was that ZBRIEF outperformed SIFT.

As seen from Table 1, SIFT and ZBRIEF detected roughly the

same number of features, but ZBRIEF was able to pair 30%

more of them seven times faster and with a lower directional

error. The good performance might be attributed to ZBRIEF’s

design focusing on translation and zoom motion that matched

well with the driving video characteristics. While SURF and

USURF had smallest directional errors, it might be because

they had the lowest detection density (63% lower than ZBRIEF

and SIFT) that allowed them to focus on fewer, high-quality

features (the public-domain program [9,17] did not allow the

feature density to increase beyond what we used). A sample

detection/matching result is shown in Figure 1. While no single

design outperformed all others in all aspects, ZBRIEF appears

to be a good compromise in terms of speed and accuracy for

vehicular technology applications.

Table 1 Comparison of best ZBRIEF against other feature

detectors/descriptors

detection

density

Run

time

pairing

density

direction

error

pairing
efficiency

SIFT 6712 6:08 1940 9.42 29%

SURF 4271 3:31 1221 7.73 29%

USURF 4271 1:55 1396 7.51 32%

FAST 6523 0:38 1999 10.45 30%

ZBRIEF 6776 0:52 2505 8.47 37%

Figure 1 From top to bottom: SIFT, SURF, USURF, FAST,

BRIEF, ZBRIEF

Comparison with Flow-based Methods: While we do not

advocate a flow-based approach, as a reality check we also

tested a state-of-the-art flow-based method [20] on the test

images. We used the codes provided by [20] without changes.

The average direction error over 90 pairs in KITTI data set

came out to be 6.21 degrees, about 2 degrees better than

ZBRIEF. Unfortunately, the codes were considerably slower.

We estimated that the runtime of the optical-flow method

would be about 600 times slower than ZBRIEF. A graphic

example using the same pair of images as in Figure 1 is shown

in Figure 2 (Seq3 in Error! Reference source not found.). To

avoid cluttering the display, only one flow vector in a 30x30

neighborhood is shown. As can be seen that the flow field is

indeed dense and regular.

Figure 2 Optical-flow-based motion estimation example

While results presented in Table 1 look promising, it doesn't tell

the whole story. A more convincing illustration is to replace

SIFT and SURF with ZBRIEF in our 3D pipeline, while

keeping all other components the same, and then compare the

resulting 3D models. Two such examples are shown in Figure

3. The left column shows a sample image in the video sequence

of length 35 (top) and 45 (bottom), respectively. The middle

column shows the 3D models based on SIFT feature analysis

while the right column the corresponding 3D models using

ZBRIEF analysis. Note that these models differ only in the 2D

feature used; all other processing components, parameter

settings, and input photos are exactly the same.

IV. CONCLUDING REMARKS

This paper summarizes our research on feature tracking for

vehicular technology applications. We have conducted an

extensive comparison of the state-of-the-art trackers, with an

eye to design an efficient tracker performing on par with

sophisticated feature-based trackers like SIFT and SURF and

the best optical-flow-based trackers. We have realized such a

design and application with a comparable performance with the

state-of-the-art, but our design can be implemented efficiently,

achieving fast update a commodity PC without hardware

acceleration. Certainly, a robust and 3D environmental

mapping system may encompass many components; such an

efficient and robust tracker should hopefully prove useful.

Figure 3 Left: a sample image in the video sequence, middle:

3D models using SIFT features and right: the corresponding

models using ZBRIEF features.

REFERENCES

1. E. Guizzo, “How Google's Self-Driving Car Works,” IEEE

Spectrum, Feb 2013.

2. D. Forsyth and J. Ponce, Computer Vision, A Modern

Approach, Prentice Hall, NJ 2003.

3. Andreas Geiger, Philip Lenz and Raquel Urtasun, Are we

ready for Autonomous Driving? The KITTI Vision

Benchmark Suite, Conference on Computer Vision and

Pattern Recognition (CVPR), 2012.

4. Andreas Geiger, Philip Lenz, Christoph Stiller and Raquel

Urtasun, Vision meets Robotics: The KITTI Dataset,

International Journal of Robotics Research (IJRR), 2013.

5. Jannik Fritsch, Tobias Kuehnl and Andreas Geiger, A New

Performance Measure and Evaluation Benchmark for Road

Detection Algorithms, International Conference on

Intelligent Transportation Systems (ITSC), 2013.

6. Simon Baker, Daniel Scharstein, JP Lewis, Stefan

Roth, Michael Black, Richard Szeliski, A Database and

Evaluation Methodology for Optical Flow, International

Journal of Computer Vision, 92(1):1-31, March 2011.

7. B. D. Lucas and T. Kanade, An iterative image registration

technique with an application to stereo vision. Proceedings

of Imaging Understanding Workshop, pages 121-130, 1981.

8. Lowe, D. G., “Distinctive Image Features from Scale-

Invariant Keypoints”, International Journal of Computer

Vision, 60, 2, pp. 91-110, 2004.

9. Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool,

"SURF: Speeded Up Robust Features", Computer Vision

and Image Understanding (CVIU), Vol. 110, No. 3, pp. 346-

359, 200.

10. E. Rosten and T. Drummond, "Machine learning for high-

speed corner detection". European Conference on

Computer Vision. Springer. pp. 430–443, 2006.

11. M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C.

Strecha, and P. Fua, “{BRIEF}: Computing a Local Binary

Descriptor Very Fast,” IEEE Transactions on Pattern

Analysis and Machine Intelligence 2012.

12. Mikolajczyk, K., and Schmid, C., "A Performance

Evaluation of Local Descriptors", IEEE Transactions on

Pattern Analysis and Machine Intelligence, pp 1615--1630,

2005.

13. Wu C. C., “SiftGPU: A GPU Implementation of Scale

Invariant Feature Transform (SIFT),

http://cs.unc.edu/~ccwu/siftgpu/

14. T. B. Terriberry, L. M. French, J. Helmsen, “GPU

Accelerating Speeded-up Robust Features,” Proceedings of

3DPTV 2008.

15. OpenCV http://opencv.org/

16. VLfeat Library, http://www.vlfeat.org/

17. SURF Library, http://www.vision.ee.ethz.ch/~surf/

18. David M. Mount and Sunil Arya, “ANN: A Library for

Approximate Nearest Neighbor Searching”,

http://www.cs.umd.edu/~mount/ANN/, 2010.

19. Ethan Rublee Vincent Rabaud Kurt Konolige and Gary

Bradski, “ORB: an efficient alternative to SIFT or SURF”,

International Conference on Computer Vision, 2011.

20. Sun, D.; Roth, S. & Black, M. J. "Secrets of Optical Flow

Estimation and Their Principles" IEEE Int. Conf. on Comp.

Vision & Pattern Recognition, 2010.

21. R. Hartley and A. Zisserman, Multiple View Geometry in

Computer Vision, Cambridge University Press, Cambridge,

MA, 2003.

http://www.cvlibs.net/
http://www.mrt.kit.edu/mitarbeiter_lenz.php
http://ttic.uchicago.edu/~rurtasun
http://www.cvlibs.net/
http://www.mrt.kit.edu/mitarbeiter_lenz.php
http://www.mrt.kit.edu/mitarbeiter_stiller.php
http://ttic.uchicago.edu/~rurtasun
http://ttic.uchicago.edu/~rurtasun
http://www.cvlibs.net/
http://citeseer.ist.psu.edu/lowe04distinctive.html
http://citeseer.ist.psu.edu/lowe04distinctive.html
http://citeseer.ist.psu.edu/lowe04distinctive.html
http://opencv.org/
http://www.vlfeat.org/
http://www.cs.umd.edu/~mount/ANN/

