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Abstract— Advances in video technology have enabled its wide 

adoption in the auto industry. Today, many vehicles are 

equipped with backup, front-looking, and side-looking cameras 

that allow the driver to easily monitor the traffic around the 

vehicle for enhanced safety. This paper reports our research on 

evaluating many existing object tracking techniques, and 

proposing a new tracker design and its application for 3D 

environmental mapping in vehicular technology applications. 

The contribution of our research is 4-fold: (1) We evaluate a 

large collection of state-of-the-art trackers using multiple 

criteria relevant to vehicular technology applications, (2) We 

show how to derive useful evaluation metrics from public-

domain, real-world driving videos that do not come with 

ground-truth information on pixel tracking, (3) we propose a 

new tracker that is geared specifically for vehicular technology 

application and show that it achieves tracking accuracy that 

outperforms SIFT and is on-par with the state-of-the-art 

optical-flow tracking algorithm, which has the best accuracy in 

our evaluation. Furthermore, we show that our tracker is 600 

times more efficient than optical flow and 7 times more efficient 

than SIFT, and (4) we validated our new tracker design for 3D 

environmental map building application and showed that the 

new tracker can obtain comparable results as SIFT but at a 

significant saving in runtime.  

I. INTRODUCTION 

Video cameras are becoming ubiquitous in the modern 

societies. They are increasingly being adopted by the auto 

industry for its falling price and improving capabilities.  

This paper reports our research on using a vehicle’s onboard 

video data for vehicular technology applications. More 

specifically, this paper is about evaluating existing object 

tracking techniques, and propose a new tracker design and its 

application for 3D environmental map building during driving. 

The contribution of our research is 4-fold: (1) We evaluate a 

large collection of state-of-the-art trackers, taking into 

consideration multiple criteria relevant to vehicular 

applications, (2) We show how to derive useful evaluation 

metrics from public-domain, real-world driving videos that do 

not come with ground-truth information to validate pixel 

tracking, (3) We propose a new tracker that is geared 

specifically for vehicular technology application and show that 

it achieves tracking accuracy that outperforms SIFT and is on-

par with the state-of-the-art optical-flow tracking algorithm, 

which has the best accuracy in our evaluation. Furthermore, we 

show that our tracker is 600 times more efficient than optical 

flow and 7 times more efficient than SIFT, and (4) we validated 

our new tracker design for 3D environmental map building 

application and showed that the new tracker can obtain similar 

results as SIFT but at a significant saving in runtime.   

The particular application of 3D environmental map 

building deserves some discussion.  While Google's Self-

Driving Car [1] has many sensors to enable building such an 

environmental map (e.g., GPS, gyroscope, shaft encoder, and 

3D ladar), these sensors are often expensive and bulky; 

requiring complex circuity to link together and on-board 

computing and recording devices to function. In particular, 3D 

data come from 3D laser radar that can be many times more 

expensive than the host vehicle itself. In contrast, our 3D map 

building pipeline has relied on a single, front-looking video 

camera, but no other sensor to function. That is, we address the 

most difficult and data-deprived scenario. We demonstrate that 

the new tracker design can make video-based 3D environmental 

map building much more efficient.  

II. TECHNICAL RATIONALE 

Traditionally, object tracking can be accomplished by either 

a flow-based analysis or a feature-based analysis [2]. A flow-

based approach may provide a dense and regular (i.e., defined 

on a pixel grid) motion field. However, (1) bland image regions 

lacking surface texture present a significant challenge for robust 

motion estimate everywhere [6], (2) it is arguable if a dense and 

regular motion field is required for vehicular technology 

applications. For example, if the goal is to track nearby objects 

for collision avoidance, the focus could be placed on regions in 

the center of the image and those exhibiting temporal changes, 

but not every pixel, and (3) while most, if not all, flow 

estimation algorithms were formulated based on the brightness 

constancy constraint [2,7], it is highly nontrivial to make such 

a framework robust and practical [6]. The formulation requires 

expensive hierarchical processing to handle large object 

displacement. To ensure robustness, many formulations were 

proposed that end up solving a very large non-linear 

optimization problem that can be time consuming and 

algorithmically complex as to prevent their adaptation onto a 

vehicle platform. For example, in a recent (2011) paper [6] over 

20 flow-based algorithms were evaluated on some standard test 

data sets. The runtime on a short, 8-frame sequence ranged from 

a few minutes to a few hours, which makes them unsuitable for 

a real-time application.  

Instead, feature-based tracking does not usually produce a 

regular flow field – as the feature detection mechanism is 



designed to report only on image patches with significant local 

intensity gradients. Such a method can produce a fairly dense 

flow filed for textured regions though, if certain detection 

sensitivity setting is properly adjusted. Furthermore, a large 

variety of feature detectors and descriptors have been 

developed in the recent past with varying complexity and 

efficiency that can potentially be employed here. We have 

evaluated a fairly comprehensive collection of modern-day 

feature detectors and descriptors for vehicular technology 

applications, including well-known designs such as SIFT [8], 

SURF [9], USURF [9], FAST [10], and BRIEF [11]. The 

selection intentionally includes some sophisticated designs, 

such as SIFT and SURF, which employ clever mechanisms to 

guard against incidental environmental changes in lighting, 

scale, and pose, but can be slow, and some simpler ones, such 

as FAST and BRIEF, which are without extensive safeguard 

but are easy to implement and computationally efficient.  

While the performance of SIFT and SURF has been studied 

before [12], the focus was on accuracy and correctness, not 

efficiency and complexity. Even when special implementation, 

e.g., using GPU, can speed up SIFT [13] and SURF [14], such 

special hardware is often unavailable on a vehicle’s onboard 

computing system. It can be argued that many factors, such as 

accuracy, efficiency, complexity, all play a role for a vehicular 

application. It is therefore important to understand the trade-off 

among these factors for the particular application scenario. 

One important point to note is that a complete feature-based 

tracker must encompass two components: a detection 

mechanism and a description mechanism. The detection stage 

answers the question of “where it is” and the description stage 

answers the question of “what it is.” SIFT and SURF comprise 

both a detector and a descriptor. On the other hand, FAST is, 

strictly speaking, a detection mechanism while BRIEF a 

description mechanism only. Certain enhancement need be 

employed to make them a complete framework for tracking.  

FAST corner detector uses a circle of 16 pixels (radius 3), 

around a point p to classify if p is actually a corner. Each pixel 

on the circle is given an integer label from 1 to 16 clockwise 

starting from the pixel at the 12 o’clock position. If a set of n 

contiguous pixels on the circle are all brighter than the center 

pixel p plus a threshold value t or are all darker than pixel p 

minus the threshold value t, then p is classified as a corner.  

As the basic FAST formulation comprises only a detection 

mechanism, we have augmented it with a description scheme. 

The FAST descriptor follows the spirit of SIFT and SURF 

where local histograms of gradients (HOG) are used for 

describing the surface pattern. We use a neighborhood of size 

16x16, which is partitioned into 2x2 non-overlapping blocks of 

size 8x8 each. A gradient histogram is computed for each 8x8 

block with the gradient directions quantized into four bins. Each 

pixel in the block contributes its gradient direction, properly 

weighed by its distance to the center of the block and the 

strength of its gradient response. Concatenating these gradient 

histograms produces a descriptor of length 2x2x4=16. 

Comparing with SURF’s descriptor of length 64 and SIFT’s 

length 128, the FAST descriptor is significantly shorter. The 

tradeoff is then obviously in efficiency over sophistication. 

BRIEF is a very simple descriptor, and its premise is that 

image patches can be effectively classified on the basis of a 

relatively small number of pairwise intensity comparisons. The 

feature vector is a bit vector out of the test responses. For a local 

image patch of size S by S, a test is performed as 

𝜏(𝑝, 𝑥, 𝑦) =  {
1 𝑝(𝑥) < 𝑝(𝑦)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                         (1.) 

where p(x) is the pixel intensity in a smoothed version of p at 

pixel x = (u, v)⊤. Choosing a set of n pixel location pairs 

uniquely defines a set of binary tests. BRIEF descriptor is then 

defined to be the n-dimensional bit string 

𝑓𝑛(𝑝) = ∑ 2𝑖−1𝜏(𝑝, 𝑥𝑖,𝑦𝑖)1≤𝑖≤𝑛                           (2.) 

BRIEF can be used to describe any image patch, or it is a 

descriptor but not a detector. We have augmented the BRIEF 

descriptor with a detector (FAST) to make a complete combo. 

Again, the choice is aimed at deriving an efficient mechanism 

for feature tracking. Hence, a goal of the evaluation is to see if 

an efficient detector and descriptor combo can match the 

performance of SIFT and SURF but at a much reduced 

computation load to enable efficient tracking onboard a vehicle.  

A. Evaluation Metrics from Real-World Data with no 

Ground-Truth Pixel Movement Information 

To make the evaluation relevant, we used videos collected 

from real-world driving conditions. One such public-domain 

data set is KITTI Vision Benchmark Suite [1,4,5]. KITTI Suite 

contains many video sequences of driving in city streets, 

residential neighborhoods, rural areas, and highways. KITTI 

Suite does provide ground-truthed optical flow data, but only 

for small number of image pairs. Furthermore, different 

vendors will want to evaluate trackers on their own data sets, 

collected using their own onboard cameras. To enable a more 

general evaluation using KITTI and other video data sets, we 

observe that in between two successive video frames separated 

by less than, say, a few seconds during driving, the movement 

of the vehicle can often be reasonably approximated as a simple 

translation along the z (road) direction. If the scene is static, 

such a z translation induces an image flow field that exhibits a 

2D zoom pattern. This can be easily verified by considering a 

3D point (X,Y,Z) and its location (X,Y,Z+Z) sometime (t) 

later, where Z=Vt, and V is the speed of the vehicle. 

Projecting the 3D point onto the image plane using the pinhole 

model [2,21], we arrive at (f is the focal length): 
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This zoom model applies to both front-mounted and rear-

mounted cameras. While the magnitude of the flow vector 

cannot be ascertained without knowing the speed of the vehicle 

(V=Z/t) and the distance to the road object (Z), the direction 



of the flow vector is nonetheless completely determined by the 

pixel location, or 

𝜃 = tan−1(𝑣𝑦/𝑣𝑥) = tan−1(𝑦/𝑥)                       (4.) 

This observation then allows us to use for evaluation a large 

number of video frames from KITTI Suite (and other datasets 

as well) that depict a static scene, as we can examine the 

directional error in the flow field even without ground-truth. 

The evaluation results will be presented in the next section, but 

the conclusion is that simple trackers such as BRIEF and FAST 

can perform comparably well as the more elaborate trackers 

such as SIFT, SURF and optical flow in these applications, but 

at a fraction of the costs.  

B. A New Tracker Design for Vehicular Safety  

Note that FAST detector and BRIEF descriptor have little 

protection against incidental scene changes. A generalization of 

the BRIEF descriptor to tolerate in-plane rotation was proposed 

recently and was shown to achieve comparable results with 

SIFT in certain applications [19]. The idea is to record the pair 

test results multiple times, each time on a patch that is a rotated 

version of the original patch. By incorporating multiple 

descriptors for different amounts of rotation, the BRIEF scheme 

becomes more robust in matching. 

    For vehicular safety application, we do not foresee in-plane 

rotation as a common motion pattern. As argued before, 2D 

zoom is prevalent. Hence, we propose here a variation of the 

BRIEF descriptor, or ZBRIEF, that allows robust matching 

with image zoom. To maintain the simplicity and efficiency of 

BRIEF, ZBRIEF computes and records multiple BRIEF 

descriptors at different zoom scales. More specifically, a test at 

a zoom scale (z) is represent as: 

𝜏𝑧(𝑝, 𝑥, 𝑦) =  {
1 𝑝(𝑧𝑥) < 𝑝(𝑧𝑦)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                            (5.) 

where zx = (zu, zv)⊤. ZBRIEF descriptor is then defined to be 

the |z| by n-dimensional bit string (|z| denotes the number of 

zoom levels and n the length of the BRIEF bit vector) 

𝑓𝑧𝑛(𝑝) = ∑ 2(𝑗−1)𝑛 ∑ 2𝑖−1𝜏𝑗(𝑝, 𝑥𝑖,𝑦𝑖)1≤𝑖≤𝑛1≤𝑗≤|𝑧|         (6.) 

    Again, the evaluation results of ZBRIEF will be presented in 

the next section. We summarize here that ZBRIEF is almost as 

efficient as BRIEF and FAST but performs better than SIFT, 

and close to the best optical-flow scheme we tested.  

C. 3D Environment Building Using a Single Forward-

Looking Camera with ZBRIEF 

As mentioned before, 3D environmental mapping is an 

important advance to enhance 2D maps that are widely 

available these days. However, projects such as Google's Self-

Driving Car [1] gather 3D data from 3D laser radar that can be 

many times more expensive than the host vehicle itself. In 

contrast, our 3D map building pipeline, which we called 

PhotoModel3D, has relied on a single, front-looking video 

camera, but no other sensor to function.  

    PhotoModel3D employs a photo- and video-based analysis 

paradigm known as structure from motion (SfM) [2,21]. The 

principles are to exploit the motion parallax effect exhibited in 

multiple images taken by a moving camera to infer the 3D scene 

structures and the camera poses. PhotoModel3D (1) works with 

both discrete images and continuous videos taken by a 

consumer-market digital camera, camcorder, or camera phone, 

(2) uses no special equipment (e.g., lens and tripod), active 

projection, artificial lighting, prior camera calibration, and 

man-made  registration markers, (3) functions both indoor and 

outdoor and over long range, unlike many commercial RGBD 

devices  that are mostly for indoor, short-range applications, (4) 

requires no user training (just point and shoot), (5) is fully 

automated and end-to-end (from photographs to fully colored 

and textured 3D models) without manual intervention or data-

specific parameter tuning, (6) is a software-based solution that 

runs on commodity Linux and Windows servers without the 

need of special hardware (GPU, DSP, etc.) acceleration. 

    A video-based 3D pipeline like PhotoModel3D often 

involves detecting and matching features across the video 

frames. These detection and correspondence processes must be 

carried out with care as they form the basis of all ensuing 

analysis. Our experience has been that the feature analysis 

process can take anywhere from 15% to 40% of the total 

processing time in SfM. Exploiting a fast feature tracker  like 

ZBRIEF can be advantageous in reducing computational power 

on a mobile device and allowing appropriate client-server 

partition of the 3D mapping pipeline. 

III. EXPERIMENTAL RESULTS 

To evaluate the feature detector and descriptor for tracking, 

we manually selected from KITTI Suite 10 sequences, each 

with 10 frames, where the vehicle was advancing steadily (no 

turning) with no independently moving vehicles or pedestrians 

on the road. For these 100 frames, we reasonably expected that 

feature-based tracking should associate pixels in adjacent 

frames in such a way that the resulting flow vectors obey the 

zoom model in Eq. 3. We then compared the runtime and 

accuracy of various feature detectors and descriptors and 

identified the best parametric setting for them. 

As SIFT, SURF and USURF are well-tuned algorithms, we 

used the publicly available implementations without 

modification [15,16,17]. The drawback for real-time use is their 

complexity and inefficiency, which is difficult to remedy 

without special hardware acceleration (e.g., GPU) that is often 

lacking onboard a vehicle.  

BRIEF: There are just a few parameters in BRIEF that need be 

specified to complete the framework; namely, the smoothing 

filter used, the patch size (S), and the length of the bit string (n). 

While [11] suggested some reasonable default values for these 

parameters, we have also conducted our own experiments to 

determine the proper values for vehicular safety applications, 

which turned out to be somewhat different from those 

suggested in [11].   

We have experimented with three levels of smoothing: (1) no 

smoothing, (2) Gaussian smoothing with a filter of size 5x5 and 

=1, and (3) Gaussian smoothing with a filter size of 9x9 and 

=2. Of these, (3) was the setting recommended by [11].  We 

have tried patch size from 21x21, 25x25, and all the way to 

55x55 with the bit-string length at 128, 256 and 512, as 

recommended by [11]. 

Two more parameters: a matching neighborhood size and a 

matching threshold, were used for improved efficiency and 



robustness. The same parameter values were used for all 

trackers so as not to disadvantage any scheme unfairly. In 

matching features detected in two frames, we used a matching 

neighborhood size of 50, i.e., a feature in one frame was 

matched only to a feature in the other frame that was less than 

50 pixels apart. This was a reasonable domain constraint for 

driving videos and was realized by building a KD tree of the 

detected features using the ANN package [18] for efficient 

nearest neighbor search.  

However, within a 50-pixel radius to a feature there could 

exist many candidate features for pairing in the other frame. 

Instead of matching a feature to whichever feature in the other 

frame that came close and had the most similar descriptor, we 

insisted that the best match had to also “beat out” other potential 

matches significantly, or the pairing had to be  un-ambiguous. 

This constraint was captured by the matching threshold. We 

have used a matching threshold of 0.7 consistently for all 

schemes, which implied that the Euclidean distance between 

the best pairing candidate must be better than that of the second 

best candidate even when the second best was shrunk 70%.    

For these parameter combinations, we ran the BRIEF scheme 

and recorded the runtime, pairing density (i.e., how many 

detected features were matched) and the alignment error (in 

degree) with respect to that predicted by the 2D zoom flow. Due 

to the page limit, we only state our finding here without 

presenting the data:   

 The run time was proportional to both the detection 

and matching density, but it did not vary significantly for 

different patch sizes or feature lengths. Unlike the parameter 

suggested by [11], we found 5x5 Gaussian kernel with =1 

(instead of 9x9 Gaussian kernel with =2) seemed to achieve 

the best balance of a reasonable runtime and high feature 

density. A 9x9 Gaussian kernel with =2 tended to over-

smooth the images and caused the detected feature density to 

drop precipitously.  

 Both pairing density and direction error were 

influenced by the patch size. The pairing density peaked around 

25x25 to 31x31 for all levels of smoothing, while at the same 

time the direction error dipped to the lowest point. This 

observation implied that both small and large patches 

performed worse than patches of a median size.  

 Feature lengths of 256 and 512 were both better than 

128. This was again in terms of both pairing density and 

direction error. Performance difference between feature lengths 

of 256 and 512 was quite small.  

Based on these observations, we narrowed our choices to the 

following two configurations: (1) smooth the input images 

using a Gaussian kernel of size 5x5 and  and (2) use either 

a patch size of 31x31 and a feature length of 256 (brief_31_256) 

or a patch size of 25x25 and a feature length of 512 

(brief_25_512).  

ZBRIEF: We conducted experiments to see if adding the zoom 

dimension improved the tracking performance. Note that we 

have chosen 𝑧 ≥ 1 (i.e., zoom in only) for ZBRIREF. If the 

camera is front-mounted, we expect that stationary road objects 

to move closer (zoom in) over time. Hence, the pairing 

operation compares the feature at scale z=1 (no zoom) in a 

frame with features at all recorded zoom levels (𝑧 ≥ 1) in a 

later frame. For a rear-mounted camera, we expect that 

stationary road objects to move further away (zoom out) over 

time. Hence, the pairing operation compares the feature at scale 

z=1 (no zoom) in a frame with features at all recorded zoom 

levels (𝑧 ≥ 1) in a previous frame.  Hence, only features of 𝑧 ≥
1 need be considered.  

    We tested on the best two configurations (brief_31_256 and 

brief_25_512) obtained from the previous experiments and 

used zoom levels from 0% (z=1) all the way to 30% (z=1.3), in 

5% increment. Our observation was that the runtime increased 

as more zoom levels were used, and this was to be expected 

with a longer bit string. However, the matching density 

increased and direction error dropped by using zoom. The best 

zoom level seemed to at 20%. Based on the analysis, we have 

chosen the final tracker configuration to be: (1) smooth the 

input images using a Gaussian kernel of size 5x5 and and 

(2) use a patch size of 31x31 and a bit string length of 256 

(brief_31_256). 

Comparison with Other Feature-based Methods: While 

ZBRIEF improved on BRIEF, we need to compare our best 

design - ZBRIEF with five zoom levels up to 20%, on a 31x31 

patch with a bit string of length 256 - against SIFT, SURF, 

USURF, and FAST. The results are shown in Table 1. SIFT, 

SURF and USURF had built-in mechanism for image 

smoothing, and hence, they were run on the original images. 

FAST and ZBRIEF used images smoothed with a Gaussian 

kernel of 5x5 and =1. We tried to keep the feature detection 

density roughly the same, subject to what the public-domain 

codes allowed [15,16,17]. 

    As can be seen, ZBRIEF had the highest pairing efficiency, 

in that it converted the highest percentage of detected features 

(37%) into pairs. ZBRIEF was the second fastest, about 40% 

slower than FAST, but was twice as fast as USURF, four times 

as fast as SURF, and seven times faster than SIFT. Furthermore, 

ZBRIEF achieved the said speed-up while processing 58% 

more featuresthan SURF and USURF and generating 

significantly more feature correspondences than SIFT (30% 

more), SURF (105% more) and USURF (80% more).  FAST, 

while efficient, was the least accurate, probably due to its short 

descriptor.  

    What was surprising was that ZBRIEF outperformed SIFT. 

As seen from Table 1, SIFT and ZBRIEF detected roughly the 

same number of features, but ZBRIEF was able to pair 30% 

more of them seven times faster and with a lower directional 

error. The good performance might be attributed to ZBRIEF’s 

design focusing on translation and zoom motion that matched 

well with the driving video characteristics. While SURF and 

USURF had smallest directional errors, it might be because 

they had the lowest detection density (63% lower than ZBRIEF 

and SIFT) that allowed them to focus on fewer, high-quality 

features (the public-domain program [9,17] did not allow the 

feature density to increase beyond what we used). A sample 

detection/matching result is shown in Figure 1. While no single 

design outperformed all others in all aspects, ZBRIEF appears 

to be a good compromise in terms of speed and accuracy for 

vehicular technology applications.  



 

Table 1 Comparison of best ZBRIEF against other feature 

detectors/descriptors 

  

detection 

density 

Run 

time 

pairing 

density 

direction 

error 

pairing 
efficiency 

SIFT 6712 6:08 1940 9.42 29% 

SURF 4271 3:31 1221 7.73 29% 

USURF 4271 1:55 1396 7.51 32% 

FAST 6523 0:38 1999 10.45 30% 

ZBRIEF  6776 0:52 2505 8.47 37% 
 

 

 

 

 

 

 

 
Figure 1 From top to bottom: SIFT, SURF, USURF, FAST, 

BRIEF, ZBRIEF 

 

Comparison with Flow-based Methods: While we do not 

advocate a flow-based approach, as a reality check we also 

tested a state-of-the-art flow-based method [20] on the test 

images. We used the codes provided by [20] without changes. 

The average direction error over 90 pairs in KITTI data set 

came out to be 6.21 degrees, about 2 degrees better than 

ZBRIEF. Unfortunately, the codes were considerably slower. 

We estimated that the runtime of the optical-flow method 

would be about 600 times slower than ZBRIEF. A graphic 

example using the same pair of images as in Figure 1 is shown 

in Figure 2 (Seq3 in Error! Reference source not found.). To 

avoid cluttering the display, only one flow vector in a 30x30 

neighborhood is shown. As can be seen that the flow field is 

indeed dense and regular.  

 

 

Figure 2 Optical-flow-based motion estimation example 

 

While results presented in Table 1 look promising, it doesn't tell 

the whole story. A more convincing illustration is to replace 

SIFT and SURF with ZBRIEF in our 3D pipeline, while 

keeping all other components the same, and then compare the 

resulting 3D models. Two such examples are shown in Figure 

3. The left column shows a sample image in the video sequence 

of length 35 (top) and 45 (bottom), respectively. The middle 

column shows the 3D models based on SIFT feature analysis 

while the right column the corresponding 3D models using 

ZBRIEF analysis. Note that these models differ only in the 2D 

feature used; all other processing components, parameter 

settings, and input photos are exactly the same. 

 

IV. CONCLUDING REMARKS 

This paper summarizes our research on feature tracking for 

vehicular technology applications. We have conducted an 

extensive comparison of the state-of-the-art trackers, with an 

eye to design an efficient tracker performing on par with 

sophisticated feature-based trackers like SIFT and SURF and 

the best optical-flow-based trackers. We have realized such a 

design and application with a comparable performance with the 



state-of-the-art, but our design can be implemented efficiently, 

achieving fast update a commodity PC without hardware 

acceleration.  Certainly, a robust and 3D environmental 

mapping system may encompass many components; such an 

efficient and robust tracker should hopefully prove useful.  

 
Figure 3 Left: a sample image in the video sequence, middle: 

3D models using SIFT features and right: the corresponding 

models using ZBRIEF features. 
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