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Abstract— Advances in video technology have enabled its wide 

adoption in the auto industry. Today, many vehicles are 

equipped with backup, front-looking, and side-looking cameras 

that allow the driver to easily monitor traffic around the vehicle 

for enhanced safety. One difficulty with performing automated 

image analysis using a vehicle’s onboard video has to do with 

the significant lens distortion of these sensors to cover a large 

field of view around the vehicle. This paper reports our research 

on proposing a tracking scheme that improves the accuracy and 

denseness of object tracking in the presence of large lens 

distortion. The contribution of our research is 4-fold: (1) We 

evaluated a large collection of state-of-the-art trackers to 

understand their deficiency when applied to videos with large 

lens distortion, (2) we showed how to derive useful evaluation 

metrics from public-domain, real-world driving videos that do 

not come with ground-truth information on pixel tracking, (3) 

we identified many enhancement techniques that can 

potentially help improve the poor performance of current 

trackers on videos of  large lens distortion, and (4) we 

performed a systematic study to validate the efficacy of these 

enhancement techniques and proposed a new tracker design that 

achieved substantial improvement over the state-of-the-art, in 

terms of both accuracy and density, based on a rigorous 

prevision vs. recall analysis.  

I. INTRODUCTION 

Video cameras are becoming ubiquitous in the modern societies. 

They are increasingly being adopted by the auto industry for its 

falling price and improving capabilities. The U.S. National 

Highway Traffic Safety Administration (NHTSA) issued a rule 

in 2014 requiring all new light vehicles sold or leased in the 

U.S. to have “rear-view visibility systems,” in effect, requiring 

backup cameras. The rule would start phasing in on May 1, 

2016 models and be at 100% May 1, 2018. Under the rule, all 

vehicles would have to give the driver a view 10-foot by 20-

foot zone behind the vehicle. There are also requirements for 

image size and other factors that all but require rear-view 

cameras as the only solution. 

However, availability of such a system does not fully 

prevent back-over accidents from happening. Many times, a 

driver can be distracted by, say, passengers in the vehicle and 

events surrounding the vehicle, and fails to properly observe the 

video display. An added safety measure is to have an automated 

monitoring system to track and identify obstacles in the video 

and sound an alarm if an obstacle comes into close vicinity for 

potential collision. This is similar to other vehicular safety 

systems, such as the lane departure warning system and the 

adaptive cruise control system, that perform environmental 

monitoring automatically without human intervention. The goal 

is thus to study issues in designing such an automated image 

analysis system for use with a rear-view camera.  

II. TECHNICAL RATIONALE 

The added degree of difficulty for back-over detection is 

that to observe obstacles (vehicles, pedestrians, animals, fences, 

gates, mailboxes, shopping carts, vegetation, etc.) that a vehicle 

might come into contact with in a reverse motion, the view of 

the camera must be wide enough to observe not just what is 

directly behind the vehicle, but also what is to the side that can 

potentially moves into the vehicle’s path. This necessitates the 

use of a lens with large spherical distortion (e.g., a fish-eye 

lens). In Figure 1, we show a sample frame recorded by such a 

backup camera (top left) and the distortion corrected frame (top 

right). We also depict how pixels in the original, distorted 

image move during the distortion correction process as colored 

flow vectors overlapped on the original, distorted (bottom left) 

and distortion corrected (bottom right) images.  

 

  

  

Figure 1 Top row: Distorted and Distortion corrected images 

and bottom row: with pixel movement (from distorted image 

to distortion-corrected image) overlaid. 

 

The choice of a back-over warning system seems to be 

either performing image analysis directly on the original, 

distorted images or correcting for lens distortion before 

attempting image analysis. The former often implies a 

significant redesign of the image analysis algorithms. This is 



because a back-over warning system often implements a 

tracking scheme to detect and track moving obstacles, and state-

of-the-art object trackers perform sophisticated feature 

detection and matching to guard against scale, lighting and 

viewpoint changes. For example, SIFT [2] and SURF [3] build 

hierarchical image pyramids; perform pyramidal, scale-space 

analysis to locate features; and describe features using 

histograms of local gradient patterns. The smoothing 

operations, histogram binning and scale-space computation all 

assume a regular, Cartesian grid. It is highly non-trivial to 

reformate the framework using a non-linear grid.  

 

  

  

  

  

Figure 2 Sample results of applying standard trackers to 

distortion corrected images. First row: two input frames for 

tracking, second row: accurate feature-based trackers (left: 

SIFT, right: SURF), third row: efficient feature-based trackers 

(left: BRIEF, right: ZBRIEF), and last row: flow-based 

trackers: (left: KLT, right: dense optical flow). 

 

As is evident from Figure 1, the lens distortion is non-

uniform and significant as pixel movements can be as large as 

20% or more of the image size around image periphery. 

Furthermore, as a small region in the center of the distorted 

image is (nonlinearly) expanded to fill in the whole image 

frame in the distortion corrected image, original pixels must 

often be used multiple, unequal numbers of time in a pyramidal 

smoothing scheme. The expansion of the central image region 

then introduces artifacts that are not in the original images, and 

distinct defects may be evidenced using different interpolation 

schemes. Furthermore, to fit lens with different distortion 

parameters, such a scheme might have to be re-worked and re-

optimized multiple times.   

Hence, we advocate the latter approach where lens 

distortion is corrected first and then a standard tracking scheme 

is applied on the corrected images. Conceptually, this is a 

simpler approach without redesigning trackers, but it faces the 

same difficulty that nonlinear stretching of the original image 

introduces artifacts and noises. To illustrate, Figure 2 shows six 

different trackers in three rows. These include both feature-

based (2nd and 3rd rows) and flow-based (4th row) trackers, and 

trackers emphasizing accuracy with multiple mechanisms to 

guard against incidental environmental variation (as in SIFT 

[2], SURF [3] and optical flow [1,8]) and trackers 

emphasizing efficiency that trades off some safeguard for speed 

(as in BRIEF [5], ZBRIEF [13] and KLT [9,10]). However, 

most of them produced sparse correspondences. The sparsity is 

especially noticeable for, say, homogeneous, featureless 

pavements, where features are noisy and unstable in distortion 

corrected images that defeat tracking. Note that though dense 

optical-flow based approaches generate dense correspondences, 

the computed flow does not depict an expected zoom flow and 

is visually incorrect.  

While one may tune the tracker parameters to increase 

feature density, densification invariably involves a trade-off 

between precision and recall. Intuitively speaking, given, say, a 

pair of images, the amount of information embedded therein is 

fixed. A feature detector, with its particular algorithmic design, 

has an inherent limit on what it can accurately detect and 

describe. That is, the trade-off between precision and recall 

dictates that when the “floodgate” is open wider, more pairings 

will be generated, but with less assurance of the quality of the 

matches. This is illustrated in Figure 3 that a lower precision 

setting does admit more pairings. But the quality is much 

poorer. Hence, it is not sufficient to just “let more in;” we need 

to exercise caution to ensure that matching quality does not 

degrade significantly as a result. 

 

  

  
Figure 3 With a lower precision setting, SIFT (upper left), 

SURF(upper right), BRIEF (lower left) and ZBRIEF (lower 

right) all admit more feature pairing, but with poorer quality.  

 



As tracking is a fundamental operation in video analysis and 

collision avoidance, it is paramount that the performance of 

these trackers be significantly improved on such videos of large 

lens distortion. In this paper, we conducted a study of a number 

of enhancement mechanisms to verify their efficacy in such an 

endeavor. We show that by properly combining these 

enhancement techniques, we can improve both the accuracy 

and density of the tracking results.  

A. Evaluation Metrics 

Note that while the distortion compensated videos appear 

visually correct (e.g., lines are straight instead of curved), there 

is no ground truth associated with these data sets. That is, no 

correct feature correspondences are available. Certainly, some 

feature movement patterns can be predicted on such driving 

videos when the vehicle’s trajectory is known. It is well known 

that corresponding features in two views are related by a simple 

epipolar constraint, expressed mathematically as x’TFx=0, 

where F is the Fundamental Matrix [11] and x and x’ are the 

corresponding feature coordinates in two frames. It was shown 

[11] that in the case of a pure translation (a vehicle is moving 

straight ahead or back), F has a very simple expression F = 

[e’]x. where e’ is the epipole and []x is the anti-symmetric 3 by 

3 matrix of the enclosed vector.  

Two typical cases during driving are illustrated here: If the 

camera is mounted on the left or right side of the vehicle, most 

of the times the camera will be translating horizontally and  e’ 

= (1, 0, 0)T and the epipolar line is y’ = y (or pixel movement 

should be purely horizontal). When the camera is translating 

along the z direction (for a front- or back-mounted camera), e’ 

= (cx, cy, 1)T, where (cx, cy) is the focus of expansion, or  

𝐅 =  [

0 −1 cy

1 0 −cx

−cy cx 0
] 
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The epipolar line in the 2nd (primed) image is therefore: 

f(x′, y′) = −(y − cy)x′ + (x − cx)y′ − cyx + cxy = 0 

This is the equation of a line going through (cx, cy) (f(cx, cy ) =

0) with a direction(x − cx, y − cy), which represents either a 

convergent (zoom-in or front-mounted) or divergent (zoom-out 

or back-mounted) flow pattern.  

However, such a prediction does not provide unique pixel-

to-pixel correspondences between features in two frames. 

Lacking knowledge of the 3D scene structure, such a 

mathematical model only predicts the direction of the pixel 

flow, and hence, only the directional error, not the absolute 

error (direction and magnitude), can be ascertained. However, 

barring other sources of information, we will use directional 

error and feature pairing density as metrics to evaluate different 

algorithmic enhancements. 

B. Potential Remedies 

Here we list a number of possible remedies that we have 

experimented with in the course of our research.  

Pyramidal processing: For a rear-view camera, 

magnitude of pixel movement is usually not constant and gets 

progressively larger closer to the vehicle. The search 

neighborhood for feature pairs should be enlarged to 

accommodate potentially significant pixel movements or 

images should be sub-sampled to keep the search neighborhood 

a reasonable size. Standard sub-sampling method is to build a 

Gaussian pyramid for coarse-to-fine processing,  

Image smoothing: Irregular and inconsistent pairing 

results shown in Figure 1 and Figure 2 often indicate noisy 

image content. This is especially true for featureless regions 

(e.g., pavement) where random perturbation of color and 

intensity due to environmental factors and distortion correction 

can be overwhelming. Standard practice is to smooth out such 

undulation,  

Median filtering: As indicated by recent research [8], 

localized median filtering is a powerful tool to rid the flow field 

of outliers and hence, is worthy of experimenting, and  

Regularization: As mentioned before, while epipolar 

constraint is not strong enough to ascertain unique pixel-to-

pixel correspondences, it does provide motion-specific 

restriction on the direction of the pixel flow. Such domain-

specific constraint can be used as a regularization factor, and  

Magnitude filtering: One drawback of KLT, BRIEF, 

and ZBRIEF is that, for efficiency consideration, features are 

often located on the integer grid. Without sub-pixel precision, 

quantization error in localization can be as large as half a pixel. 

Such a quantization error is most pronounced when the 

magnitude of the pixel movement is small, as can be seen in the 

following equation: 

tan θ̂ =
v̂y

v̂x

=
vy + δvy

vx + δvx

=

vy(1 +
δvy

vy
)

vx(1 +
δvx

vx
)

≅
vy

vx

(1 −
δvx

vx

+
δvy

vy

)

= tanθ(1 −
δvx

vx

+
δvy

vy

) 
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Where the “hat” quantities are defined on an integer grid and 

the error is proportional to |
δvx

vx
| + |

δvy

vy
|. Hence, to reduce the 

quantization effect, we can ignore movement that is small than 

a certain threshold. 

Of all these schemes, we have found that pyramidal 

processing and image smoothing to be relatively ineffective.  

First, pyramidal processing is already employed in flow-based 

schemes (KLT and optical flow) and in feature-based schemes 

(SIFT and SURF), but did not produce satisfactory results as 

shown in Figure 1 and Figure 2.  Second, we have experimented 

with many different interpolation schemes, from simple box 

filter, to more advanced Gaussian and spline filters in building 

pyramids and smoothing images, but none of them produced 

good tracking results. We surmise that the large nonlinear 

stretching of pixels in distortion correction inevitably 

introduces artifacts as few seen pixels are used to generate 

significantly more unseen pixels among them.  This theoretical 

limitation of lack of information cannot be overcome by clever 

interpolation. Hence, we will focus on the other enhancement 

schemes in the next section.  

III. EXPERIMENTAL RESULTS 

We used four cameras with wide-angle lens and mounted them 

on the front, rear, left and right sides of a test vehicle to simulate 



the possibility of collecting videos with large lens distortion for 

monitoring traffic all around a vehicle (Figure 4), not 

necessarily just that coming up from the rear of the vehicle. We 

collected about 100 frames from each of these four videos (400 

frames total) as our test bed. We ran SIFT, SURF, USURF (a 

variant of SURF that does not handle in-plane rotation), BRIEF, 

ZBRIEF (a variant of BRIEF that handles zoom motion typical 

in stiraight line forward and backup driving) and KLT on them. 

  

  

  
Figure 4 Sample frames from front (top left), back (top right), 

left (bottom left) and right (bottom right) sequences.  

 

We have used two metrics for evaluation: directional error 

(precision) and feature density (recall). To study the trade-off 

between precision and recall, we varies a single parameter that 

controls the “flood-gate” of the number of admitted feature 

pairs. For feature-based trackers, they all employ a descriptor 

that records the local intensity profile, SIFT and (U)SURF 

using localized gradient histograms and (Z)BRIEF using a 

localized random sampling pattern. SIFT’s descriptor is a 

vector of length 128, (U)SURF a vector of length 64,  and 

(Z)BRIEF’s descriptor can be 64, 128, or 256 bits long. Feature 

similarity is computed as the Euclidean distance between two 

SIFT and (U)SURF descriptors or the Hamming distance 

between two (Z)BRIEF descriptors.  

Our correspondence scheme requires matched feature pairs 

to share similar descriptors (small Euclidean or Hamming 

distance) and be unique (the best match should beat out the 

second best match by some preset margin). If this margin is set 

to, say, 0.7, this means that the feature distance of the best 

match must still be smaller than that of the second best, even if 

the second best is decreased by a factor of 0.7. Obviously, 

smaller (tighter) margins imply more unique matches (that the 

best match still stands out even if the errors of other potential 

matches are artificially lowered) and vice versa. Hence, to 

generate more matches, we simply relax or increase this margin 

(we have tried six different values, 0.7, 0.75, 0.8, 0.85, 0.9 and 

0.95 in our experiments). Then, for each parameter setting of 

each enhancement scheme, we record the average number of 

feature pairs obtained on the test sequences and the degree of 

discrepancy of these pairings to the appropriate epipolar 

constraints (either a pure translational motion for left and right 

mounted camera or a zoom in and out motion for a front and 

back mounted camera).  

For a flow-based tracker, KLT employs bi-directional 

tracking error as a quality metric. For a pair of frames, feature 

tracking can be initiated from either frame. If a feature is 

tracked from one frame to the other and back, discrepancy 

between the starting and end locations is used to measure 

consistency. Allowing large discrepancy admits more features.  

A. Baseline Study 

Figure 5 presents the baseline study on four cases: SIFT, SURF, 

USURF, and ZBRIEF. The baseline cases do not employ any 

enhancement mechanism, i.e., no magnitude thresholding, no 

regularization, and no median filtering is applied. The average 

precision (directional error) is shown in x and the average recall 

(number of feature correspondences per image pair) is shown 

in y. For each tracker, the matching margin varies from the 

tightest (0.7, marked as ‘o’) to the loosest (0.95, marked as ‘+’), 

with intermediate ones marked in ‘*’ and strung in a curve. 

Note that we have chosen to present the ZBRIEF results as 

ZRBIEF detector is designed for detecting a zoom in or zoom 

out flow, and hence, is well suited for a rear-view camera that 

is central to this study. Figure 6 shows sample tracking results 

graphically where the left column has the tightest margin (0.7) 

and the right column has the loosest margin (0.95) and from top 

to bottom are SIFT, SURF, USURF, and ZBRIEF.  

 

 
Figure 5 Baseline study where no enhancement mechanism is 

used. Four curves SIFT (red), SURF (blue), USURF (black), 

and ZBRIEF (green) are shown. For each curve, the tightest 

pairing margin (0.7) is marked as a circle (o), the loosest 

margin (0.95) marked as a plus (+), and intermediate margins 

are strung in a curve and marked as stars (*). 

  

A number of observations can be made on the results: (1) 

As the pairing margin is relaxed, the flow becomes denser 

(from left to right in Figure 6), (2) ZBRIEF (bottom row) 

produces much denser results than SIFT (top row), SURF (2nd 

top) and USURF (3rd top), (3) feature density on the 

homogeneous pavement is quite low, almost non-existent for 

SIFT at all matching margin levels. (U)SURF and ZBRIEF 

provide higher flow density on pavements, but the accuracy is 

visually poor, (4) the precision vs. recall trade-off holds for 

SIFT, SURF and USURF. As seen in Figure 5 these curves of 

relaxing margin grow from lower left to upper right, implying 



larger angular errors allow higher flow densities, and (5) it is 

slightly puzzling that the ZBRIEF curve (green) does not follow 

the trend – the directional error actually drops as the density 

increases. This abnormality could be explained by observing 

that, using a tighter threshold, few ZBRIEF features are 

matched resulting in a large flow. However, small flow vectors 

have much larger directional errors as shown in Eq. 2 [13]. With 

more relaxed thresholds, larger flow vectors are  detected which 

help with reducing the directional error.  

 

  

  

  

  
Figure 6 Sample baseline tracking results. Left column: the 

paring margin set at 0.7 (tightest) and right column: the paring 

margin set at 0.95 (loosest). From top to bottom: SIFT, SURF, 

USURF and ZBRIEF.  

B. Baseline + Regularization 

In order to understand how the three potential enhancement 

schemes help, we apply them independently, one at a time. We 

use four regularization factors, four median filter setting, and 

four magnitude thresholds. An exhaustive search would result 

in 64 possible combinations. Instead, we take a greedy 

approach. We apply these schemes sequentially. For each 

scheme used, we identify the best setting and then use that 

setting for the next scheme.  

The component that proves most beneficial, from our 

experience, is the in vitro regularization. Regularization is a 

well-established technique in computer vision [12]. In addition 

to appearance similarity and pairing uniqueness, we incorporate 

regularization using a penalty term. We add a positive penalty 

to the distance measure so as to decrease the likelihood of the 

pairing being used if the flow direction is wrong. This penalty 

is proportional to the misalignment in angles between the 

computed flow and the theoretical epipolar direction. Hence, 

the regularization factor is used in the tracker itself during the 

feature pairing phase, instead of being applied after-effect. 

Furthermore, using a penalty expression allows us to impose 

regularization on individual matches efficiently.  

Figure 7 shows the results using regularization on the four 

feature-based trackers. As seen in Figure 7, regularization helps 

to significantly reduce the directional errors in all four cases. 

Furthermore, the pairing densities maintain at roughly the same 

level even with the largest regularization factor (black lines in 

Figure 7). That is, the red curves (baseline) stays to the right of 

the green, blue and black curves (baseline + regularization), 

which indicates reduced directional errors. Furthermore, all 

these curves have roughly the same height, indicating 

approximately the same density at the corresponding 

parametric settings. The difference among regularization 

factors is actually not significant. We have used the factor of 2 

for SIFT and (U)SURF and 120 for ZBRIEF (the blue lines in 

Figure 7) in all later studies.  

 

  

  
Figure 7 Baseline + regularization study where four different 

regularization levels are used. Each subgraph contains four 

curves, with varying regularization factors (red, green, blue, 

and black). For each curve, the tightest margin (0.7) is marked 

as a circle (o), the loosest margin (0.95) marked as a plus (+), 

and intermediate margin values are strung in a curve and 

marked as stars (*). Top left: SIFT, top right: SURF, bottom 

left: USURF, bottom right: ZBRIEF.  

C. Baseline + Regularization + Median Filtering 

We perform median filtering by playing with the neighborhood 

size (from 20, 40 to 60 pixels across) and maximum number of 

neighbors used (from 5, 7 to 9) in the process. As seen in Figure 

8, the general trend is that median filter helps to reduce the 

directional errors in all trackers while maintaining the pairing 

densities at roughly the same level. That is, the red curves 



(baseline + regularization) stay to the right of the green, blue 

and black curves (baseline + regularization + median filtering), 

which indicates reduced directional errors. Furthermore, all 

these curves have roughly the same height, indicating 

approximately the same density at the corresponding 

parametric settings. The difference among median filters is not 

significant. We have used a median filter of size 60x60 and a 

maximum neighbors of 9 (the black curves in) in all later 

studies.  

 

  

  
Figure 8 Baseline + regularization + median filtering study 

where four different median filters were used. Each subgraph 

contains four curves, with median filter set to smallest (20x20 

and 5 neighbors most) to largest (60x60 with 9 neighbors 

most) in red, green, blue to black. For each curve, the tightest 

margin (0.7) is marked as a circle (o), the loosest margin 

(0.95) marked as a plus (+), and intermediate margin values 

are strung in a curve and marked as stars (*). 

D. Baseline + Regularization + Median Filtering + 

Magnitude Threshold 

A final mechanism is to threshold the flow magnitude and 

remove small flow vectors from consideration. The results are 

summarized in Figure 9. As seen in Figure 9, eliminating small 

vectors helps the accuracy, but the density drops as a result. We 

have settled on using a threshold value of 3.  

Using these enhancement mechanisms and their optimal 

values as identified, we process the same images shown in 

Figure 6 and depict the results graphically in Figure 10. The 

results shown in these two figures are in correspondence and 

the difference is that Figure 6 does not have any enhancement 

scheme applied while Figure 10 have all enhancements. The 

improvement from Figure 6 to  Figure 10 should be apparent to 

the naked eyes, demonstrating the effectiveness of the 

combination of the enhancement schemes for all trackers.  

The space limitation does not allow us to give an in-depth 

discussion of these mechanisms on flow-based trackers. Dense 

optical flow frameworks, such as that proposed in [8], already 

employ most of these mechanisms. Hence, it is puzzling why 

the resutlts are poor as shown in Figure 2. We do use these 

mechanisms with the KLT trackers and observe similar 

improvement as with the feature-based trackers.  

Finally, we address the issues of efficiency. None of these 

mechanisms – regularization, median filtering, and magnitude 

filtering – proves to be computationally expensive. 

Regularization can be an expensive proposition, if it is 

formulated as a global optimization framework [12]. We avoid 

such an overhead by proposing only a penalty term, which can 

be computed efficiently. Many of these mechanisms represent 

just a few extra lines in the tractor codes and take negligible 

time comparing to all other steps combined. Our estimate is that 

they add about 3% to 5% of the total run time, as the majority 

of the processing, e.g., for SIFT and SURF in pyramidal, scale-

space analysis, is done elsewhere.  

Based on the results, we recommend the use of ZBRIEF, as 

it produces results that have similar accuracy as SIFT and 

(U)SURF but with a feature density that is 4 times higher 

(Figure 9). Furthermore, we show that ZBRIEF is 5 to 6 times 

faster than SIFT and SURF in our other analysis [13]. Some 

more examples of using ZBRIEF on videos collected with  large 

lens distortion are shown in Figure 11. Finally, large stretching 

in lens distortion correction might have resulted in images with 

a low signal-to-noise ratio. An elaborate scheme like SIFT may 

describe the noise instead of the intrinsic pattern, that might 

explain its poor performance. 

 

  

  
Figure 9 Baseline + regularization + median filtering + flow 

magnitude threshold study where four different magnitude 

threshold were used. Each subgraph contains four curves, with 

magnitude threshold set to 0, 3, 5, 7 pixels in red, green, blue 

to black. For each curve, the tightest margin (0.7) is marked as 

a circle (o), the loosest margin (0.95) marked as a plus (+), 

and intermediate margin values are strung in a curve and 

marked as stars (*). 

IV.     CONCLUDING REMARKS 

This paper summarizes our research on feature tracking in 

the presence of large lens distortion for vehicular technology 

applications. We have conducted an extensive evaluation of 

many state-of-the-art trackers, identified their deficiency when 

applied to videos with large lens distortion, and proposed 

enhancement schemes for improvement based on a rigorous 

precision vs. recall analysis. Certainly, a robust back-over 



warning system may encompass many components; such an 

efficient and robust tracker should hopefully prove useful.  

  

  

  

  
Figure 10 Sample baseline + regularization + median filter + 

magnitude threshold tracking results. Left column: the paring 

margin set at 0.7 (tightest) and right column: the paring 

margin set at 0.95 (loosest). From top to bottom: SIFT, SURF, 

USURF and ZBRIEF. These figures are in one-to-one 

correspondence with those in Figure 6 to show the 

enhancement using our analysis.  
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Figure 11 More sample results using ZBRIEF. Left: with a 

tight margin and without any enhancement and right: with a 

loose margin and with all enhancements. First two rows are 

from a front-mounted camera with a zoom-out flow, 3rd row 

is from a back-mounted camera with a zoom-in flow and last 

row is from a side-mounted camera for a translational flow.  
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