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Abstract

We present a comparison study of five 3D modeling systems based on the structure-from-motion
principles (Bundler, Bundler+PMVS2, Project Photofly fromAutodesk, ARC 3D Web Service, and our
own). To ensure that the comparison is fair, we have includedonly those 3D modeling systems that are
available for use on the Web or locally in a binary format, andcomprise a complete, fully-automated
3D pipeline that leads from input images to 3D models, without any user intervention, and without data-
dependent parameter tuning. In addition to ground-truthed3D data, we have used a testbed comprising
over 100 data sets, with over three thousand images, representing a variety of 3D scenes, collected from
a large number of consumer-market digital cameras and camera phones of many makes/models, and
all without prior camera calibration, use of special equipment (tripod, lens, etc.) and lighting (laser
and structured light projection), and user training in image acquisition. In the paper, we introduce the
methodology of the comparison, justify the crucial choicesmade in the study, present the results, and
provide an analysis of these results.

1 Introduction

In this report, we present a comparison study of five 3D modeling systems (Bundler, Bundler+PMVS2,

Project Photofly from Autodesk, ARC 3D Web Service, and our own) based on the structure-from-motion

principles [18, 14]. The usage scenario we try to emulate in this study is that of a commercial 3D modeling

system that accepts 3D modeling requests from clients (Apple iphone, Android phone, PC, etc.) over the

Web, executes the 3D modeling pipeline on a back-end server,and returns the 3D model as a result. The

users (1) are not computer vision experts and cannot provideadditional information other than the photos

∗The manuscript is about 3D modeling. We have included many figures that depict 3D models constructed by a variety of
modeling systems in both discrete-point and textured-surface format. However, in order to appreciate the quality of a 3D model,
there is no substitution for examining such a model in 3D (instead of as a few 2D screen shots) . Hence, we strongly urge interested
readers to visit the Web site http://www.visualsize.com and browse the many demo and comparison results there.
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themselves, (2) are not willing to go through lengthy training, or purchase expensive cameras or specialized

photography equipment for building 3D models, (3) may be cost conscientious especially when connecting

to the back-end server through a mobile device where the usermay have to pay for the bandwidth usage (and

hence, no uploading large photos that tie up Web links for a long time), and (4) worst still, are accustomed

to the “instant gratification” Web experience, and hence, are impatient to get the results back.

While similar performance comparison has been attempted before [36, 38, 41], our study stands out by

performing “rubber-meets-the-road” validation tests that closely mimic what a commercial 3D modeling

system needs to accomplish in the real world. The novelty of our comparison study is thus three-fold:

(1) The comparison was performed by exercising the full 3D modeling pipelines, from input images all the

way to 3D models, instead of testing some isolated components in a 3D pipeline [38],

(2) In addition to the ground-truthed 3D data provided by [41], we have used over 100 data sets (122 to

be exact at the time of the submission of this manuscript), with over three thousand images, representing a

variety of 3D scenes, collected from a large number of consumer-market digital cameras and camera phones

of many makes/models, and all without prior camera calibration, use of special equipment (tripod, lens,

etc.) and lighting (laser and structured light projection), and user training in image acquisition (in contrast,

[36, 38, 41] have used small, calibrated data sets), and

(3) To ensure that the comparison is fair and the results do not depend on the details of implementation, we

have included only those 3D modeling systems that are available for use on the Web or locally in a binary

format; comprise a complete, fully-automated 3D pipeline that leads from input images to 3D models, with-

out any user intervention, and without data-dependent parameter tuning; and are able to perform the feats

using images of a reasonable size. Furthermore, a diligent Web search has unearthed no other 3D modeling

system that fits the comparison requirements, and hence, ourselection is believed to be comprehensive and

provides a holistic view of the state of the art.

A 3D computer model can have many applications in both the civilian and military sectors. While one

can generate 3D models using active sensing and structured lighting, a more economical way is to build

3D models using the images from billions of camera phones anddigital cameras in circulation today. The

general principle of such a 3D modeling enterprise is well established, and is alternately called structure-

from-motion (SfM) in the computer vision and computer graphics communities or simultaneous localization
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and mapping (SLAM) in the robotics community [18, 14, 10, 21].

Regardless of the nomenclature, the general principles of such a system are to exploit the locations and

correspondences of image features (points, corners, lines, or other high-level features) in multiple images to

infer the 3D feature locations and the camera poses. However, it is highly non-trivial to develop a robust,

efficient, and accurate 3D modeling system because going back from 2D images to 3D models is an ill-posed

problem [14], whose solution can be numerically unstable and sensitive to noise and outliers in the input

data. The level of difficulty can best be appreciated by observing that while textbooks have been written on

this subject almost 20 years ago [14], only in July of 2010 andafter 12 years of research, development, and

acquisition, was first such commercial system (Project Photofly from Autodesk) announced [4].

2 Comparison Methodology

We describe here some critical choices made in the study:

2.1 Selection of 3D Modeling Systems

(1) A 3D modeling system represents highly sophisticated software artifacts with many subtle details (e.g.,

our system involves a sequence of over 20 programs that perform a variety of functions from feature detec-

tion and matching, to structure and motion computation, andto texture mapping). Hence, it is not practical to

“reverse engineer” such software by studying the descriptions of such a system in published papers and then

re-implement the ideas from scratch. Without direct accessto the sources or the binaries, the comparison

opens itself to attack that the implementation is plainly wrong, or the parameters are not tuned properly.

(2) A 3D modeling system must be “complete” in the sense that it must be able to lead directly to 3D models

from input images. It is not our goal to compare isolated components of such a 3D pipeline. For example,

the comparison study reported in [38] has focused on multi-view stereo matching and texture mapping, but

assumes that ground-truth intrinsic and extrinsic camera parameters are available. In the real world, such

ground-truth data are not available, and hence, the comparison results on isolated processing components

do not properly reflect the performance of a whole pipeline onreal-world data.

(3) If a choice exists between the source and binary releasesof a 3D modeling system, we prefer using the

binary release to avoid the possibility that mistakes mightbe made in the compilation to cause a 3D pipeline
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to perform below its capabilities.

(4) The 3D modeling program should ideally have no end-user tunable parameters. If there are any such

parameters, there must be clear instructions on how these parameters should be set for different image

collections. This requirement is to avoid the criticism that a 3D program produces erroneous results because

of wrong parameter setting.

Based on the above requirements, we have selected five 3D modeling systems for comparison:

(1) Bundler [30] — which is the core of the Photo Tourism line of research [39, 40, 2, 15] at the University

of Washington (Drs. Snavely and Seitz) and Microsoft (Dr. Szeliski), arguably one of the best known R&D

projects in 3D modeling. The latest v0.4 binary release (released on April 10, 2010) was used.

(2) Bundler and PMVS2 combo [30, 17] — PMVS2 [17, 16] was developed by Drs. Furukawa and Ponce

at the University of Illinois. PMVS2 is a multi-view stereo software that takes a set of images and camera

parameters to reconstruct the 3D structure of an object or a scene visible in the images. As PMVS2 does

not perform the SfM computation, its primary purpose is to serve as a “post-processing” step to increase the

3D point-cloud density of an SfM engine, and in our comparison, Bundler. We have used the latest release

(updated on July 13, 2010) [17].

(3) Project Photofly from Autodesk [4] — Project Photofly is based on the technologies of RealViz, acquired

by Autodesk in 2008. RealViz was founded in 1998 with technologies acquired from INRIA’s RobotVis

Research Group, headed by Dr. Faugeras.

(4) ARC 3D Web Service [42, 3]—A Web-based 3D modeling service of Drs. Vergauwen and Van Gool of

KU Leuven.

(5) Our own 3D modeling program [23, 5, 7, 6]. We mention here that our system is based on the same SfM

principles as all others. We perform feature detection and matching, then use such feature correspondences

in a non-linear optimization computation to recover discrete 3D coordinates and the camera’s intrinsic and

extrinsic parameters, and finally, we perform texture mapping on the 3D point clouds to obtain the 3D surface

description. Some sample results of our system are shown in Fig. 1. Short movies of the 3D models of the

122 test data sets are available for viewing on the Web at: http://www.visualsize.com/3ddemo/index.php.

The situation is a lot like Web search: Google, Yahoo, Microsoft and many others are all doing it. The
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Figure 1: Sample results of our 3D modeling system. Each dataset is represented by one input image (left)
and one image of the 3D model (right). Short movies of the 3D models of the 122 test data sets are available
for viewing on the Web at: http://www.visualsize.com/3ddemo/index.php.
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underlying principles of crawling the Web, building index structures, calculating page ranks by popularity

and cross references, etc. are the same. But submitting the same query to different search engines, you

are liable to get different results back. So “the devil is in the details.” The same is true with SfM. The

general principle is beautifully exhibited in books like [18, 34, 43] and a careful perusal of many relevant

publications [39, 40, 2, 15, 42, 3, 17, 24, 16, 32, 33, 41] reveals more similarity than difference. Some

discussions on the accuracy of our modeling system and why our system performs much better than others

are presented in Sec. 4.

Finally, a diligent Web search has unearthed no other 3D modeling system that fits the comparison

requirements, and hence, our selection is believed to be quite comprehensive.1

2.2 Selection of Testbed Image Data

We have used as our testbed real-world image data gathered from consumer-market digital cameras and

camera phones of a variety of makes/models, with many of these images contributed from anonymous users

using cameras of an unknown origin. We have used over 100 datasets with over three thousand images.

These data sets comprise face/non-face sequences, soft/hard objects, shining/dull surfaces, complete/partial

descriptions, indoor/outdoor collections, and short (as few as 5 images)/long (as many as 130 images) se-

quences. These data sets were collected to be representative of a significant spectrum of possible 3D model-

ing applications (see Fig. 1 for sample results and our Website http://www.visualsize.com/3ddemo/index.php

for all 122 examples).

The most important reason for the testbed choice is practicality. Approximately one billion camera

phones and another 100 million digital cameras are sold worldwide each year. The wide availability means

that everyone with a digital camera or a camera phone can be a content producer. Furthermore, as these

cameras use a wide variety of lenses and CCD arrays in construction, it makes the comparison realistic and

mimicking what one would expect running a 3D modeling systemin the real world.

Furthermore, images with ground-truth 3D profiles are very expensive to gather. [38] uses the Stanford

Spherical Gantry to acquire images with ground-truth camera motion information, but the experimental

1A commercial system, TopoMap from 2d3 [1], is supposed to usethe SfM principle for reconstructing 3D topological maps
from images alone. However, repeated inquires to 2d3 on including TopoMap in our comparison study did not solicit a response.
Insight3D [26] is an open-source image-based 3D modeling software that is purported to automatically recover the camera’s optical
parameters and poses, along with a 3D point cloud of the scene. However, we were not able to get the software to run properlyon
our data sets and, again, repeated inquiries to the distributor of the software archive did not solicit a response.
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setup is most suitable for small 3D objects and only two data sets (Dino and Temple) were provided by [38].

Middlebury Stereo Datasets [9, 36] comprise only short sequences (up to 7 images) using a fixed linear

camera translation for all of them. These sequences are therefore more suitable for validating short-baseline

stereo algorithms, but are inappropriate for algorithms designed for wide-baseline SfM computation. [41]

uses LIDAR to acquire 3D data with the ground truth. It is an expensive proposition and only two such

ground-truthed data sets (Fountain and Herz-Jesu) were made publicly available. While we do use many of

these data sets in our comparison experiments and accuracy studies (Figs. 1, 4, 5, 6, 7 and 8), we augment

them with significantly more real-world data sets as described above.

Using real-world image data from consumer-market digital cameras/phones for comparison does raise

one serious issue, that is, no ground truth for the camera’s intrinsic and extrinsic parameters and for the

3D object structures is available. What we did was to compareonly the recovered 3D structural traits,

or more specifically, the density and quality of the 3D point clouds—which all five 3D modeling systems

produce as an intermediate step toward the final texture-mapped models. While the cloud density can be

easily quantified by counting the number of 3D points in a model, quality of a recovered 3D model can only

be judged by eye-balling the graphic display of that model—as no ground-truth data are available. While

judging quality by eye-balling may appearad hoc, such a qualitative evaluation is meaningful because

(1) Human eyes are actually very adept at judging, qualitatively, the correctness and proportionality of a 3D

structure, and an abundance of research from psychology [37] indicates that humans are experts at the task

of 3D visual reconstruction and evaluation. Furthermore, in Sec. 4, we do provide a more rigorous analysis

of the accuracy of our 3D modeling system using the two ground-truthed 3D data sets provided by [41].

(2) While one might argue that the 3D cloud density can be arbitrarily increased to make a 3D model appear

“dense,” and hence, tilt the scale in one’s favor, such an argument ignores an elementary tenet in pattern

recognition. Increasing the 3D cloud density necessitatesthe inclusion of more 2D features in the SfM

analysis. However, given the same input images, the amount of “information” therein is fixed. Hence,

including more 2D features invariably decreases the feature quality. This density vs. quality trade-off is

known as precision vs. recall in the database community and false-positive vs. false-negative in the pattern-

recognition community [13, 20]. That is, using more features runs the risks of including weak, ambiguous

features that cannot be matched reliably, and hence, introduces outliers into the computation and degrades

the robustness. All 3D modeling pipelines must therefore deliberately weigh the choice between 3D cloud
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density and quality. It is logically flawed to argue that one can increase the 3D cloud density blindly and

somehow be immune to this fundamental limitation of precision vs. recall.

(3) A more formal way to judge the quality of a reconstructed 3D model in the absence of the ground truth is

to compute the re-projection error [18]. Our algorithm produces an average re-projection error (per feature

for all images and all features) about 0.5 pixel (based on an input image size of 640× 480) for the data

sets shown in this paper. Unfortunately, such re-projection error information is not available for other 3D

programs, and hence, only qualitative comparison is possible. Furthermore, while one might argue that it

is possible that, for certain degenerate 3D configurations,multiple 3D feature positions and camera poses

may produce re-projected 2D features that match well with the image observations, in reality we believe that

such coincidence is extremely rarely—especially when a large number of images and tens and thousands of

features are involved.

2.3 Testing and Reporting

To ensure fairness in the comparison:

(1) When program run times are compared, the programs are executed on the same platform under the same

condition (the same number of CPU cores used with the same amount of memory, and without any hardware,

e.g, GPU, acceleration) so as not to give an unfair advantageto some2. Do note that Project Photofly and

ARC 3D Web Service provide only a client GUI to upload input images onto their cloud computing server

facilities for processing. The exact runtime is unknown andis not compared.

(2) We try to perform an “apples-to-apples” comparison. Hence, the factors used to judge the results must

be the common denominators of all these 3D modeling systems.Bundler and Bundler+PMVS2 combo do

not generate texture-mapped models. Even when texture-mapped models are generated (by Project Photofly

and our system), the systems may use very different algorithms. Fig. 2 shows that Project Photofly uses a

local, view-dependent splatting technique [22] for texture mapping. With a zero splat size, only discrete 3D

point clouds are displayed (left). As the splat size increases, progressively larger color patches are generated

around discrete 3D points to fill in the void (right). However, such a scheme will fail if the 3D cloud is not

dense enough to start with. As all such 3D modeling systems generate 3D point clouds as an intermediate

2We observed that Bundler and our system were set up to use a single CPU core in the computation. PMVS2 actually exploited
all CPU resources, and hence, PMVS2 could potentially run twice as fast on the dual-core machines we used in our comparison
study. However, we did not change the default execution script of PMVS2 for fear of breaking the codes.
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Figure 2: Auodesk’s Project Photofly uses a local splatting technique for texture mapping. As the size of the
splat increases from left to right, more 3D surface is generated.

result, and these results strongly influence the final texture-mapped models, we have chosen to compare the

density and quality of the 3D point clouds from the SfM computation.

(3) In our comparison study, a single control script is used for all data sets, with no per-data-set tuning

allowed. This is true for Bundler and Bundler+PMVS2 combo (the default scripts distributed with the

binary releases of Bundler and PMVS2 were used without modification), Project Photofly and ARC 3D

Web Service (no end-user tunable parameters are exposed on the client-side GUI), and our system. This is

to ensure that no accidental parameter tuning error could bias the results.

(5) One important choice in the comparison study is the inputimage resolution, and we have down sampled

input images to roughly the VGA size (640×480) for all testing data sets reported here. As mentioned

before, the goal of the comparison is to emulate, as closely as possible, what a commercial 3D modeling

system needs to accomplish in the real world. The most likelyscenario, we believe, is that such a system will

use a Software-as-a-Service (SaaS) model simiar to that of Autodesk Photofly and ARC3D Web Service.

The main reason is that the 3D modeling enterprise often involves lengthy computation, and, using even a

modest number of, say, 30 images, such a computation can easily tie up a computer for hours. Hence it is not

feasible to run such computation and resource intensive tasks on client computers with varying capabilities.

However, the bandwidth requirement for transmitting high-resolution image data from a client (a PC or

a mobile device) to a Web server can be costly—this is especially true for a mobile device communicating

through a wireless network and the user may have to pay for thebandwidth usage. For example, the two data

sets provided by [41], at the original resolution of 3072x2048, total 151MB for Herz-Jesu-P25 and 61MB

for Fountain-P11. Slow, unreliable uploads are particularly problematic for modeling tasks using a large

number of images, e.g., the UNC data set [44] shown in Fig. 4 with 128 3072x2048 images totals 222MB
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even with space-efficient JPEG encoding. It is extremely unlikely that an end user will be willing, or able,

to upload such large amounts of data onto a Web server. In fact, our first-hand experience with ARC3D

Web Service has been that it is next to impossible to maintainthe upload link long enough to upload large,

high-resolution data sets onto their server. And the few times the upload was successful, the server failed to

start properly or generated any results.

Furthermore, we have observed that arbitrarily increasingimages’ spatial resolution does not improve

the quality of the resulting 3D models. Quite the contrary, small details exhibited only in high-resolution

images are not stable. Hence, including such evanescent features can actually deteriorate the performance by

introducing outliers. This same sentiment that larger-scale features are more reliable and much more efficient

to process is also shared by David Lowe [25]. In fact, the demoversion of SIFT used in Bundler will not

run if the image resolution is higher than 1800 in any dimension. However, using an image resolution lower

than VGA often gives erratic results (true for all five systems). Our experience has been that VGA seems

to be a good compromise between quality and speed. We providesome concrete accuracy analysis data in

Sec. 4 to support this claim.

(4) We try to present as much data as possible. However, not all systems expose all quality measurements

(e.g., the re-projection error). Timing and density measurements are available only if we can run a 3D

modeling pipeline locally and if the outputs are in some public-domain format that is easily deciphered.

The above is true for Bundler and Bundler+PMVS2 combo, partially true for ARC 3D Web Service (no

runtime comparison but output in the public-domain OpenInventor format), and not true for Project Photofly

(no runtime comparison and output in Autodesk’s proprietary format). Hence, we perform mostly visual

comparison in the case of Project Photofly.

3 Procedures and Results

The test platform is a PC with a 2.8Ghz Intel Core 2 Duo CPU, 4G RAM, running Windows 7. The

experimental procedures are extremely straightforward: As all these 3D modeling systems need are input

images, all we did was to provide them with the input images and then wait for the computation to finish.

We feel that the simplicity of the procedures better ensuresfairness. We have used the binary releases of

these programs so we could not have compiled them incorrectly, we have used the default execution scripts

supplied with the releases without modification so we could not have tuned the parameters wrongly, and we
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have run these programs on the same machine using the same number of CPU cores, the same amount of

memory, and with no hardware acceleration. For Project Photofly and ARC 3D Web Service, the images

were uploaded to their servers on the Web and there is no end-user tunable parameters on their GUI.

Fig. 4 presents the results of running the five modeling systems on ten sample data sets. For all data sets,

the two images at top left are sample input images, the two at top right are our results, the two at middle left

are results of Bundler, the two at middle right are results ofBundler + PMVS2, the two at bottom left are

results of ARC 3D Web Service, and the two at bottom right are results of Autodesk’s Project Photofly. For

all data sets, the table below the graphic results shows the name and size of the data set, how many pictures

are processed, how many 3D points are generated, and the runtime for Bundler, Bundler+PMVS2, ARC 3D

Web Service, and our system. Note that as ARC 3D runs on their Web server, no time is recorded. No time

and density information is available for Project Photofly asthe modeling process is executed on Autodesk’s

cloud computing server and the results are in Autodesk’s proprietary format.

Results of Bundler, Bundler+PMVS2, and ARC 3D Web Service are presented in discrete point-cloud

format as these programs do not generate 3D texture-mapped models yet. We supplement texture-mapped

results for Project Photofly and our system if one point-cloud picture is enough to illustrate the density and

quality of such a discrete structure. Note that Bundler+PMVS2 display is Meshlab [27]. Photofly has its

own client GUI for display. We have used our home-brewed display programs for the results from Bundler,

ARC 3D Web Service, and our own system.

Of the ten data sets in Fig. 4, Lady, Flower and Soda Can were contributed from anonymous users,

Building was used by PMVS2 [17], Fountain was from [36], Temple Ring was used in [38], and UNC was

from [44]. The Lady data set is challenging because human faces are not strictly rigid. It takes about 30

seconds to take 10 to 20 pictures for constructing a head model. While the subject should be instructed not

to move or talk, small movements due to breathing are unavoidable. Such movements violate the rigidity

assumption used in the SfM and, as a result, all other systemsfailed for this data set except ours. (Photofly

was able to obtain visually pleasing 3D point clouds, but theerroneous texture-mapped model reveals the

deficiency in the cloud data.)

The Building data is also challenging because modern buildings often lack complicated, feature-rich

facades common of old buildings (e.g,. churches and cathedrals). Again, all other systems failed except

ours (Photofly constructed a “shrunk” 3D model which is structurally incorrect). It is unclear why Bundler
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and Bundler+PMVS2 failed—when the data set is used as an example in the PMVS2 distribution. We

surmise that different parameter settings might need be used in this case, and we were using the default

settings of Bundler and PMVS2 from the binary distributions.

For structures with more complicated facades (Church and Fountain), all systems performed reasonably

well and obtained qualitatively correct results. However,our systems produced much denser 3D clouds (2.7

times denser for Church and 3.4 times denser for Fountain than the best of the batch Bundler+PMVS2) and

was able to analyze more images in these sequences with a small increase in runtime. The NTU Gate depicts

a U-shaped structure of sharp curves. Furthermore, there were a few moving vehicles in some of the images.

Bundler, Bundler+PMVS2, and ARC 3D failed to generate reasonable results on this data set.

Yet another data set that depicts buildings is the UNC data set. It is a very large data set with 128 images.

These images represent a360o walk around of a building on the UNC campus. All systems did reasonably

well because the building surface is highly textured. However, ARC 3D failed to return a result and we did

not receive a response from ARC 3D explaining why this particular data set failed.

The Soda Can data set is difficult because of the specular and highly curved surface structures. All other

programs were able to analyze and recover less than half of the surface structures while we were able to

infer the 3D structures using all input images covering the whole360o.

The Temple Ring data were gathered using the Stanford Spherical Gantry and came with the ground-

truth camera pose data [38]. However, none of these systems has a way to take such data in the computation.

So to make the computation more realistic, we provided thesesystems only the images, but no ground-truth

camera pose data. Again, while all these systems arrived at qualitatively correct 3D models, our cloud

density is 4 times higher than the best.

The Flower data is interesting because of its highly irregular surfaces. When such surfaces are viewed

close-by, the appearance of surface features can change drastically even with a small change in the viewpoint,

which makes feature correspondences highly susceptible toerrors. While Bundler did recover the general

3D profile, post-processing by PMVS2 deteriorates the 3D structures—probably because PMVS2, being a

patch-based multi-view stereo system, prefers well definedsurface patches, which are absent in this data set.

This hypothesis is confirmed by noticing that the central flower region becomes empty while the planar 3D

structure of the background wall is enhanced after PMVS2 processing. In fact, similar things seem to have
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happened with the Lady data set too—PMVS2 enhanced the colortowel in the background but filtered out

3D points in the face. In any case, our system obtained a 3D cloud that is 14 times denser than Bundler and

Bundler+PMVS2 with a very small increase in runtime.

Finally, the Droopy data is very challenging. The surface ofthe stuffed animal is relatively homogeneous

and devoid of features. We tried to compensate for the lack offeatures by increasing the number of images

used (a total of 89 images). However, all systems did poorly for this particular data set, with reconstructed

3D structures suffering from a significant degree of missingdata (on the back of the stuffed animal). ARC

3D failed to generate any result at all. This data set probably demarcates the boundary of what is and is not

attainable for state-of-the-art, SfM-based, 3D modeling algorithms.

(a)

(b)

(c)

Figure 3: Pairwise comparison results. (a) Comparison results with Bundler: from left to right: a sample
input image, a screen shot of Bundler’s 3D model, a screen shot of our 3D model, and runtime and density
statistics, (b) comparison results with Bundler+PMVS2, from left to right: Bundler only, Bundler+PMVS2,
and our results, and (c) comparison results with Photofly: from left to right: Photofly’s 3D model, our 3D
model, and two models placed side-by-side.
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Pairwise Comparison: We have also conducted many more pairwise comparisons that compared the per-

formance of our system against Bundler (on 31 data sets), Bundler+PMVS2 (on 9 data sets), and Project

Photofly (on 54 data sets) individually. One example is shownfor each of the three cases (Bundler only,

Bundler+PMVS2, and Photofly) in Fig. 3. These comparison results are summarized in our Web page

Bundler only: http://www.visualsize.com/3ddemo/true3d/comparison/index.html

Bundler + PMVS2: http://www.visualsize.com/3ddemo/true3d/comparison/index.html#PMVS2

Photofly: http://www.visualsize.com/3Ddemo/comparison/index.html

As page limit does not allow us to show all these examples, andthe quality and accuracy of a 3D model

is best evaluated by viewing the model in 3D—instead of just afew screen shots, we strongly urge interested

readers to browse our Web site for more information.

4 Analysis and Concluding Remarks

In terms of cloud density and quality, and the chance of success, the test data indicated that ours outperforms

Project Photofly, which outperforms Bundler+PMVS2, which outperforms Bundler, and which outperforms

ARC 3D. This observation also confirms our experience with the much larger, over 100 data set ensemble.

We attempt to answer two questions that are likely to be in a reader’s mind: (1) How accurate is our

3D modeling system and (2) why our system seems to perform that much better that all others. Accuracy

analysis requires comparison with the ground truth. However, as mentioned before, our test datasets were

collected from a large number of consumer-market cameras and phones, and no ground-truth 3D profiles are

available. The Dino and Temple data sets used in [38] were gathered using the Stanford Spherical Gantry,

which provided the ground truth in the camera poses, but not in the 3D structures. Middlebury Stereo

Datasets [9, 36] comprise only short sequences (up to 7 images) using a fixed linear camera translation, and

hence, are not that interesting to us. To our best knowledge,[41] provides the only publicly available 3D

data sets with ground-truthed 3D profiles that used a generalcamera motion, and were specifically generated

to validate 3D modeling algorithms using the SfM principle.Ground-truth 3D profiles (gathered using

a LIDAR system) for two data sets, Fountain-P11 and Herz-Jesu-P25, are used in our accuracy analysis.

These data sets are available for download at: http://cvlab.epfl.ch/ strecha/multiview/denseMVS.html, and

were used in the following academic paper: [41].
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Evaluation Methodologies: We tried to emulate—as faithfully as possible—what a commercial 3D mod-

eling system needs to accomplish for a client submitting 3D modeling tasks through a Web-service model.

To this end:

• We down-sampled input images to the VGA size (640×480) for upload and processing (we do provide

data processed at a higher 2150×1434 resolution for reference). While the original images are of a very high

spatial resolution (3072×2048), it is unrealistic to expect that such high-resolution images will be available

in real-world scenarios. Again, uploading such high-resolution images to a back-end 3D server is a very

expensive proposition and is not feasible for most usage scenarios.

• We do not use any camera calibration data generated externally (i.e., we do not use the intrinsic or the

extrinsic camera parameters supplied with the images). Again, in the real-world application scenarios, such

intrinsic and extrinsic camera parameters are not available, and most, if not all, consumer-market digital

cameras and phones are not calibrated. A 3D modeling pipeline must be able to automatically calibrate the

intrinsic and extrinsic camera parameters using nothing but the input images, without any outside assistance.

• We have concentrated on the “end results” and ignored the “byproducts” of such 3D processing. That is,

our comparison is on the faithfulness of the 3D models, not onthe accuracy of the recovered intrinsic and

extrinsic camera parameters. We believe that in the consumer market, the end users are mainly interested

in the 3D models. Furthermore, we believe that the situationwhere a modeling system estimated erroneous

camera parameters but somehow still obtains correct 3D structures fortuitously is extremely unlikely (we

have never observed such a phenomenon).

To summarize, our methodologies are to exercise the full 3D modeling pipeline, leading from input

images directly to output 3D models, without any user intervention or parameter tuning, without using any

external calibration data (i.e., the camera’s intrinsic and extrinsic parameters) that are not embedded in the

input images themselves, and do all these using photos of a reasonable size (VGA). This is what we envision

a robust, commercial-grade 3D photo modeling system must beable to do.

Evaluation Procedures:We down-sampled the ground-truth data 20 times for comparison. Down-sampling

is necessary because the 3D ground-truth data uncompressedto 1GB for Fountain-P11 and 1.4GB for Herz-

Jesu-P25. Meshlab dumped core when opening such huge files. The file-size limitation was present even on

a state-of-the-art Windows 7 desktop with an Intel Core i-3 3.3GHz processor, 6GB of memory, and 1TB of
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Table 1: Accuracy Evaluation results

Data set Herz-Jesu-1 Fountain-1 Herz-Jesu-2 Fountain-2
# of images 25 11 25 11

spatial resolution 640× 480 640× 480 2150×1434 2150×1434
Runtime 11min 01sec 4min 30sec 59min 48sec 7min 12sec

# of 3D points 342,949 140,785 1,437,984 1,072,139
# of faces 735,419 315,195 2,781,106 2,107,543
max error 4.74% 5.07% 4.42% 1.92%

median error 0.62% 0.62% 0.44% 0.23%
average error 0.41% 0.44% 0.26% 0.17%

disk space. After our 3D pipeline finished generating 3D models from the input VGA images, these models

were aligned with the ground-truth models in a two-stage procedure:

We first used the manual alignment process provided by Meshlab [27] to roughly align our 3D models

with the ground-truth models. The alignment process consisted of loading both models into Meshlab, man-

ually specifying a small number of corresponding points in the two models to establish a rough alignment,

and then allowing Meshlab to refine the initial manual alignment using an iterative ICP algorithm.

After the models were roughly aligned as in the previous step, we loaded both models into our own

display program that allowed small x, y, z rotations and translations applied to the ground-truth models. We

applied such small translations and rotations interactively and eye-balled the display for the best qualitative

alignment results.

After models had been aligned, we computed an absolute errormeasure for each and every 3D point in

our 3D models. This error was the minimum distance from a 3D point in our models to the closest points in

the corresponding ground-truth models. We then computed a percentage error by dividing the absolute error

distance by the largest dimension of the ground-truth models in the x, y, or z direction.

Evaluation Results:Our modeling pipeline ran on a Windows 7 desktop with an IntelCore i-3 3.3GHz pro-

cessor, 6GB of memory, and 1TB of disk space. For each data set, we used two different spatial resolutions:

VGA and 2150×1434 (the latter for reference purpose). The runtime, density and accuracy statistics are

summarized in Table 1 and the 3D models are depicted graphically in Figs. 5 to 83. One can also download

3The reported run time in Table 1 for the Fountain data set was faster than that in Fig. 4 because we used a faster machine and
exploited the parallelism in our codes to speed up the processing.
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or view these models in 3D at http://www.visualsize.com/3ddemo/comparison/accuracy.html.

As can be seen in Table 1, our modeling algorithm was able to construct 3D models which confirmed

with the ground-truth models very well. The average error was less than 0.5%—and this error was computed

over hundreds of thousands of recovered 3D points. Increasing spatial resolution improves the accuracy only

marginally, but can lengthen the computation time significantly in the case of Herz-Jesu. Visual inspection

of Figs. 5 to 8 seems to indicate that the models are less complete at higher image resolution even when

more 3D points and surface patches were recovered and the model accuracy improves. This is probably due

to the more stringent feature analysis requirement put in place to filter out outliers that tend to arise from

matching unstable, evanescent fine-level features in high-resolution images.

Another obvious question is why our system seems to perform that much better than all others. We can

surmise how some performance gain came about by examining the published papers of Bundler, PMVS2,

and ARC 3D Web Service and contrasting the technical descriptions there with our own implementation.

But one caveat is that such an analysis can be superficial because the complexity of a 3D modeling system

cannot be fully appreciated without a detailed perusal of the source codes. However, we have never at-

tempted to understand the codes of Bundler and PMVS2 or tracetheir program executions, simply because

such an effort is too great and unnecessary for the purposes of comparison. The performance gain over

Project Photofly will most likely remain a mystery because Project Photofly is a commercial product with

IP shrouded in secrecy.4 We include it in the comparison because, after an exhaustiveWeb search, Project

Photofly is the only such commercial product based on the SfM currently available, the product team has a

prestigious pedigree (from the RobotVis Group at INRIA, headed by Dr. Olivier Faugeras), and from our

experience, it is a very mature and robust package.

In order to generate dense point clouds, it is necessary to have dense features to start with. Bundler

uses a demo version of SIFT from David Lowe [25] for detectingfeatures. However, the demo version

has a fixed feature detection threshold that cannot be changed by the end user. While the pre-set threshold

is reasonable for most data sets in our testbed, we can obtaineven denser image features by using feature

detectors such as FAST [35] and OpenCV [31]. These feature detectors come with adjustable parameters

that allow significantly denser features to the SfM computation than those from the demo version of SIFT.

4The authors did contact Project Photofly to inform Autodesk of our comparison results. However, no response has been
received so far.
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However, simply making features denser is not enough. Quality is as important as density, if not more

so. Using low-quality features blindly may increase the chance of erroneous correspondences and introduce

significantly more outliers, which make the solution process much less robust and stable. Again, this repre-

sents the fundamental trade-off between precision and recall. We have instituted two mechanisms to guard

against introducing outliers when using more features. Onemechanism is a pre-filtering process: We have

used the standard, normalized 8-point algorithm [19, 18] tocompute the structure and motion parameters.

The 8-point algorithm imposes the epipolar constraint between a pair of images in the form ofx′TFx = 0

whereF is the fundamental matrix andx andx′ are the normalized image coordinates in the homogeneous

form. Combined with RANSAC [18], the pre-filtering process provides a powerful mechanism to eliminate

outliers to maintain the stability of the computation.

A second mechanism is in the way we solve the core nonlinear optimization problem, commonly known

as sparse bundle adjustment, or SBA [18]. While Bundler has elected to use a public-domain SBA package

by Lourakis and Argyros [29, 28], we have implemented our ownversion of SBA. Furthermore, we have

used a different non-linear solver than the Levenberg-Marquardt (LM) used in [28], which is called the

Double Dog-Leg (DLL) method.

Both LM and DLL are variances of a general class of numerical methods called the Trust-Region Meth-

ods [8, 12]. Trust Region Methods combine gradient descent and Newton’s method [11] to find a local

minimum of the objective function from any initial point. The gradient descent method guarantees progress

towards a minimum but converges slowly, while Newton’s method converges quickly when near a local min-

imum but diverges otherwise. Trust Region Methods combine gradient descent and Newton’s method by

varying the trust region radius depending on each iteration’s success in reducing the value of the objective

function. When the current point is not near a minimum, the trust region radius is reduced, and short steps

are taken in the gradient direction to ensure progress. As a minimum is approached, the trust region radius

is increased and longer steps are taken in the Newton direction to converge quickly. The objective function

is modelled with a quadratic, and the trust region radius is adjusted to contain an area in which the model is

believed to accurately represent the objective function. In more detail, the steps taken at each iteration is

determined by

minsf(xc + s) = f(xc) + (∇f(xc))s+
1

2
sT (∇2f(xc))s, ||s|| ≤ δc (1)

wheref is the objective function,xc is the current point,δc is the current trust region radius,∇f is the
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gradient and∇2f is the Hessian. The optimal solution to the problem is shown to be [11]

s(µ) = −((∇2f(xc)) + µI)−1(∇f(xc)), ||s(µ)|| = δc (2)

whereI is the identity matrix andµ is chosen so that the length of the step is equal to the trust region radius.

LM variesµ as a parameter from iteration to iteration, rather than explicitly maintaining a trust region.

Because of this, the expensive solution in Eq. 2 must be recomputed every timeµ is changed. This can occur

multiple times for the same values of∇f and∇2f if several unsuccessful steps are attempted from the same

point. In fact, the optimal solution to Eq. 1 for varying the trust region size lies along a curved path starting

along the gradient direction and connecting to the Newton step [8]. DDL uses a 3-piece approximation to

this curve, which allows Eq. 2 to be solved many times for varying µ without needing to solve the entire

linear system again. This approximation leads to large improvement in both efficiency and accuracy over

LM, which may very well be an important factor of the improvedaccuracy and robustness in our pipeline.
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Lady: 10 images
Bundler Bundler + ARC 3D Ours

PMVS2
Pic processed 4 4 6 10
# 3D points 467 2,428 148 10,810
Run time 0:39 0:58 - 2:00

Figure 4: For all data sets in this figure, the two images at topleft are sample input images, the two at
top right are our results, the two at middle left are results of Bundler, the two at middle right are results of
Bundler + PMVS2, the two at bottom left are results of ARC 3D Web Service, and the two at bottom right
are results of Autodesk’s Project Photofly. For all data sets, the table below the graphic results shows the
name and size of the data set, how many pictures are processed, how many 3D points are generated, and the
runtime for Bundler, Bundler+PMVS2, ARC 3D Web Service, andour system.This figure continues onto
the following 5 pages.

September, 2011



Technical Report, Visualsize Inc. TR 2011-01 24

No output No output

No output No output

Building: 61 images
Bundler Bundler + ARC 3D Ours

PMVS2
Pic processed 11 11 0 61
# 3D points 384 0 0 112,762
Run time 4:00 4:16 - 20:25
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Church: 24 images
Bundler Bundler + ARC 3D Ours

PMVS2
Pic processed 5 5 24 24
# 3D points 1,643 14,315 3,812 38,796
Run time 3:00 7:24 - 10:03

Fountain: 11 images
Bundler Bundler + ARC 3D Ours

PMVS2
Pic processed 5 5 11 11
# 3D points 604 7,221 1,025 132,670
Run time 0:55 1:30 - 6:05
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NTU Gate: 34 images
Bundler Bundler + ARC 3D Ours

PMVS2
Pic processed 11 11 6 34
# 3D points 618 793 117 64,046
Run time 3:18 3:31 - 8:58

No output No output

UNC: 128 images
Bundler Bundler + ARC 3D Ours

PMVS2
Pic processed 53 53 0 85
# 3D points 18,516 95,440 0 191,054
Run time 42:16 59:34 - 77:23

September, 2011



Technical Report, Visualsize Inc. TR 2011-01 27

Soda Bottle: 46 images
Bundler Bundler + ARC 3D Ours

PMVS2
Pic processed 18 18 35 46
# 3D points 6,214 27,221 2,473 75,275
Run time 5:48 11:07 - 11:18

Temple Ring: 47 images
Bundler Bundler + ARC 3D Ours

PMVS2
Pic processed 22 22 37 47
# 3D points 1,766 8,705 2,407 33,988
Run time 3:16 5:35 - 18:22
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Flower: 7 images
Bundler Bundler + ARC 3D Ours

PMVS2
Pic processed 5 5 5 7
# 3D points 1,054 1,162 107 16,180
Run time 0:51 0:59 - 1:48

No output No output

Droopy: 89 images
Bundler Bundler + ARC 3D Ours

PMVS2
Pic processed 38 38 0 61
# 3D points 3,398 53,428 0 61,752
Run time 6:00 19:33 - 30:04
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Figure 5: Herz-Jesu-P25 data sets processed at the VGA resolution. Left two on the top row: our re-
sults. Right two on the top row: ground truth. The bottom row displays both our model and the
ground truth registered in a common reference frame. Short movies of these models can be viewed at
http://www.visualsize.com/3ddemo/comparison/accuracy.html.

Figure 6: Fountain-P11 data sets processed at the VGA resolution. Left two on the top row: our re-
sults. Right two on the top row: ground truth. The bottom row displays both our model and the
ground truth registered in a common reference frame. Short movies of these models can be viewed at
http://www.visualsize.com/3ddemo/comparison/accuracy.html.
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Figure 7: Herz-Jesu-P25 data sets processed at the 2150×1434 resolution. Left two on the top row:
our results. Right two on the top row: ground truth. The bottom row displays both our model and the
ground truth registered in a common reference frame. Short movies of these models can be viewed at
http://www.visualsize.com/3ddemo/comparison/accuracy.html.

Figure 8: Fountain-P11 data sets processed at the 2150×1434 resolution. Left two on the top row: our
results. Right two on the top row: ground truth. The bottom row displays both our model and the
ground truth registered in a common reference frame. Short movies of these models can be viewed at
http://www.visualsize.com/3ddemo/comparison/accuracy.html.
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