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Abstract

We present a comparison study of five 3D modeling systemsdbaisehe structure-from-motion
principles (Bundler, Bundler+PMVS2, Project Photofly frémtodesk, ARC 3D Web Service, and our
own). To ensure that the comparison is fair, we have includey those 3D modeling systems that are
available for use on the Web or locally in a binary format, anthprise a complete, fully-automated
3D pipeline that leads from input images to 3D models, witteoy user intervention, and without data-
dependent parameter tuning. In addition to ground-trugizdata, we have used a testbed comprising
over 100 data sets, with over three thousand images, refiega variety of 3D scenes, collected from
a large number of consumer-market digital cameras and eaptesnes of many makes/models, and
all without prior camera calibration, use of special equgpin(tripod, lens, etc.) and lighting (laser
and structured light projection), and user training in imagquisition. In the paper, we introduce the
methodology of the comparison, justify the crucial choinesde in the study, present the results, and
provide an analysis of these results.

1 Introduction

In this report, we present a comparison study of five 3D madediystems (Bundler, Bundler+PMVS2,
Project Photofly from Autodesk, ARC 3D Web Service, and ounhbased on the structure-from-motion
principles [18, 14]. The usage scenario we try to emulatlisdtudy is that of a commercial 3D modeling
system that accepts 3D modeling requests from clients @jpblone, Android phone, PC, etc.) over the
Web, executes the 3D modeling pipeline on a back-end samdrreturns the 3D model as a result. The

users (1) are not computer vision experts and cannot praddéional information other than the photos

*The manuscript is about 3D modeling. We have included manydgythat depict 3D models constructed by a variety of
modeling systems in both discrete-point and texturedaserformat. However, in order to appreciate the quality oban®del,
there is no substitution for examining such a model in 3Dtéiad of as a few 2D screen shots) . Hence, we strongly urge#téel
readers to visit the Web site http://www.visualsize.cord browse the many demo and comparison results there.
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themselves, (2) are not willing to go through lengthy tradnior purchase expensive cameras or specialized
photography equipment for building 3D models, (3) may be coascientious especially when connecting
to the back-end server through a mobile device where themaghave to pay for the bandwidth usage (and
hence, no uploading large photos that tie up Web links fong kime), and (4) worst still, are accustomed

to the “instant gratification” Web experience, and hence,mpatient to get the results back.

While similar performance comparison has been attemptéddof836, 38, 41], our study stands out by
performing “rubber-meets-the-road” validation testst ttlasely mimic what a commercial 3D modeling

system needs to accomplish in the real world. The noveltyuotomparison study is thus three-fold:

(1) The comparison was performed by exercising the full 3Rleliog pipelines, from input images all the

way to 3D models, instead of testing some isolated comperierat 3D pipeline [38],

(2) In addition to the ground-truthed 3D data provided by][4te have used over 100 data sets (122 to
be exact at the time of the submission of this manuscripth awer three thousand images, representing a
variety of 3D scenes, collected from a large number of comstmmarket digital cameras and camera phones
of many makes/models, and all without prior camera calibnatuse of special equipment (tripod, lens,
etc.) and lighting (laser and structured light projectjam)d user training in image acquisition (in contrast,

[36, 38, 41] have used small, calibrated data sets), and

(3) To ensure that the comparison is fair and the results tidemend on the details of implementation, we
have included only those 3D modeling systems that are délaifar use on the Web or locally in a binary
format; comprise a complete, fully-automated 3D pipelima teads from input images to 3D models, with-
out any user intervention, and without data-dependentnpeter tuning; and are able to perform the feats
using images of a reasonable size. Furthermore, a diligett 8&arch has unearthed no other 3D modeling
system that fits the comparison requirements, and hencsgtagtion is believed to be comprehensive and

provides a holistic view of the state of the art.

A 3D computer model can have many applications in both thiéarivand military sectors. While one
can generate 3D models using active sensing and structigtgthg), a more economical way is to build
3D models using the images from billions of camera phonesdagithl cameras in circulation today. The
general principle of such a 3D modeling enterprise is weatidshed, and is alternately called structure-

from-motion (SfM) in the computer vision and computer griapltommunities or simultaneous localization
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and mapping (SLAM) in the robotics community [18, 14, 10,.21]

Regardless of the nomenclature, the general principlesabf a system are to exploit the locations and
correspondences of image features (points, corners, inesher high-level features) in multiple images to
infer the 3D feature locations and the camera poses. Howievehighly non-trivial to develop a robust,
efficient, and accurate 3D modeling system because goirgftian 2D images to 3D models is an ill-posed
problem [14], whose solution can be numerically unstableé sensitive to noise and outliers in the input
data. The level of difficulty can best be appreciated by atisgrthat while textbooks have been written on
this subject almost 20 years ago [14], only in July of 2010 afiter 12 years of research, development, and

acquisition, was first such commercial system (Project ¢flyotrom Autodesk) announced [4].

2 Comparison Methodology

We describe here some critical choices made in the study:
2.1 Selection of 3D Modeling Systems

(1) A 3D modeling system represents highly sophisticatdtiveoe artifacts with many subtle details (e.g.,
our system involves a sequence of over 20 programs thatrpegwariety of functions from feature detec-
tion and matching, to structure and motion computation tanexture mapping). Hence, itis not practical to
“reverse engineer” such software by studying the desonptbf such a system in published papers and then
re-implement the ideas from scratch. Without direct acteske sources or the binaries, the comparison

opens itself to attack that the implementation is plainlpmg, or the parameters are not tuned properly.

(2) A 3D modeling system must be “complete” in the sense thaust be able to lead directly to 3D models
from input images. It is not our goal to compare isolated congmts of such a 3D pipeline. For example,
the comparison study reported in [38] has focused on midtinstereo matching and texture mapping, but
assumes that ground-truth intrinsic and extrinsic camarameters are available. In the real world, such
ground-truth data are not available, and hence, the cosgraresults on isolated processing components

do not properly reflect the performance of a whole pipelineeat-world data.

(3) If a choice exists between the source and binary relezsfseS8D modeling system, we prefer using the

binary release to avoid the possibility that mistakes mipghinade in the compilation to cause a 3D pipeline
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to perform below its capabilities.

(4) The 3D modeling program should ideally have no end-usealile parameters. If there are any such
parameters, there must be clear instructions on how thasenpters should be set for different image
collections. This requirement is to avoid the criticismtth@D program produces erroneous results because

of wrong parameter setting.
Based on the above requirements, we have selected five 30ingdgstems for comparison:

(1) Bundler [30] — which is the core of the Photo Tourism life@search [39, 40, 2, 15] at the University
of Washington (Drs. Snavely and Seitz) and Microsoft (DelSki), arguably one of the best known R&D
projects in 3D modeling. The latest v0.4 binary releaseéstd on April 10, 2010) was used.

(2) Bundler and PMVS2 combo [30, 17] — PMVS2 [17, 16] was depel by Drs. Furukawa and Ponce
at the University of lllinois. PMVS2 is a multi-view stereofsvare that takes a set of images and camera
parameters to reconstruct the 3D structure of an object oemesvisible in the images. As PMVS2 does
not perform the SfM computation, its primary purpose is tovs@s a “post-processing” step to increase the
3D point-cloud density of an SfM engine, and in our comparjddundler. We have used the latest release

(updated on July 13, 2010) [17].

(3) Project Photofly from Autodesk [4] — Project Photofly isbd on the technologies of RealViz, acquired
by Autodesk in 2008. RealViz was founded in 1998 with tecbgiEs acquired from INRIA'S RobotVis

Research Group, headed by Dr. Faugeras.

(4) ARC 3D Web Service [42, 3] —A Web-based 3D modeling sena€Drs. Vergauwen and Van Gool of

KU Leuven.

(5) Our own 3D modeling program [23, 5, 7, 6]. We mention hbi bur system is based on the same SfM
principles as all others. We perform feature detection aatthing, then use such feature correspondences
in a non-linear optimization computation to recover digef@D coordinates and the camera’s intrinsic and
extrinsic parameters, and finally, we perform texture magpin the 3D point clouds to obtain the 3D surface
description. Some sample results of our system are showigiri FShort movies of the 3D models of the

122 test data sets are available for viewing on the Web at:/fttvw.visualsize.com/3ddemo/index.php.

The situation is a lot like Web search: Google, Yahoo, Miofband many others are all doing it. The
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Figure 1. Sample results of our 3D modeling system. Eachgktes represented by one input image (left)
and one image of the 3D model (right). Short movies of the 3D ewof the 122 test data sets are available

for viewing on the Web at: http://www.visualsize.com/3du®index.php.
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underlying principles of crawling the Web, building indexugtures, calculating page ranks by popularity
and cross references, etc. are the same. But submittingathe query to different search engines, you
are liable to get different results back. So “the devil ishe tetails.” The same is true with SfM. The
general principle is beautifully exhibited in books likeB[134, 43] and a careful perusal of many relevant
publications [39, 40, 2, 15, 42, 3, 17, 24, 16, 32, 33, 41] akvenore similarity than difference. Some
discussions on the accuracy of our modeling system and whgystem performs much better than others

are presented in Sec. 4.

Finally, a diligent Web search has unearthed no other 3D fimgdeystem that fits the comparison

requirements, and hence, our selection is believed to lle qoimprehensivé.

2.2 Selection of Testbed Image Data

We have used as our testbed real-world image data gathemedcionsumer-market digital cameras and
camera phones of a variety of makes/models, with many oétimeages contributed from anonymous users
using cameras of an unknown origin. We have used over 100se#dawith over three thousand images.
These data sets comprise face/non-face sequences, sbtiijacts, shining/dull surfaces, complete/partial
descriptions, indoor/outdoor collections, and short &g &s 5 images)/long (as many as 130 images) se-
guences. These data sets were collected to be represemtizisignificant spectrum of possible 3D model-
ing applications (see Fig. 1 for sample results and our Viehstip://www.visualsize.com/3ddemo/index.php

for all 122 examples).

The most important reason for the testbed choice is prditficaApproximately one billion camera
phones and another 100 million digital cameras are solddwadle each year. The wide availability means
that everyone with a digital camera or a camera phone can batart producer. Furthermore, as these
cameras use a wide variety of lenses and CCD arrays in cotistruit makes the comparison realistic and

mimicking what one would expect running a 3D modeling sysitethe real world.

Furthermore, images with ground-truth 3D profiles are vemeasive to gather. [38] uses the Stanford

Spherical Gantry to acquire images with ground-truth cammaotion information, but the experimental

1A commercial system, TopoMap from 2d3 [1], is supposed totheeSfM principle for reconstructing 3D topological maps
from images alone. However, repeated inquires to 2d3 omdivay) TopoMap in our comparison study did not solicit a reseo
Insight3D [26] is an open-source image-based 3D modeliftgvace that is purported to automatically recover the casesptical
parameters and poses, along with a 3D point cloud of the s¢¢émeever, we were not able to get the software to run propatly
our data sets and, again, repeated inquiries to the digiribéithe software archive did not solicit a response.
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setup is most suitable for small 3D objects and only two detts @ino and Temple) were provided by [38].
Middlebury Stereo Datasets [9, 36] comprise only short sages (up to 7 images) using a fixed linear
camera translation for all of them. These sequences areftihermore suitable for validating short-baseline
stereo algorithms, but are inappropriate for algorithmsigieed for wide-baseline SfM computation. [41]
uses LIDAR to acquire 3D data with the ground truth. It is apemsive proposition and only two such
ground-truthed data sets (Fountain and Herz-Jesu) were madicly available. While we do use many of
these data sets in our comparison experiments and accutatigss(Figs. 1, 4, 5, 6, 7 and 8), we augment

them with significantly more real-world data sets as descrifbove.

Using real-world image data from consumer-market digitaheras/phones for comparison does raise
one serious issue, that is, no ground truth for the camemé&ri;isic and extrinsic parameters and for the
3D object structures is available. What we did was to compaltg the recovered 3D structural traits,
or more specifically, the density and quality of the 3D poiouds—which all five 3D modeling systems
produce as an intermediate step toward the final texturggethmodels. While the cloud density can be
easily quantified by counting the number of 3D points in a nhagleality of a recovered 3D model can only
be judged by eye-balling the graphic display of that moded-ra ground-truth data are available. While

judging quality by eye-balling may appead hog such a qualitative evaluation is meaningful because

(1) Human eyes are actually very adept at judging, qualébti the correctness and proportionality of a 3D
structure, and an abundance of research from psychologyri@i¢cates that humans are experts at the task
of 3D visual reconstruction and evaluation. FurthermaneSéc. 4, we do provide a more rigorous analysis

of the accuracy of our 3D modeling system using the two gretamithed 3D data sets provided by [41].

(2) While one might argue that the 3D cloud density can berarnidy increased to make a 3D model appear
“dense,” and hence, tilt the scale in one’s favor, such anragnt ignores an elementary tenet in pattern
recognition. Increasing the 3D cloud density necessitdtesnclusion of more 2D features in the SfM
analysis. However, given the same input images, the amdufimformation” therein is fixed. Hence,
including more 2D features invariably decreases the feaguiality. This density vs. quality trade-off is
known as precision vs. recall in the database community aisd-positive vs. false-negative in the pattern-
recognition community [13, 20]. That is, using more feasunens the risks of including weak, ambiguous
features that cannot be matched reliably, and hence, intesdoutliers into the computation and degrades

the robustness. All 3D modeling pipelines must therefolldedrtely weigh the choice between 3D cloud
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density and quality. It is logically flawed to argue that or@ éncrease the 3D cloud density blindly and

somehow be immune to this fundamental limitation of precisis. recall.

(3) A more formal way to judge the quality of a reconstruct&ln3odel in the absence of the ground truth is
to compute the re-projection error [18]. Our algorithm proels an average re-projection error (per feature
for all images and all features) about 0.5 pixel (based omputiimage size of 64& 480) for the data
sets shown in this paper. Unfortunately, such re-projactioor information is not available for other 3D
programs, and hence, only qualitative comparison is plesskurthermore, while one might argue that it
is possible that, for certain degenerate 3D configurationgfiple 3D feature positions and camera poses
may produce re-projected 2D features that match well wighintiage observations, in reality we believe that
such coincidence is extremely rarely—especially whengelaumber of images and tens and thousands of

features are involved.

2.3 Testing and Reporting

To ensure fairness in the comparison:

(1) When program run times are compared, the programs aceitexcon the same platform under the same
condition (the same number of CPU cores used with the samergrabmemory, and without any hardware,
e.g, GPU, acceleration) so as not to give an unfair advaritagemé&. Do note that Project Photofly and
ARC 3D Web Service provide only a client GUI to upload inputipes onto their cloud computing server

facilities for processing. The exact runtime is unknown exaot compared.

(2) We try to perform an “apples-to-apples” comparison. t¢erthe factors used to judge the results must
be the common denominators of all these 3D modeling systBwsdler and Bundler+PMVS2 combo do
not generate texture-mapped models. Even when texturpedapodels are generated (by Project Photofly
and our system), the systems may use very different algasiti-ig. 2 shows that Project Photofly uses a
local, view-dependent splatting technique [22] for tegtarapping. With a zero splat size, only discrete 3D
point clouds are displayed (left). As the splat size incesaprogressively larger color patches are generated
around discrete 3D points to fill in the void (right). Howevsuch a scheme will fail if the 3D cloud is not

dense enough to start with. As all such 3D modeling systemesrgée 3D point clouds as an intermediate

2\We observed that Bundler and our system were set up to usgla §IRU core in the computation. PMVS2 actually exploited
all CPU resources, and hence, PMVS2 could potentially ruoetas fast on the dual-core machines we used in our compariso
study. However, we did not change the default executiompsofiPMVS2 for fear of breaking the codes.
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Figure 2: Auodesk’s Project Photofly uses a local splatéognique for texture mapping. As the size of the
splat increases from left to right, more 3D surface is gdrdra

result, and these results strongly influence the final textwapped models, we have chosen to compare the

density and quality of the 3D point clouds from the SfM congpiain.

(3) In our comparison study, a single control script is usadall data sets, with no per-data-set tuning
allowed. This is true for Bundler and Bundler+PMVS2 comboe(tefault scripts distributed with the
binary releases of Bundler and PMVS2 were used without nuadifin), Project Photofly and ARC 3D
Web Service (no end-user tunable parameters are exposée chent-side GUI), and our system. This is

to ensure that no accidental parameter tuning error coaklthe results.

(5) One important choice in the comparison study is the impage resolution, and we have down sampled
input images to roughly the VGA size (64@80) for all testing data sets reported here. As mentioned
before, the goal of the comparison is to emulate, as closelyoasible, what a commercial 3D modeling
system needs to accomplish in the real world. The most likednario, we believe, is that such a system will
use a Software-as-a-Service (SaaS) model simiar to thattwfd&sk Photofly and ARC3D Web Service.
The main reason is that the 3D modeling enterprise ofteriiegdengthy computation, and, using even a
modest number of, say, 30 images, such a computation cdy tasip a computer for hours. Hence it is not

feasible to run such computation and resource intensiks @ client computers with varying capabilities.

However, the bandwidth requirement for transmitting highelution image data from a client (a PC or
a mobile device) to a Web server can be costly—this is eslhetiae for a mobile device communicating
through a wireless network and the user may have to pay fdrahdwidth usage. For example, the two data
sets provided by [41], at the original resolution of 30724&0total 151MB for Herz-Jesu-P25 and 61MB
for Fountain-P11. Slow, unreliable uploads are parti¢dylproblematic for modeling tasks using a large

number of images, e.g., the UNC data set [44] shown in Fig.th 428 3072x2048 images totals 222MB
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even with space-efficient JPEG encoding. It is extremelikalyl that an end user will be willing, or able,
to upload such large amounts of data onto a Web server. Indactfirst-hand experience with ARC3D
Web Service has been that it is next to impossible to mainteirupload link long enough to upload large,
high-resolution data sets onto their server. And the fevesitme upload was successful, the server failed to

start properly or generated any results.

Furthermore, we have observed that arbitrarily increasimges’ spatial resolution does not improve
the quality of the resulting 3D models. Quite the contrangal details exhibited only in high-resolution
images are not stable. Hence, including such evanesceatde@an actually deteriorate the performance by
introducing outliers. This same sentiment that largetesteatures are more reliable and much more efficient
to process is also shared by David Lowe [25]. In fact, the deereion of SIFT used in Bundler will not
run if the image resolution is higher than 1800 in any dimemsHowever, using an image resolution lower
than VGA often gives erratic results (true for all five sys&¢mOur experience has been that VGA seems
to be a good compromise between quality and speed. We preuide concrete accuracy analysis data in

Sec. 4 to support this claim.

(4) We try to present as much data as possible. However, heysiems expose all quality measurements
(e.g., the re-projection error). Timing and density measwents are available only if we can run a 3D
modeling pipeline locally and if the outputs are in some mutlbmain format that is easily deciphered.
The above is true for Bundler and Bundler+PMVS2 combo, alytirue for ARC 3D Web Service (no
runtime comparison but output in the public-domain Opeeivior format), and not true for Project Photofly
(no runtime comparison and output in Autodesk’s propriefarmat). Hence, we perform mostly visual

comparison in the case of Project Photofly.

3 Procedures and Results

The test platform is a PC with a 2.8Ghz Intel Core 2 Duo CPU, 4&8MRrunning Windows 7. The
experimental procedures are extremely straightforwarsl:al\these 3D modeling systems need are input
images, all we did was to provide them with the input images then wait for the computation to finish.
We feel that the simplicity of the procedures better enstagaess. We have used the binary releases of
these programs so we could not have compiled them incoyreatl have used the default execution scripts

supplied with the releases without modification so we coulchave tuned the parameters wrongly, and we
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have run these programs on the same machine using the sanbemofCPU cores, the same amount of
memory, and with no hardware acceleration. For Projectd?lyoind ARC 3D Web Service, the images

were uploaded to their servers on the Web and there is no sgrdiwnable parameters on their GUI.

Fig. 4 presents the results of running the five modeling systen ten sample data sets. For all data sets,
the two images at top left are sample input images, the twapatght are our results, the two at middle left
are results of Bundler, the two at middle right are resultBwhdler + PMVS2, the two at bottom left are
results of ARC 3D Web Service, and the two at bottom right eselits of Autodesk’s Project Photofly. For
all data sets, the table below the graphic results showsaimerand size of the data set, how many pictures
are processed, how many 3D points are generated, and tlimeuot Bundler, Bundler+PMVS2, ARC 3D
Web Service, and our system. Note that as ARC 3D runs on thelir 8§rver, no time is recorded. No time
and density information is available for Project Photoflytes modeling process is executed on Autodesk’s

cloud computing server and the results are in Autodesk’pretary format.

Results of Bundler, Bundler+PMVS2, and ARC 3D Web Servieeesented in discrete point-cloud
format as these programs do not generate 3D texture-mappdédisnyet. We supplement texture-mapped
results for Project Photofly and our system if one point-g@lpicture is enough to illustrate the density and
quality of such a discrete structure. Note that Bundler+F\display is Meshlab [27]. Photofly has its
own client GUI for display. We have used our home-brewedldisprograms for the results from Bundler,

ARC 3D Web Service, and our own system.

Of the ten data sets in Fig. 4, Lady, Flower and Soda Can wenrgilooted from anonymous users,
Building was used by PMVS2 [17], Fountain was from [36], TéenRing was used in [38], and UNC was
from [44]. The Lady data set is challenging because humagsface not strictly rigid. It takes about 30
seconds to take 10 to 20 pictures for constructing a head Indfele the subject should be instructed not
to move or talk, small movements due to breathing are unatted Such movements violate the rigidity
assumption used in the SfM and, as a result, all other sydigited for this data set except ours. (Photofly
was able to obtain visually pleasing 3D point clouds, butdheneous texture-mapped model reveals the

deficiency in the cloud data.)

The Building data is also challenging because modern Imgjiglioften lack complicated, feature-rich
facades common of old buildings (e.g,. churches and catl®drAgain, all other systems failed except

ours (Photofly constructed a “shrunk” 3D model which is sualy incorrect). It is unclear why Bundler
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and Bundler+PMVS2 failed—when the data set is used as anp&amthe PMVS2 distribution. We
surmise that different parameter settings might need be usthis case, and we were using the default

settings of Bundler and PMVS2 from the binary distributions

For structures with more complicated facades (Church andtai), all systems performed reasonably
well and obtained qualitatively correct results. Howewelr, systems produced much denser 3D clouds (2.7
times denser for Church and 3.4 times denser for Fountamttiebest of the batch Bundler+PMVS2) and
was able to analyze more images in these sequences withldreredse in runtime. The NTU Gate depicts
a U-shaped structure of sharp curves. Furthermore, theeaview moving vehicles in some of the images.

Bundler, Bundler+PMVS2, and ARC 3D failed to generate raabte results on this data set.

Yet another data set that depicts buildings is the UNC datdtss a very large data set with 128 images.
These images represens@)® walk around of a building on the UNC campus. All systems dabsomably
well because the building surface is highly textured. HmwvexRC 3D failed to return a result and we did

not receive a response from ARC 3D explaining why this paldicdata set failed.

The Soda Can data set is difficult because of the specularighly lsurved surface structures. All other
programs were able to analyze and recover less than haledufface structures while we were able to

infer the 3D structures using all input images covering thee360°.

The Temple Ring data were gathered using the Stanford S@h&antry and came with the ground-
truth camera pose data [38]. However, none of these systag Wway to take such data in the computation.
So to make the computation more realistic, we provided tegstems only the images, but no ground-truth
camera pose data. Again, while all these systems arrivedaitafively correct 3D models, our cloud

density is 4 times higher than the best.

The Flower data is interesting because of its highly irragslrfaces. When such surfaces are viewed
close-by, the appearance of surface features can chargjiedlig even with a small change in the viewpoint,
which makes feature correspondences highly susceptitderdos. While Bundler did recover the general
3D profile, post-processing by PMVS2 deteriorates the 30ctires—probably because PMVS2, being a
patch-based multi-view stereo system, prefers well defsnefdce patches, which are absent in this data set.
This hypothesis is confirmed by noticing that the central @ovegion becomes empty while the planar 3D

structure of the background wall is enhanced after PMVS2g®sing. In fact, similar things seem to have
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happened with the Lady data set too—PMVS2 enhanced the toolet in the background but filtered out
3D points in the face. In any case, our system obtained a 3@idlwat is 14 times denser than Bundler and

Bundler+PMVS2 with a very small increase in runtime.

Finally, the Droopy data is very challenging. The surfacthefstuffed animal is relatively homogeneous
and devoid of features. We tried to compensate for the ladkaifires by increasing the number of images
used (a total of 89 images). However, all systems did poanytHis particular data set, with reconstructed
3D structures suffering from a significant degree of misslata (on the back of the stuffed animal). ARC
3D failed to generate any result at all. This data set prgbddinarcates the boundary of what is and is not

attainable for state-of-the-art, SfM-based, 3D modeligg@hms.

Castle (6 images)|Run time [# of 3D points
Bundler 0:27 244
| Photomodel3D|  1:07 10974

(@)

Kermit (11 images)
Bundler only Bundler + PMV52|  PhotoModel3D
(:46 1:33 2:03

Figure 3. Pairwise comparison results. (a) Comparisonlteesith Bundler: from left to right: a sample

input image, a screen shot of Bundler's 3D model, a screenastour 3D model, and runtime and density
statistics, (b) comparison results with Bundler+PMVS@nirleft to right: Bundler only, Bundler+PMVS2,

and our results, and (c) comparison results with Photoflymfteft to right: Photofly’s 3D model, our 3D

model, and two models placed side-by-side.
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Pairwise Comparison: We have also conducted many more pairwise comparisonsdhgtared the per-

formance of our system against Bundler (on 31 data sets)dIBurPMVS2 (on 9 data sets), and Project
Photofly (on 54 data sets) individually. One example is shfwvreach of the three cases (Bundler only,
Bundler+PMVS2, and Photofly) in Fig. 3. These comparisomltesare summarized in our Web page

Bundler only: http://www.visualsize.com/3ddemo/true3d/comparisatex.html
Bundler + PMVS2: http://www.visualsize.com/3ddemo/true3d/comparisatex.html#PMVS2
Photofly: http://www.visualsize.com/3Ddemo/comparison/indimxl

As page limit does not allow us to show all these examplestfaduality and accuracy of a 3D model
is best evaluated by viewing the model in 3D—instead of jdstxascreen shots, we strongly urge interested

readers to browse our Web site for more information.

4 Analysis and Concluding Remarks

In terms of cloud density and quality, and the chance of sg;the test data indicated that ours outperforms
Project Photofly, which outperforms Bundler+PMVS2, whichpzrforms Bundler, and which outperforms

ARC 3D. This observation also confirms our experience withrttuch larger, over 100 data set ensemble.

We attempt to answer two questions that are likely to be inadees mind: (1) How accurate is our
3D modeling system and (2) why our system seems to perfortmthah better that all others. Accuracy
analysis requires comparison with the ground truth. Howease mentioned before, our test datasets were
collected from a large number of consumer-market camemglaones, and no ground-truth 3D profiles are
available. The Dino and Temple data sets used in [38] wetteeged using the Stanford Spherical Gantry,
which provided the ground truth in the camera poses, butmaheé 3D structures. Middlebury Stereo
Datasets [9, 36] comprise only short sequences (up to 7 ishageng a fixed linear camera translation, and
hence, are not that interesting to us. To our best knowldddé provides the only publicly available 3D
data sets with ground-truthed 3D profiles that used a geoanaéra motion, and were specifically generated
to validate 3D modeling algorithms using the SfM principl&round-truth 3D profiles (gathered using
a LIDAR system) for two data sets, Fountain-P11 and Hera-B&5, are used in our accuracy analysis.
These data sets are available for download at: http://eypéilch/ strecha/multiview/denseMVS.html, and

were used in the following academic paper: [41].
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Evaluation Methodologies: We tried to emulate—as faithfully as possible—what a conuiaéBD mod-
eling system needs to accomplish for a client submitting 3igleting tasks through a Web-service model.

To this end:

e We down-sampled input images to the VGA size (8480) for upload and processing (we do provide
data processed at a higher 2383134 resolution for reference). While the original imagesat a very high
spatial resolution (307%22048), it is unrealistic to expect that such high-resolufimages will be available
in real-world scenarios. Again, uploading such high-reoh images to a back-end 3D server is a very

expensive proposition and is not feasible for most usagessices.

e We do not use any camera calibration data generated exye(nal, we do not use the intrinsic or the

extrinsic camera parameters supplied with the images)inAgathe real-world application scenarios, such
intrinsic and extrinsic camera parameters are not availaiotid most, if not all, consumer-market digital
cameras and phones are not calibrated. A 3D modeling pgslimst be able to automatically calibrate the

intrinsic and extrinsic camera parameters using nothinghauinput images, without any outside assistance.

e We have concentrated on the “end results” and ignored th@tbgucts” of such 3D processing. That is,
our comparison is on the faithfulness of the 3D models, naheraccuracy of the recovered intrinsic and
extrinsic camera parameters. We believe that in the consoragket, the end users are mainly interested
in the 3D models. Furthermore, we believe that the situatibare a modeling system estimated erroneous
camera parameters but somehow still obtains correct 3@tatres fortuitously is extremely unlikely (we

have never observed such a phenomenon).

To summarize, our methodologies are to exercise the full 3dehting pipeline, leading from input
images directly to output 3D models, without any user irgation or parameter tuning, without using any
external calibration data (i.e., the camera’s intrinsicdhaxtrinsic parameters) that are not embedded in the
input images themselves, and do all these using photos esamable size (VGA). This is what we envision

a robust, commercial-grade 3D photo modeling system muablesto do.

Evaluation Procedures: We down-sampled the ground-truth data 20 times for compari®own-sampling
is necessary because the 3D ground-truth data uncompresséd for Fountain-P11 and 1.4GB for Herz-
Jesu-P25. Meshlab dumped core when opening such huge filedil&-size limitation was present even on

a state-of-the-art Windows 7 desktop with an Intel Core i&3Hz processor, 6GB of memory, and 1TB of
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Table 1: Accuracy Evaluation results

Data set Herz-Jesu-1| Fountain-1| Herz-Jesu-2| Fountain-2
# of images 25 11 25 11
spatial resolution 640x 480 | 640x 480 | 2150x1434 | 2150x1434
Runtime 11min O1sec| 4min 30sec| 59min 48sec| 7min 12sec
# of 3D points 342,949 140,785 1,437,984 1,072,139
# of faces 735,419 315,195 2,781,106 2,107,543
max error 4.74% 5.07% 4.42% 1.92%
median error 0.62% 0.62% 0.44% 0.23%
average error 0.41% 0.44% 0.26% 0.17%

16

disk space. After our 3D pipeline finished generating 3D nftem the input VGA images, these models

were aligned with the ground-truth models in a two-stageguare:

We first used the manual alignment process provided by MiegB4 to roughly align our 3D models
with the ground-truth models. The alignment process ctetisf loading both models into Meshlab, man-
ually specifying a small number of corresponding pointshie two models to establish a rough alignment,

and then allowing Meshlab to refine the initial manual aligminusing an iterative ICP algorithm.

After the models were roughly aligned as in the previous,steploaded both models into our own
display program that allowed small x, y, z rotations andgtations applied to the ground-truth models. We
applied such small translations and rotations interagtiaad eye-balled the display for the best qualitative

alignment results.

After models had been aligned, we computed an absolute measure for each and every 3D point in
our 3D models. This error was the minimum distance from a 3iDtpo our models to the closest points in
the corresponding ground-truth models. We then computeti@eptage error by dividing the absolute error

distance by the largest dimension of the ground-truth neoiaehe x, y, or z direction.

Evaluation Results: Our modeling pipeline ran on a Windows 7 desktop with an |6&le i-3 3.3GHz pro-
cessor, 6GB of memory, and 1TB of disk space. For each datasetsed two different spatial resolutions:
VGA and 2150<1434 (the latter for reference purpose). The runtime, demsid accuracy statistics are

summarized in Table 1 and the 3D models are depicted grdphicéigs. 5 to &. One can also download

3The reported run time in Table 1 for the Fountain data set astef than that in Fig. 4 because we used a faster machine and
exploited the parallelism in our codes to speed up the psiugs
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or view these models in 3D at http://www.visualsize.conli&tio/comparison/accuracy.html.

As can be seen in Table 1, our modeling algorithm was able nstoact 3D models which confirmed
with the ground-truth models very well. The average erros igas than 0.5%—and this error was computed
over hundreds of thousands of recovered 3D points. Inecrgagatial resolution improves the accuracy only
marginally, but can lengthen the computation time signifilyain the case of Herz-Jesu. Visual inspection
of Figs. 5 to 8 seems to indicate that the models are less ebengt higher image resolution even when
more 3D points and surface patches were recovered and thel axmliracy improves. This is probably due
to the more stringent feature analysis requirement putaoepto filter out outliers that tend to arise from

matching unstable, evanescent fine-level features in t@gblution images.

Another obvious question is why our system seems to perfbanmuch better than all others. We can
surmise how some performance gain came about by examiningublished papers of Bundler, PMVS2,
and ARC 3D Web Service and contrasting the technical ddsmmgthere with our own implementation.
But one caveat is that such an analysis can be superficialibethe complexity of a 3D modeling system
cannot be fully appreciated without a detailed perusal efdburce codes. However, we have never at-
tempted to understand the codes of Bundler and PMVS2 or theteprogram executions, simply because
such an effort is too great and unnecessary for the purpdsesngparison. The performance gain over
Project Photofly will most likely remain a mystery becausej&st Photofly is a commercial product with
IP shrouded in secreéyWe include it in the comparison because, after an exhaudtele search, Project
Photofly is the only such commercial product based on the Sfiveotly available, the product team has a
prestigious pedigree (from the RobotVis Group at INRIA, deg by Dr. Olivier Faugeras), and from our

experience, it is a very mature and robust package.

In order to generate dense point clouds, it is necessaryu® tiense features to start with. Bundler
uses a demo version of SIFT from David Lowe [25] for detectiegtures. However, the demo version
has a fixed feature detection threshold that cannot be ctamgte end user. While the pre-set threshold
is reasonable for most data sets in our testbed, we can abtaindenser image features by using feature
detectors such as FAST [35] and OpenCV [31]. These featueetes come with adjustable parameters

that allow significantly denser features to the SfM compatathan those from the demo version of SIFT.

“The authors did contact Project Photofly to inform Autodelowr comparison results. However, no response has been
received so far.
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However, simply making features denser is not enough. Qualas important as density, if not more
so. Using low-quality features blindly may increase thendesof erroneous correspondences and introduce
significantly more outliers, which make the solution pracesich less robust and stable. Again, this repre-
sents the fundamental trade-off between precision andl.réa have instituted two mechanisms to guard
against introducing outliers when using more features. @aehanism is a pre-filtering process: We have
used the standard, normalized 8-point algorithm [19, 1&ampute the structure and motion parameters.
The 8-point algorithm imposes the epipolar constraint keetwa pair of images in the form of’ Fzz = 0
whereF' is the fundamental matrix andandz’ are the normalized image coordinates in the homogeneous
form. Combined with RANSAC [18], the pre-filtering processyides a powerful mechanism to eliminate

outliers to maintain the stability of the computation.

A second mechanism is in the way we solve the core nonlinganization problem, commonly known
as sparse bundle adjustment, or SBA [18]. While Bundler hexgexl to use a public-domain SBA package
by Lourakis and Argyros [29, 28], we have implemented our eersion of SBA. Furthermore, we have
used a different non-linear solver than the Levenberg-Mardi (LM) used in [28], which is called the

Double Dog-Leg (DLL) method.

Both LM and DLL are variances of a general class of numericgthmds called the Trust-Region Meth-
ods [8, 12]. Trust Region Methods combine gradient descedtNewton’s method [11] to find a local
minimum of the objective function from any initial point. €lgradient descent method guarantees progress
towards a minimum but converges slowly, while Newton’s méthonverges quickly when near a local min-
imum but diverges otherwise. Trust Region Methods combnaglignt descent and Newton’s method by
varying the trust region radius depending on each iteratismccess in reducing the value of the objective
function. When the current point is not near a minimum, thsttregion radius is reduced, and short steps
are taken in the gradient direction to ensure progress. Amenum is approached, the trust region radius
is increased and longer steps are taken in the Newton direttiiconverge quickly. The objective function
is modelled with a quadratic, and the trust region radiusijssted to contain an area in which the model is
believed to accurately represent the objective functionmore detail, the steptaken at each iteration is
determined by

ming f(xe + 5) = f(xe) + (Vf(2e))s + %ST(VQf(xc))S, lIsl| < dc )

where f is the objective functiong. is the current pointg. is the current trust region radiuy f is the
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gradient andv? f is the Hessian. The optimal solution to the problem is shawet[11]
s(u) = —((V2f(ze)) + ul)~H(V f (o)), [s(w)]| = o )

wherel is the identity matrix angk is chosen so that the length of the step is equal to the trgistrreadius.

LM varies i as a parameter from iteration to iteration, rather thanieXlyl maintaining a trust region.
Because of this, the expensive solution in Eqg. 2 must be rpated every time: is changed. This can occur
multiple times for the same values Gff andV?f if several unsuccessful steps are attempted from the same
point. In fact, the optimal solution to Eq. 1 for varying tladt region size lies along a curved path starting
along the gradient direction and connecting to the Newtep F&]. DDL uses a 3-piece approximation to
this curve, which allows Eqg. 2 to be solved many times for wayy: without needing to solve the entire
linear system again. This approximation leads to large avgament in both efficiency and accuracy over

LM, which may very well be an important factor of the improwacturacy and robustness in our pipeline.
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Lady: 10 images

Bundler| Bundler +| ARC 3D | Ours
PMVS2
Pic processed 4 4 6 10
# 3D points 467 2,428 148 10,810
Run time 0:39 0:58 - 2:00

Figure 4: For all data sets in this figure, the two images atléfipare sample input images, the two at
top right are our results, the two at middle left are resuiltBundler, the two at middle right are results of
Bundler + PMVS2, the two at bottom left are results of ARC 3Db/&ervice, and the two at bottom right
are results of Autodesk’s Project Photofly. For all data,déts table below the graphic results shows the
name and size of the data set, how many pictures are pro¢céssednany 3D points are generated, and the
runtime for Bundler, Bundler+PMVS2, ARC 3D Web Service, and system.This figure continues onto
the following 5 pages.
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No output

No output
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No output
Building: 61 images
Bundler | Bundler +| ARC 3D | Ours
PMVS2
Pic processed 11 11 0 61
# 3D points 384 0 0 112,762
Run time 4:00 4:16 - 20:25
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Church: 24 images
Bundler | Bundler +| ARC 3D | Ours
PMVS2
Pic processed 5 5 24 24
# 3D points | 1,643 14,315 3,812 | 38,796
Run time 3:00 7:24 - 10:03
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Fountain: 11 images

Bundler | Bundler +| ARC3D | Ours
PMVS2
Pic processed 5 5 11 11
# 3D points 604 7,221 1,025 | 132,670
Run time 0:55 1:30 - 6:05
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NTU Gate: 34 images
Bundler | Bundler +| ARC 3D | Ours
PMVS2
Pic processed 11 11 6 34
# 3D points 618 793 117 64,046
Run time 3:18 3:31 - 8:58

No output

September, 2011

No output
UNC: 128 images
Bundler | Bundler +| ARC 3D | Ours
PMVS2
Pic processed 53 53 0 85
# 3D points | 18,516 | 95,440 0 191,054
Run time 42:16 59:34 - 77:23
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Soda Bottle: 46 images

Bundler | Bundler +| ARC 3D | Ours
PMVS2
Pic processed 18 18 35 46
# 3D points | 6,214 27,221 2,473 | 75,275
Run time 5:48 11:07 - 11:18
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Temple Ring: 47 images

Bundler | Bundler +| ARC 3D | Ours
PMVS2
Pic processed 22 22 37 a7
# 3D points | 1,766 8,705 2,407 | 33,988
Run time 3:16 5:35 - 18:22
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Flower: 7 images

Bundler| Bundler +| ARC 3D | Ours
PMVS2
Pic processeq 5 5 5 7
# 3D points | 1,054 1,162 107 16,180
Run time 0:51 0:59 - 1:48
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No output No output :
Droopy: 89 images
Bundler | Bundler +| ARC 3D | Ours
PMVS2
Pic processed 38 38 0 61
# 3D points | 3,398 53,428 0 61,752
Run time 6:00 19:33 - 30:04
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Figure 5: Herz-Jesu-P25 data sets processed at the VGAutiesol Left two on the top row: our re-
sults. Right two on the top row: ground truth. The bottom roispthys both our model and the
ground truth registered in a common reference frame. Shoxties of these models can be viewed at
http://lwww.visualsize.com/3ddemo/comparison/accutdaml.

Figure 6: Fountain-P11 data sets processed at the VGA t&suolulLeft two on the top row: our re-
sults. Right two on the top row: ground truth. The bottom roispthys both our model and the
ground truth registered in a common reference frame. Shoviegs of these models can be viewed at
http://www.visualsize.com/3ddemo/comparison/accyrdml.
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Figure 7. Herz-Jesu-P25 data sets processed at the 21884 resolution. Left two on the top row:

our results. Right two on the top row: ground truth. The hottiow displays both our model and the
ground truth registered in a common reference frame. Shoxties of these models can be viewed at
http://lwww.visualsize.com/3ddemo/comparison/accutdaml.

Figure 8: Fountain-P11 data sets processed at the 214334 resolution. Left two on the top row: our
results. Right two on the top row: ground truth. The bottorw misplays both our model and the
ground truth registered in a common reference frame. Shoxties of these models can be viewed at
http://lwww.visualsize.com/3ddemo/comparison/accutdaml.
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