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 Convergence of 
 Consumer-market cameras, camcorders, cell phones
 Computational power

S  b l Storage capability
 Communication bandwidth (Web)

R bb h d l d  d  Rubber-meets-the-road validation and 
commercialization of Computer Vision algorithms

O   b ll  ll h  d h  b ll  d l  Over one billion cell phones and another billion digital 
cameras sold world wide each year, what cool CV 
algorithms can be used on them? algorithms can be used on them? 
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 Digital photographs record appearance explicitly
 3D objects usually have distinct
 Appearance
 Structure, and 
 Behavior traits

 Recovering the structure and behavior traits from 
mass-market camera pictures
 Mostly about structure traits in this talk
 Behavior (deformation) is much harder (e.g., behavior 

d li  f t  i  t i t d l )modeling of tumors in computer-assisted colonoscopy)
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 Principles
 Time of flightTime of flight
 Structured light
 Phase shift detection
 L  LCD Laser, LCD
 ASC, 3DV (Microsoft), 

PrimeSense (Microsoft 
Xbox)  CanestaXbox), Canesta
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 NextEngine ($2,995) 
 escan3D ($7,995)($ , )
 Sweeping laser line with triangulation
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 Niche markets in the foreseeable future
 Cost
 Size

S l Selection
 Spatial resolution

P  i Power consumption
 Scanning speed
 A il bilit  f bli d i  d t Availability of public-domain data
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 Stereo sensors (tyzx)
 Pros: Real-time
 Cons:
 Narrow-base-line stereo
 Poor depth resolution 
 No cross validation of 3D depth
 Bulky, expensive, one-of-a-kind
 Not consumer-market
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 Photowoosh
 Make3D (http://make3d.stanford.edu/)

E i  i i  ff li  l i Expensive, time-consuming off-line learning
 Manual image marking on-line
 Qualitative, coarse depth profile with significant error

8



 3D Inference is an inherently “ill-posed”, inverse 
problemp

 Many unknowns, not enough constraints
 Solution 1: 
 Clever algorithms
 Past experience (learning and inference)

 Solution 2: Solution 2:
 Hard data (more images)

 Our claim: hard data trounce clever algorithms
 Minuscule effort in data collection
 Readily available computational power and storage space
 Specificity of information enables practical, robust and p y p ,

efficient CV algorithms
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 Consumer-market 
 Multiple capabilities (one stop shopping)
 Hardware:
 No calibration, specialized equipment used

 User:
 point-shoot-upload, no training or expertise, arbitrary 

sensing configurations

 Complete systems, fully automated,  end-to-end 
 Avoid third-party licensing requirements
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Image stitching  Spatially aware  Discrete  DenseMetrologyg g
Panorama 
building

p y
Image browsing

Discrete 
3D structures

Dense
3D structures

Metrology

Panorama           PhotoNav3D           Metrology                                PhotoModel3D
Engine                                                        Engine

Structure Camera Camera motion +  Camera motion + Camera motion +
Motion motion 

only
User‐specified
structure

Camera motion +
Sparse structure

Camera motion +
Dense structure
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 A simple, global image registration method
 Pixel movements are explained by a single model  Pixel movements are explained by a single model 

(homography transformation)
 Rotational only camera motion  Rotational only camera motion 
 Far-field images
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 How to address accumulation of registration error? 
 How to estimate intrinsic camera parameters  How to estimate intrinsic camera parameters 

(cameras are not explicitly calibrated)?
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 Too many (PanoramaFactory, EasyPano, Autopano, 
Mi f )Microsoft)

 “Me-too” technology 
 Distinction
 Web-based (Face book application)
 Part of a complete 3D suite of algorithms, one-stop 

shopping
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 Robotics CV + CG
 Structure from motion  SLAM – simultaneous 

localization and 
mapping

 Structure from motion 

mapping
 Continuous video
 Tracking 

 Discrete snapshots
 Matching Tracking 

 Extended Kalman Filter
 On-line 

 Matching
 SBA
 Off–line On line 

 Incremental
 Sparse maps

 Off line
 Batch 
 Dense maps Sparse mapsDense maps
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 Ill-posed, inverse problem 
N f No explicit camera calibration for consumer markets 

 Unknown (partially-known) camera intrinsic 
 ( h  i  JPEG h d )parameters (whatever in JPEG header)

 Noise in feature locations
 Outliers
 “Obvious” – those violate epipolar constraints
 “S btl ” th  ti f  i l  t i t  ( t  t  “Subtle” – those satisfy epipolar constraints (stereo cannot 

handle this!)

 Numerical stability Numerical stability
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 Many variables
 6 (extrinsic) + >4 (intrinsic) for each camera shot
 3 (x,y,z) for each feature point
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 Dense 3D point clouds
 Slow, less robust

 Sparse 3D point clouds
 Fast, more robust

 High recall, low precision
 High false-positive, low 

f l ti

 Low recall, high precision
 Low false-positive, high 

f l ti  false-negative false-negative 
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 Recovered camera motion parameters give camera 
trajectory and view similarity

 Browse an image collection based on spatial adjacency & 
view similarity of the camera

 More flexible than panorama
 More robust than 3D models
 Cf cooliris.com (pretty graphics, no CV)
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PhotoNav3D3

24



http://localhost/photonav3d/viewer/tool.1.html
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http://localhost/photonav3d/viewer/test3.1.html
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 Against Microsoft Photosynth (photosynth.net)
 27 data sets and over 800 images27 data sets and over 800 images
 Indoor and outdoor
 Near-field, median-field, and far-field
 Inside-out and outside-in

 How many images are reached (navigable)
 Beat Photosynth significantly (>40%) in 15 
 Beat Photosynth slightly in 2
 Tie Photosynth in 9 
 Slightly worse than Photosynth in 1 (22 vs. 23 photos)g y y ( p )
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 Sparse (point cloud)
 3D positions of tracked/matched features 3D positions of tracked/matched features

 Dense (textured surface)
 Depth per pixel Depth per pixel
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 Google Sketchup, AutoDesk
Image Modeler

 PhotoModel3D
Image Modeler

 Mostly for architectural design
 Interactive, extensive human 

 Any 3D objects
 Fully automated

interaction
 Steep learning curve

y
 Point, shoot, upload

29



 3dsom.com, strata.com 
 Special registration markers

Bl   i

 PhotoModel3D

 Any 3D objects Blue screen segmentation
 Silhouette-based volume 

intersection

 Any 3D objects
 Fully automated
 Point, shoot, upload

 Interactive, extensive human 
interaction

 Small  complete objects  Small, complete objects 
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 PhotoModler
S i l i t ti  k

 PhotoModel3D
 Special registration markers
 Manual feature selection and 

registration
 Any 3D objects
 Fully automated

 Dated two-view stereo analysis 
(with manual interaction)

y
 Point, shoot, upload
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PhotoPhoto--toto--3D.com3D.com PhotoModel3DPhotoModel3D

 Commercial services ended  Any 3D objects
(licensing issues?)

 Slow, a simple 5-image VGA 
data (calc) took more than 1 

y j
 Fully automated
 Point, shoot, upload

f data (calc) took more than 1 
hour (30 sec for PhotoModel3D)

 Dated stereo pair-wise analysis

 Doesn’t take forever 

Photo‐to‐3d                      PhotoModel3D
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 ARC 3D webservice
 http://homes.esat.kuleuven.be/~visit3d/webservice/v2/download.php

M  V d L  V  G l  "W b B d 3D R i  S i "   Maarten Vergauwen and Luc Van Gool, "Web-Based 3D Reconstruction Service", 
Machine Vision Applications, 17, pp. 411-426, 2006

 Outdoor architecture scenes
 Mostly planar surfaces
 Feature-rich façade 
 Partial construction
 Programs not working
 Not responding to email
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 Bundler (core of UWash/Microsoft Phototourism)
 http://phototour.cs.washington.edu/bundler/

N h S l  St  M  S it  Ri h d S li ki  Ph t  T i  E l i  i   Noah Snavely, Steven M. Seitz, Richard Szeliski. Photo Tourism: Exploring image 
collections in 3D. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2006), 2006. 
Noah Snavely, Steven M. Seitz, Richard Szeliski. Modeling the World from Internet Photo 
Collections. International Journal of Computer Vision 2007. 

 Two standard Bundler data sets: Kermit and ET

 On an unloaded PC (Intel Core 2 Duo 2.66GHz, 
2G) – only one core is used, no GPU acceleration

Runtime # of 
images

Ours Bundler Density 
(# of 3D 

# of 
images

Ours Bundler
g

Kermit 11 1:09 0:44

ET 9 1:23 0:47

( 3
points)

g

Kermit 11 8649 623

ET 9 8699 514ET 9 1:23 0:47

Knight 16 1:38 1:02

ET 9 8699 514

Knight 16 7381 412
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VisualSizeBundler
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VisualSizeBundler
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VisualSizeBundler
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 30 data sets
 Indoor, outdoor, partial, 

360^o
 As few as 5, 6, 7 images, as 

64 2 88many as 64, 72, 88
 Uniform trend
 Bundler is faster (~2x)
 Ours is denser (~10x)
 Ours requires orders of Ours requires orders-of-

magnitude less # of photos 
Left: sample imagesg
Middle: Bundler’s models
Right:  Visualsize’s models
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Bundler

Bundler
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Visualsize:
42 images, 99,937points4 g , 99,937p

Visualsize:
34 images, 71,072 points
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 Bundler (Version 

0.4, April 10, 2010): 
 PhotoModel3D: 

2:03 
 PMVS2 (July 13, 2010): 

0:53
 Total 

0:46
Total 
(Bunlder+PMVS2): 
1:39

11 images, On an unloaded  notebook 

41

g
(Intel Core 2 Duo 2.8GHz, 4G RAM) – only 
one core is used, no GPU acceleration



PhotoModel3D
Bundler + PMVS2

PhotoModel3D

Bundler + PMVS2
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 PMVS2 ( )   Bundler (Version 

0.4, April 10, 2010):  
1:25

 PhotoModel3D: 
2:46 

 PMVS2 (July 13, 2010): 
1:53

 Total 
(Bunlder+PMVS2): 1:25 (Bunlder+PMVS2): 
3:18

19 images: On an unloaded  
b k (I l C    D   8GH  
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notebook (Intel Core 2 Duo 2.8GHz, 
4G RAM) – only one core is used, no 
GPU acceleration



PhotoModel3D

Bundler + PMVS2

PhotoModel3D

Bundler + PMVS2

44



 PMVS2 ( )   Bundler (Version 

0.4, April 10, 2010):  
3:00

 PhotoModel3D: 
10:03 

 PMVS2 (July 13, 2010): 
4:24

 Total 
(Bunlder+PMVS2): 3:00 (Bunlder+PMVS2): 
7:24

24 images: On an unloaded  
b k (I l C    D   8GH  
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notebook (Intel Core 2 Duo 2.8GHz, 
4G RAM) – only one core is used, no 
GPU acceleration



PhotoModel3DBundler + PMVS2
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 Bundler (Version 

0.4, April 10, 2010):  
1:32

 PhotoModel3D: 
4:39 

 PMVS2 (July 13, 2010): 
0:24

 Total 
(B ld +PMVS2)  1:32 (Bunlder+PMVS2): 
1:56

16 images: On an unloaded  
b k (I l C    D   8GH  
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notebook (Intel Core 2 Duo 2.8GHz, 
4G RAM) – only one core is used, no 
GPU acceleration



 “Photo Scenes” – Automated 3D models from digital photos 
(sans Visualsize, the only such 3D product in the world)

 Technologies acquired from Realviz (on May, 2008)
 RealViz (founded in 1998) technology transfer from INRIA 

(the ROBOTVIS research group head by Dr  Olivier (the ROBOTVIS research group head by Dr. Olivier 
Faugeras)

 Public release 7/22/2010 (after 12 years of R&D)
 52 data sets
 Faces/non-faces
 S ft/h d bj t Soft/hard objects
 Shining/dull appearances
 Fuzzy/smooth surfaces
 Etc.
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http://localhost/3ddemo/comparison/

 PhotoModel3D PhotoModel3D 
consistently (52 out of 
52 sets) produces 
denser, visually 

t  ltaccurate results
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Left (blue): photofly
Right (black): PhotoModel3D



 Robotics CV + CG
 Structure from motion  SLAM – simultaneous 

localization and 
mapping

 Structure from motion 

mapping
 Continuous video
 Tracking 

 Discrete snapshots
 Matching Tracking 

 Extended Kalman Filter
 On-line 

 Matching
 SBA
 Off–line On line 

 Incremental
 Sparse maps

 Off line
 Batch 
 Dense maps Sparse mapsDense maps
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 Plain, texture-less surfaces
 Shining, transparent, translucent surfacesg, p ,
 Deformable and moving objects
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 Automated camera motion analysis
 User-specified structure analysis
 What do you want to measure? 

 A single “reference” dimension must be known
 Useful for
 Home improvement
 Contracting
 Cost estimation
 Insurance damage claim 
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 Caveat: 
 Old programs (two years back)
 Use only 2 images (without global optimization)

 Againstg
 iWitness (http://www.iwitnessphoto.com/ )
 Pixdim (http://www.pixdim.com/ )( p // p / )
 Both competitors use “marker-based” registration system 

iWitness Pixdim
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 Six un-calibrated consumer-market digital cameras
 42 image pairs  42 image pairs 
 One reference of a known dimension per pair
 Over 200 line segments of varying lengths   Over 200 line segments of varying lengths, 

positions, and orientations
 Ground truth measured manually y
 Image locations measured using GUI of these packages
 Average metrology error
 2.27% Visualsize
 20.62% iWitness
 33 03% Pixdim 33.03% Pixdim
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 A suite of 3D algorithms for
 Navigation and browsing of photos
 3D Metrology3  Me o ogy
 Panorama
 3D Models

 Developed in-house and hold IPs  Developed in-house and hold IPs 
 Bundler uses SIFT, LM, SBA, ANN with GNU GPL – not for 

commercial use
 Furukawa’s PMVS – again GNU GPLFurukawa s PMVS again GNU GPL

 One stop shopping for 3D technologies
 Complete systems, end-to-end and fully automated
 World-class 
 Compared favorably with Microsoft/U Wash and Autodesk
 Exhaustive Web search (“3D models from photos, 3D faces from 

photos”) unearthed no other worthy competitors
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 Internet showroom and web sales
 Social networks
 Entertainment (movie and game) environment map, FX
 Virtual tourism and museums 

I  l i  i Insurance claim processing
 Crime scene analysis
 Realistic event simulation  surveillance Realistic event simulation, surveillance
 Situation study, threat assessment, campaign planning
 Construction (roofing, floor, etc.) and home improvement ( g, , ) p

(remodeling)
 Urban development, city planning
 3D digital cameras, other hardware solutions
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 Human nature: fascination with faces
 10 to 20 images, point-shoot-upload
 <5 minutes from start to finish (1CPU core, no 

hardware acceleration)
 No pre existing “fake” 3D face model to introduce  No pre-existing fake  3D face model to introduce 

artificial bias in 3D structure
 No active mechanism used
 Internet games
 Plastic surgery

T l h   Telephony 
 Social networks 
 Security surveillance Security surveillance
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Facegen.com, Facegen.com, FaceShopFaceShop, , quidamquidam, , 
thatsmyface.com , looxis.comthatsmyface.com , looxis.com

PhotoModel3DPhotoModel3D

 Manual face editing and 

 Real texture and structure
 No underlying model is used

 Manual face editing and 
animation programs

 “Faking” 3D structure 

y g
 No bias
 Fast (<5 minutes)

 texture mapping on existing 3D 
models, using manually entered 
fiducial points

 Not $299 

 Bias 
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 Inspeck.com, looxis.com
 Active projection systems
 Multiple projectors for full head capture
 Expensive, time consuming registration & p , g g

calibration
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 Mova.com (contour 
capture)p )
 Phosphorescent makeup and dye 

(90-120fps flash)
 Capture both bright and dark p g

frames
 Random phosphorescent patterns 

from multiple cameras for 
ltriangulation
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 Photomodel3D
 Any single consumer-Any single consumer

market digital 
camera

 No markers
 18,761 points (dad)
 23 854 points (mom) 23,854 points (mom)
 30,404 points (daughter)
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 2D, Frontal views
L i  d i i  f   Learning and training often 
necessary
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State of the artState of the art New possibilityNew possibility

 Face detection  Face model Face detection
 Hit-and-miss (mostly misses )
 Another auto-focusing solution

 Face model
 Tangible byproducts, 3D face 

models for 

 Not recorded in images/headers
 Not used for recognition, search, 

categorization later

 Social networking
 Internet games
 Baby pictures in 3Dcategorization later

 Little improved experience
 No tangible byproducts, very 

y p
 Fancy screen saver

limited enhanced experience (do 
you know/care your camera’s 
autofocus mechanism?)
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 Our 3D face model is a snapshot  but it is ready to be  Our 3D face model is a snapshot, but it is ready to be 
animated (aka talking head)

 Concrete applications: Concrete applications:
 Voicemail: has messages read to you by caller’s avatar 

(transcription, text-to-speech, face animation)
 Teleconference over cell phones: pre-stored 3D face model 

of the caller 
 IM  h  t d t t  d t   b  ll ’  t IM: has typed text messages read to you by caller’s avatar

Low bandwidth, 
l   li

high bandwidth, 
high realism

Visualsize:
low bandwidth, 

low realism high realism

Voice only Voice + streaming videoVoice + 
Animated caller’s head

high realism
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Animated caller s head
NOTVoice + 
Animated  generic head



A t lki  h d  d ’t  k  i  “ hi ” A talking head you don’t even know is “gee-whiz”
 Personalized avatar provides the needed 

i l i   k  h l i  emotional connection to make technologies 
desirable 

A hild ill  i d lki    k   b   A child will get tired talking to an unknown avatar, but 
not to her parents

 Teleconference with an unknown talking head provides Teleconference with an unknown talking head provides 
little enhancement in user experience

 Inexpensive, consumer-market enabling 3D  Inexpensive, consumer market enabling 3D 
modeling technology 
 Consumer-market camera, efficient and robust solutionC ,
 Only company with such face-modeling ability 
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State of the artState of the art New possibilityNew possibility

 Well-controlled environment:  3D Well-controlled environment:
 2D
 Frontal
 Learning and training

 3D
 Not necessarily frontal
 No offline learning

 Learning and training
 Preprocessing, cropping, 

normalization, etc. may be 
necessary

 No manual interaction
 A stable, forward projection 

process instead of unstable  y
 Logic extensions: moderately 

controlled and un-controlled 
(Gang Hua, et. al, IEEE PAMI 

l l W ld

process instead of unstable, 
inverse prediction process

special issue on Real-World Face 
Recognition)
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