
1 
 

CMPSC 160 – Practice Exam 
 

1. Consider the following grammar: 
 

P à declare D begin B end 
D à D; int id | int id 
B à B; S | S 
S à id = E 
E à E + T | E – T | T 
T à (E) | id | num 

 
(a) Convert the above grammar to an LL(1) grammar. 
 
(b) Write a translation scheme for the resulting grammar for interpreting the programs written 

in the above language. The translation scheme you write should evaluate the values of the 
expressions and store the values of the variables using the procedures provided below. 

 
// These procedures are given. You do not have to write them. 
void enterId(String varName){ ... } 
// creates a storage for the identifier with name varName 

void setValue(String varName, int value) { ... } 
// sets the value of the identifier with name varName to value 

int getValue(String varName) {...} 
// returns the value of the identifier with name varName 

 
 
 
2. The grammar given below is used for specifying the declarations in a simple programming 
language. 
 

Program à DeclList 
DeclList à DeclList Decl 

| Decl 
Decl  à RecordDecl 

| BasicDecl 
RecordDecl à struct id begin FieldList end; 
FieldList à FieldList BasicDecl 

| BasicDecl 
BasicDecl à int id; 

| real id; 
 
You are asked to convert his grammar to a translation scheme for storage allocation. Use a global 
variable called offset to keep the address of the next available memory location (initialize it to 0). 
Use the procedure enter_loc(id.name, mem_loc) to store mem_loc as the address of the memory 
location for identifier id.name in the symbol table (we assume that the symbol table entry is 
created in a previous pass). The memory location of a record should be same as memory location 
of its first field. Assume that the size of int is 4 and the size of real is 8. 



2 
 

 
3. Consider the following grammar for binary numbers: 
 

N à L.L 
| L 

L à L B 
| B 

B à 0 
| 1 

 
(a) Using only synthesized attributes, write the semantic rules to evaluate the value of the binary 
numbers generated by this grammar. For example, the value of the input string: 
 

110.011 
 
should be evaluated as: 6.375 
 
(b) Below we give the LR parse table for the grammar given in part (a) 
 

 Action Goto 
State . 0 1 $ L B 
s0  shift s1 shift s2  s4 s3 
s1 reduce Bà0 reduce Bà0 reduce Bà0 reduce Bà0   
s2 reduce Bà1 reduce Bà1 reduce Bà1 reduce Bà1   
s3 reduce LàB reduce LàB reduce LàB reduce LàB   
s4 shift s6 shift s1 shift s2 accept  s5 
s5 reduce LàLB reduce LàLB reduce LàLB reduce LàLB   
s6  shift s1 shift s2  s7 s3 
s7  shift s1 shift s2 accept  s5 

 
Using the semantic definitions you derived in part (a), show the evaluation of the synthesized 
attributes using the stack-based shift-reduce parsing algorithms (LR paring algorithm) for the 
input string: 
 

10.101 
 

Assume that synthesized attributes of each nonterminal is stored next to it in the parser stack. 
Your solution should show the contents of the stack, values of the attributes of each nonterminal 
symbol in the stack, and the production and the semantic rule used in computing each attribute. 
You should also show the final value computed for the val attribute of the start symbol N and the 
production and the semantic rule that computes it. 
 
 
 
 
 



3 
 

 
 
 
4. Write the semantic rules for type checking the following expression grammar: 
 

E à E aop E 
| E rop E 
| E = E 
| E lop E 
| id 
| bool 
| num 

 
The token bool is a boolean literal and the token num is an integer literal. Tokens aop, rop, and 
lop denote arithmetic, relational, and logical operators, respectively. Assume that the token id 
has an attribute called type which could be integer or boolean. Nonterminal E also has an 
attribute called type which could be integer, boolean or type-error. You should write the semantic 
rules to compute the type attribute for nonterminal E. The type checking rules are: 
l Both operands of an arithmetic operator should be of integer type. 
l Both operands of a logical operator should be of boolean type. 
l Both operands of a relational operator should be of integer type. 
l The two operands of the equality operator = should be of the same type. 
 
 
 
 
 
5. Write the type-expressions for foo and bar in the following C code fragments. 
(a) 

int foo(int bar[10], char * x); 
 
(b) 

typeof struct{ 
  int a; 
  char b; 
} data, *pdata; 
 
data foo[100]; 
pdata bar(int w, data y){ ... } 
 
 
 
 
 
 
 
 
 
 



4 
 

 
 
 

6. Consider the following program (with nested procedures): 
 
procedure main 
  float x; 
  int a, b; 
  procedure p1(int a) 
    int b; 
    float y; 
    procedure p3() 
      int c; 
      float x;  
      begin 
        ... 
      end 
    begin 
      ... 
    end; 
 
  procedure p2 (float x, float z) 
    int a; 
    begin 
      ... 
    end 
  begin 
    ... 
  end; 
 
(a) Show the contents of a lexically-scoped symbol table for this program. Also show the memory 
offset of each variable in the symbol table. Assume the following: Memory offsets for variables 
are computed in the order they appear in the procedure. int is 4 bytes and float is 8 bytes. 
Parameters are passed using call-by value. Parameters of a procedure are stored in the local data 
area of that procedure. 
 
(b) Draw the activation tree for the following execution sequence: 
main calls p1, p1 returns, main calls p2, p2 calls p1, p1 calls p3, p3 
calls p3, ... show the contents of the control stack at this point ..., 
p3 returns, p3 returns, p1 calls p2, p2 returns, p1 returns, p2 returns. 
Draw the contents of the control stack during the second activation of procedure p3. Show the 
access and control links in the activation records. 
 
 
 
 
 
 
 
 



5 
 

7. You are given the following instruction set for a stack machine. 
 
push value  Pushes the value to the stack 
pop   Pops top of the stack 
load loc  Pushes value of the data location loc to the stack 
store loc  Pops a value from the stack and stores it in the data location loc 
ifeq label  Pops a value from the stack, if it is equal to  

zero jumps to statement label 
ifneq label Pops a value from the stack, if it is not equal to 

zero jumps to statement label 
goto label  Jumps to a statement label 
add   Pops two values from the stack, adds them,  

and pushes the result back onto the stack 
if_cmplt label Pops the top two values of the stack, if the value popped last is less  

than the value popped first then it jumps to statement label 
 
(a) Write a semantic rule for generating stack machine code for statements defined by the 
following production: 
 

ForStmt à for (Expr; Expr; Expr) Stmt 
 
Write a semantic rule to generate the code attribute of ForStmt. Assume that Expr and Stmt 
have code attributes which hold the code generated for them. Your job here is to compute the 
code attribute for ForStmt using the code attributes of Expr and Stmt nonterminals. 
Assume that the code generated for a boolean expression stores a value in the top of the stack 
which is 1 if the expression is true, 0 if it is false. The stack machine instructions can be labeled 
as "Label: instruction". You can use operator || to concatenate generated code, function 
newlabel() to get a new label. 
 
(b) Based on the semantic rules you give in part (a), write the stack machine code for the 
following program segment assuming that variable i is stored in data location 10, variable 
count is stored in data location 11, and variable x is stored in data location 12. Here you must 
also write the stack machine code for Expr.code and Stmt.code. 
 
for (i = 0; i < 5; i++) 
  count = count + x 
 


