
CMPSC 160
Translation of Programming Languages

Lecture 11: Name Analysis

Semantics Analysis: Name analysis

To generate code, a compiler needs to answer many questions:
• Type analysis

– is x a scalar, an array or a function?

– is the expression x*y+z type-consistent?

– in an array reference a[i , j , k], does a have three dimensions?

– how many arguments does a function take?

• Name analysis
– is x declared? Are there names declared but not used?

– which declaration of x does each use reference?

• bind each identifier to the appropriate declaration

• . . .

Block0

Decl
L

®
½
½
½
®
®

Block1 Assign
Block1 Decl
Assign
Decl
Type L
L1 Identifier

i¬ hash(Identifier);
Table[i].declared ¬ true;

Assign ® Identifier = Expr ;
Expr0 ® Expr1 + Term
 ½ Expr1 – Term
 ½ Term
Term0 ® Term1 * Factor
 ½ Term1 / Factor

Type

½
®

Factor
int
boolean

Factor ® (Expr)
 ½ Number
 ½ Identifier

i¬ hash(Identifier);
if (Table[i].declared = false)
 then ReportError(“No
Declaration”);

Ad-hoc Syntax-Directed
Translation for declaration
check.

Key: A global repository, a
symbol table (insertion and
lookup).

Ad-hoc Syntax-Directed
Translation for just declaration
check?

Block0

Decl
L

®
½
½
½
®
®

Block1 Assign
Block1 Decl
Assign
Decl
Type L
L1 Identifier

i¬ hash(Identifier);
Table[i].declared ¬ true;

Assign ® Identifier = Expr ; i¬ hash(Identifier);
if (Table[i].declared = false)
 then ReportError(“No
Declaration”);

Expr0 ® Expr1 + Term

 ½ Expr1 – Term

 ½ Term

Term0 ® Term1 * Factor

 ½ Term1 / Factor

Type

½
®

Factor
int
boolean

Factor ® (Expr)

 ½ Number

 ½ Identifier

i¬ hash(Identifier);
if (Table[i].declared = false)
 then ReportError(“No
Declaration”);

Key: A global repository, a
symbol table (insertion and
lookup).

Block0

Decl
L

®
½
½
½
®
®

Block1 Assign
Block1 Decl
Assign
Decl
Type L
L1 Identifier

i¬ hash(Identifier);
Table[i].declared ¬ true;

Assign ® Identifier = Expr ; i¬ hash(Identifier);
if (Table[i].declared = false)
 then ReportError(“No
Declaration”);
 else Table[i].value = Expr.value

Expr0 ® Expr1 + Term

 ½ Expr1 – Term

 ½ Term

Term0 ® Term1 * Factor

 ½ Term1 / Factor

Type

½
®

Factor
int
boolean

Factor ® (Expr)

 ½ Number

 ½ Identifier

i¬ hash(Identifier);
if (Table[i].declared = false)
 then ReportError(“No
Declaration”);
else Factor.value = Table[i].value

What is we also want to get
the right value for each
inference if the identifier has
been declared previously?

Values can be replaced with
addresses if we are focusing
on the allocation information
or code generation

Use of symbol tables for name analysis

Simplistic 1-pass compiler:
• no tree is built — the name analysis is performed during parsing

• the meaning of a declaration is represented by a small data
structure “symbol”. For a variable it typically contains type and
allocation info. This information is stored in the symbol table

• the name analysis is tangled with other compilation aspects, e.g.,
type analysis, allocation information, code generation

But complex cases may require complex declaration structures and
several passes…

Block0

Decl
L

®
½
½
½
®
®

Block1 Assign
Block1 Decl
Assign
Decl
Type L
L1 Identifier

i¬ hash(Identifier);
Table[i].declared ¬ true;

Assign ® Identifier = Expr ; i¬ hash(Identifier);
if (Table[i].declared = false)
 then ReportError(“No
Declaration”);
 else Table[i].value = Expr.value

Expr0 ® Expr1 + Term

 ½ Expr1 – Term

 ½ Term

Term0 ® Term1 * Factor

 ½ Term1 / Factor

Type

½
®

Factor
int
boolean

Factor ® (Expr)

 ½ Number

 ½ Identifier

i¬ hash(Identifier);
if (Table[i].declared = false)
 then ReportError(“No
Declaration”);
else Factor.value = Table[i].value

• What are missing here?

• Hint: PLs are much more
complicated!!!

Fused Declaration and Definition

int z; // just a declaration
double square(double); // just a declaration

void f() { // declaration plus definition together
int x = 3; // also a declaration plus definition
int y = x + z /square(3); // so is this

}

double square(double w) { // definition completing earlier declaration
return w * w;

}

Relatively easy to fix!!!

Same Names in Programs

• Multiple variables could have the same names in a program.

int a = 4;
{

int a = 3;
int b = 3;
print(a, b);

}
print(a);

int add(int x, int y){return x + y；}
int subtract(int x, int y){return x - y；}

• Multiple functions could have the same names in a program.
– e.g., function overloading in C++

void print(int i) {cout << “ Here is int ” << i << endl; }
void print(double f) { cout << " Here is float " << f << endl;}
void print(char const *c) {cout << " Here is char* " << c << endl;}

Why Same Names?

• Easy for programming

• Performance.

Name Space (Scope)

• The scope of a declaration: The part of a program where the name of
a declaration is visible
– This means it is only legal to refer to the identifier within its scope.

Here identifier refers to function or variable name.

• Usage of Name space (scope):
• function with local variables.

• easy for naming: Local names can hide identical, non-local names.

• local names cannot be seen outside – easy memory management.

Any error?

int a = 4;
{

int a = 3;
int b = 3;
print(a, b);

}
print(a, b);

Nested Block and Inheritance

• Block:
– a syntactic unit with declarations and statements

– may require memory allocation during execution

(once or several times)

• Block structure (nesting):
– a block can have inner blocks (recursively)

– declarations in a block are visible also in the

inner blocks

int i ;
void main (in t j) {

int k ;
{

int l ;
int k ;

}
{

int l ;
int m ;

}
}

int a = 4;
{

int b = 3;
print(a, b);

}

int a = 4;
{

int a = 3;
int b = 3;
print(a, b);

}

• Shadowing occurs when an identifier declared within a given scope
has the same name as an identifier declared in an outer scope.

Nested Block and Inheritance

• Inheritance: declarations in a class are visible also in its subclasses

• Combined block structure and inheritance
• e.g., a method in a subclass can access instance variables in a superclass

class A { int a; … }
class B extends A {

void m() {
print(a);
int a = 0;
}

}

class A {
void m() {}

}
class B extends A {

void m2() { m(); }
void m() {}

}

class A { int a; … }
class B extends A {

print(a);
int a = 0;

}

Scope rules (visibility rules)

• What are the binding rules?
– Govern how identifier references are bound to identifier declaration.

• Typical factors (differ in different languages)
– Name collisions: what happens if the same name is declared in many

blocks?

– Combination: how can blocks be combined? what happens if a name

is not declared in local blocks?

– Declaration order: does it affect the bindings?

– Method overloading: can there be several methods of the same

name, but with different argument types?

– Parameters: how do they relate to local variables?

– Return values: are they named explicitly?

– Visibility restrictions: private, public, . . . qualified access access via

another name

– ….

Question Time J

Guess what would be the output?

Lexical Scoping vs. Dynamic Scoping

• Lexical Scoping: Scoping is determined by the program text (static)
– The scope of a declaration in a block B includes B
– If a variable x is not declared in B, then occurrence of x in B is in the scope

of the declaration of x in enclosing block B’ if

• B’ has a declaration of x
• B’ is more closely nested around B then any other block with

declaration of x
– Lexical scoping is used in languages such as Pascal, C

• Dynamic Scoping: Scoping is determined by the run-time behavior
– A variable that is not declared in the current scope is bound to the variable

by that name that was most recently created at run-time
– Dynamic scoping is used in some forms of LISP

Example: Lexical vs. Dynamic Scoping

With lexical scoping, the output is: 10
If dynamic scoping was used, then the output
will be: 20

The execution result you get is 10 for c
program.

Global
x: 10

Main

f

g
x:20

level = 0
level = 1

Example: Lexical vs. Dynamic Scoping

program dynamic(input, output)
var r : real;
procedure show;

begin write(r) end;
procedure small;

var r : real;
begin r := 0.125; show end;

begin
r := 0.25
show; small; writeln;
show; small; writeln

end.

With lexical scoping, the output is:
0.250 0.250
0.250 0.250

If dynamic scoping was used, then the output will be:
0.250 0.125
0.250 0.125

Lexically-Scoped Symbol Tables

The problem
• The compiler needs a distinct record for each declaration

• Nested lexical scopes allow for duplicate declarations

Solution: store the scope information in the symbol table

The interface
• Insert(name,level) – creates record for name at level
• Lookup(name,level) – returns pointer or index

• OpenScope() – increments the current level and creates a new symbol

table for that level

• CloseScope() – changes current level pointer so that it points at the table

for the scope surrounding the current level, and then decrements the

current level

Lexically-Scoped Symbol Tables

High-level idea
• Create a new table for each scope

• Chain them together for lookup

• Insert() inserts at the current level

• LookUp() walks chain of tables and
returns first occurrence of name

• OpenScope() creates a new table,
connects it to the current level and
updates the current level to point to
the new table

• CloseScope() removes the table
which is the top table in the chain

x, ...

c, ...

x, ...

a, ...

b, ...

c, ...

a, ...

•

Level 3
Level 2b

Level 1
Level 0

x, ...

exa, ...

w, ...

b, ...

z, ...

Level 2a
Current
Level

Example in C

int w; /* level 0 */
int x;
void example (int a, int b); /* level 1 */
{

int c;
{

int b, z; /* level 2a */
...

}
{

int a, x; /* level 2b */
...
{

int c, x; /* level 3 */
b = a + b + c + x;

}
}

}

Level Names

0 w, x, example

1 a, b, c

2a b,z

2b a, x

3 c, x

Level 0

Level 1

Level 2a Level 2b

Level 3
At any scope level, a variable is bound to the declaration that
is in that scope level. If there is no declaration at that scope level,
then it is bound to the declaration that is in its closest ancestor Nesting relationships

Example in C
Generated sequence of calls:

Insert(w)
Insert(x)
Insert(example)
OpenScope()
Insert(a)
Insert(b)
Insert(c)
OpenScope()
Insert(b)
Insert(z)
CloseScope()
OpenScope()
Insert(a)
Insert(x)
OpenScope()
Insert(c)
Insert(x)
Lookup(b)
LookUp(a)
LookUp(b)
LookUp(c)
LookUp(x)

CloseScope()
CloseScope()
CloseScope()

int w; /* level 0 */
int x;
void example (int a, int b); /* level 1 */
{

int c;
{

int b, z; /* level 2a */
...

}
{

int a, x; /* level 2b */
...
{

int c, x; /* level 3 */
b = a + b + c + x;

}
}

}

How to change our CFG
and semantics rules for
block level scoping?

Block0

Decl
L

®
½
½
½
®
®

Block1 Assign
Block1 Decl
Assign
Decl
Type L
L1 Identifier

i¬ hash(Identifier);
Table[i].declared ¬ true;

Assign ® Identifier = Expr ; i¬ hash(Identifier);
if (Table[i].declared = false)
 then ReportError(“No
Declaration”);

Expr0 ® Expr1 + Term

 ½ Expr1 – Term

 ½ Term

Term0 ® Term1 * Factor

 ½ Term1 / Factor

Type

½
®

Factor
int
boolean

Factor ® (Expr)

 ½ Number

 ½ Identifier

i¬ hash(Identifier);
if (Table[i].declared = false)
 then ReportError(“No
Declaration”);

Block0

Decl
L0

®
½
½
½
½

®
®

{ Block1 }
Block1 Assign
Block1 Decl
Assign
Decl

Type L
L1 Identifier

OpenScope() +CloseScope()

i¬ hash(Identifier);
Table[i].declared ¬ true;

Assign ® Identifier = Expr ;
Expr0 ® Expr1 + Term

….

Factor ® (Expr)
 ½ Number
 ½ Identifier

i¬ hash(Identifier);
if (Table[i].declared = false)
 then ReportError(“No
Declaration”);

Flexibility in Ad-hoc syntax-
directed translation:
A à BCD
A à {action} B{action} C
{action} D{action}

For this example, we have
Block0 --> { openScope() Block1 } CloseScope()

Others

• Additional constraints might exist depending on the specific language.

• Parameters: Usually, parameters can be seen as special local variables
and it is wrong to declare a local variable with the same name

...
v o i d main () {

i = 3;
}
i n t i ;
...

- invalid in C

- valid in Java

void method1(int x, y){
int s = 2;
x = s + y;
...

}

void method1(int x, y){
int x; // multiple declaration of x
...

}

