
CMPSC 160
Translation of Programming Languages

Lecture 12: Address Translation and
Memory Allocation

Address of Variables

How does the compiler represent memory location for a specific
instance of variable x for a procedure?

• Name is translated into a static coordinate: < level, offset >
– “level” is lexical scoping level
– “offset” is unique within that scope
– “offset” is assigned at compile time and it is used to generate code

that executes at run-time

• Static distance coordinate is used to generate addresses
– For each lexical scope level we have to generate a base address
– offset gives the location of a variable relative to that base address

Memory Allocation

P ® D
D ® D; D
D ® id : T
T ® char | int | float | array[num] of T | pointer T

Attributes: T.type, T.width
Basic types: char width 4, integer width 4, float width 8
Type constructors: array(size,type) width is size * (width of type)

pointer(type) width is 4

• Enter the variables to the symbol table with their type and memory location:
enter(name, type, location)

• Set the type attribute T.type and calculate the width (T.width) for each type

• Layout the storage for variables
• Calculate the offset for each local variable and enter it to the symbol table
• Offset can be offset from a static data area or from the beginning of the local data

area in the activation record

Translation Scheme for Memory Allocation

P ® {offset ¬ 0;} D
D ® D; D
D ® id : T {enter(id.name, T.type, offset); offset ¬ offset + T.width; }
T ® char { T.type ¬ char; T.width ¬ 4; }

| int { T.type ¬ integer; T.width ¬ 4; }
| float { T.type ¬ float; T.width ¬ 8; }
| array[num] of T1 { T.type ¬ array(num.val, T1.type);

T.width ¬ num.val * T1.width; }
| pointer T { T.type ¬ pointer(T1.type); T.width ¬ 4; }

• Note that if the size of the array is not a constant we cannot
compute its width at compile time
• In that case, allocate the memory for the array in the heap at
runtime, and allocate the memory for the pointer to the heap at
compile time

Question Time J

What are the results?

Memory Alignment and Padding

• The storage layout for data objects is strongly influenced by the
addressing constraints of the target machine.

• On many machines instructions to add integers may expect
integers to be aligned that is placed at an address divisible by 4.

Question Time J

What are the results?

Another Example

• sizeof(struct data_) gives you 12 bytes.

Questions/Challenges

• Beyond memory alignment, how to include lexical scoping
information for “blocks”, “functions” into our translation scheme?
– Shall we treat “blocks” and “functions” in the same way?

• How to treat more complicated cases?
– function called by multiple different places with different #parameters?
– the number times that a function being called is only known at runtime.
– malloc() to allocate some space of memory but the size is only known

at runtime.

Motivating Example

In the evaluation of fact(10)
• How many different variables are used?
• How many times do fact function is being

called under different input parameters?

On hardware: just code and data.
• How many copies of fact and n shall we

pre-allocate when generating the
program? What is the address for n ?

• Consider the following program to compute the factorial function:

No abstraction of procedure at al from the hardware side.

Key Topics

• Several key issues:
– the layout and allocation of storage locations for the objects

named in the source program
• memory management: stack allocation, heap management,

and garbage collection.
– the mechanisms used by the target program to access

variables and data

• Others
– The linkage between procedures
– the interface to the operating system, input/out device

Overall: Runtime Memory

• Typical subdivision of run-time memory into code and data areas

• Compiler writer: the executing target program
runs in its own continuous logical address
space in which each program value has a
location

• The Operating System then maps the logical
addresses into physical addresses, which are
usually spread throughout memory.

e.g., a C++ compiler on an operating system like Linux might subdivide
memory in this way.

Static Storage Allocation

We say that a storage allocation decision is static
if it be made by the compiler looking only at the
text of the program.

Static allocation
• Code: generated target code is fixed at compile

time so the compiler can place the executable
target code in a statically determined area
Code, usually in the low end of memory

• Static Data: such as global constants. These
data objects can be placed in another statically
determined area called Static.
– Benefits: the addresses of these objects

can be compiled into the target code.

Dynamic Storage Allocation

Conversely, a decision is dynamic if it can be
decided only while the program is running

Why do we need dynamic area?
• Some space we do not know the size at

compile time: think of local variables for
recursive function.

• To maximize the utilization of space at run
time: space for local variables can be
reclaimed for other usage.

Dynamic Storage Allocation

To dynamic space whose size can change as the
program executes
• Stack

– centering around procedures (same for functions,
methods or any units of user-defined actions)

– Dynamic (#number of copies + size) + Local
• Heap

– Dynamic but not Local: data that may outlive the
call to the procedure that created it is usually
allocated on a “heap” of reusable storage

– Garbage collection.

Examples: Stack and Heap Memory (Both
at Runtime)

Examples: Stack and Heap Memory

Intermixed example of both
kind of memory allocation
Heap and Stack in java.

stack

i = 4

stack

i = 4
j = 4

stack

i = 4
j = 4
cls1

cls1

stack

cls1

Stack Memory for Procedures

• When a procedure is called, a block is reserved on the top of the
stack for local variables and some bookkeeping data.

• When that procedure returns, the block becomes unused and can
be used the next time a function is called.

• The stack is always reserved in a LIFO (last in first out) order; the
most recently reserved block is always the next block to be freed.

• This makes it really simple to keep track of the stack; freeing a
block from the stack is nothing more than adjusting one
pointer.

Other Advantages of Stack Memory

• Memory: Super efficient memory reuse as this arrangement allows
space to be reused by procedure calls whose durations do not
overlap in time.

• Computation: It allows us to compile code for a procedure in such a
way that the relative addresses of its local variables are always the
same regardless of the sequence of procedure calls (use of relative
addressing).

Stack Memory Management

Stack allocation would not be feasible if procedure calls or activations
of procedures did not nest in time.

• Calling Sequences
• Activation Tree
• Activation Record
• Compiler-generated code for control and stack management

• prologue + epilogue + pre-call + post-return

Nesting of Procedure Calls: Quicksort

Activation Tree: Quicksort

• The sequence of procedure calls ≡ pre-order traversal of activation tree.
• The sequence of returns ≡ post-order traversal of activation tree.

A possible activation tree

A possible execution sequences

Activation Tree

Activation Tree:
• Nodes of the tree are all procedure calls done in one execution of a

program
• Root of the tree is the call to main
• q is a descendant of p if a call to p results in a call to q.

Useful relationships between the activation tree and the behavior of
the program
• The sequence of procedure calls ≡ pre-order traversal of activation

tree.
• The sequence of returns ≡ post-order traversal of activation tree

Activation Stack

Stack of current activations:
• If a procedure p has been called, but not yet returned, then p is “live” on the stack.
• The information regarding the live activations are kept on a stack, with the most recent

call on top of the stack.
• If control is at a procedure p, then all activations on the path from root to p of the

activation tree are “live”.

q(7,7)

q(7,9)
q(5,9)
q(1,9)

m

A snapshot of the control
stack at a time

A Single Activation Records: What to include?

• Activation Record stores the key information that needed for a procedure.

• The actual parameters used by the calling procedure.
• Space for the return value of the called function if any.
• Control link: the activation record of the caller.
• Access link: next-level of lexical scope (still remember

name analysis?)
• Saved machine status: for example, the return address

(the program counter) to which the called procedure must
return and the contents of registers of the calling
procedure.

• Temporary values such as those arising from the
evaluation of expressions

