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Recap on Last Lecture

• Stack management for procedures (and methods, classes)
implementations.

• Keys for implementing procedures with stack
– One copy of code + dynamic copies of data on stack at runtime

• the relative addresses of local data in the code can be generated at
compiler time, so we only need a copy of code.

• accommodate a single callee functions called by different caller functions.
• accommodate recursive calls
• accommodate a functions called by different parameters

– Data for the procedure is stored on stack, also called activation record.
• Stores the key information for us to restore the execution of the callee （

often also filled in by the callee）.
• Also stores the local data and temporizes for the callee (often filled by the

caller)



Recap on Last Lecture

• These four (prologue, …) are the compiler-generated code for manipulating the stack
at runtime.

An activation record for a procedure on stack

call q



Another Dynamic memory: Heap

• Heap: The heap is another memory set aside for 
dynamic allocation. Data on heap have lifetimes 
that may differ from the life of a procedure call. 
Memory for heap data is allocated on demand 
(e.g., malloc, new, etc.) . . . 
. . . and released 
– Manually: e.g., using free 
– Automatically: e.g., using a garbage collector



Another Dynamic memory: Heap

Intermixed example of both 
kind of memory allocation 
Heap and Stack in java.
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Stack VS. Heap

• Stack memory is associated with the stack data structure, which follows a
LIFO pattern for memory allocation and deallocation.

• But the name heap has nothing to do with the heap data structure. It is 
called heap because it is a pile of memory space available to programmers 
to allocate a block at any time and free it at any time. 

• This makes it much more complex to keep track of which parts of the heap 
are allocated or free at any given time; there are many custom heap 
allocators available to tune heap performance for different usage patterns.

Stack Heap



Heap Memory

• Heap memory allocation isn’t as “safe” and “fast” as Stack memory 
allocation was because the data stored in this space is accessible 
or visible out of a procedure.

– Performance. Size of Heap-memory is quite larger as compared 
to the Stack-memory. The processing time (accessing time) of 
this memory is quite slow as compared to Stack-memory.

– Safety. Different from stack memory management, no efficient,
automatic de-allocation feature is provided. “Safer concerns”
raise if not handled well. For example, We receive the 
corresponding error message if Heap-space is entirely full, for 
example, java.lang.OutOfMemoryError by JVM.



Key Memory Manager Functions

• Memory manager: the subsystem that allocates and deallocates 
space within the heap.

– Allocation: A chunk of contiguous heap memory of the requested size 
when a request is issued. If not enough space, then increasing the 
heap storage space by getting consecutive bytes of virtual memory.
We also assume that (1) Allocation requests were for chunks of the 
different sizes. (2) There is no good way to predict the lifetimes of all
allocated objects.

– Deallocation: …



Allocation Examples: Internal Fragmentation

p1 = malloc(4*sizeof(int))

p2 = malloc(5*sizeof(int))

p3 = malloc(6*sizeof(int))

free(p2)

p4 = malloc(2*sizeof(int))



Allocation Examples: External Fragmentation

p4 = malloc(7*sizeof(int))

Occurs when there is enough aggregate heap memory, but no single free block is 
large enough

p1 = malloc(4*sizeof(int))

p2 = malloc(5*sizeof(int))

p3 = malloc(6*sizeof(int))

free(p2)



Key Memory Manager Functions

• Memory manager: the subsystem that allocates and deallocates 
space within the heap.

– Allocation: A chunk of contiguous heap memory of the requested size 
when a request is issued. If not enough space, then increasing the 
heap storage space by getting consecutive bytes of virtual memory.
We also assume that (1) Allocation requests were for chunks of the 
different sizes. (2) There is no good way to predict the lifetimes of all
allocated objects.

– Deallocation: it will return deallocated space to the pool of free space 
so it can reuse the space to satisfy other allocation requests. NOTE: it
typically do not return memory to the operating system even if the 
program‘s heap usage drops.

Our focus



Manual Memory Deallocation

• Programmer has full control over memory 
• . . . with the responsibility to manage it well 

• Premature free’s lead to dangling references (referencing deleted 
data)

• Overly conservative free’s lead to memory leaks (failing ever to 
delete data that cannot be referenced )

• With manual free’s it is virtually impossible to ensure that a program 
is correct and secure.

• Even with manual memory management, the system maintains 
bookkeeping data and does non-trival memory-related processing 
(e.g., search for appropriate chunk to allocate, avoid fragmentation, 
etc.)



Garbage Collector

• Data that cannot be referenced is generally known as garbage.

• Many high-level programming languages remove the burden of 
manual memory management from the programmer by offering 
automatic garbage collection, which deallocates unreachable data

• Garbage collection dates back to the initial implementation of Lisp 
in 1958.

• Other significant languages that offer garbage collection include 
Java, Perl, ML, Modula-3, Prolog, and Smalltalk.



Garbage Data: Memory as a Graph

• Each data block is a node in the graph 
• Each pointer is an edge in the graph
• Root nodes: locations not in the heap that contain pointers into the 

heap (e.g., registers, locations on the stack, global variables)

Root nodes

Heap nodes

unreachable
(garbage)

reachable



Performance Metrics

• Many different approaches, but there is not one clearly best 
garbage collection algorithm.

• Key metrics:
– Overall Execution Time. It is at runtime, taking part of our program

execution time.

– Pause Time. It could cause programs pause suddenly. A maximum
pause time shall be guaranteed, especially for those real-time 
applications that require certain computations to be completed within a 
time limit.

– Program Locality. It also controls the placement of data and thus 
influences the data locality. A great “garbage collector” could makes
the original problem running much slower.



Classical GC algorithms

• Reference counting (Collins, 1960)
– Does not move blocks

• Mark and sweep collection (McCarthy, 1960)
– Does not move blocks (unless you also “compact”)

• Copying collection (Minsky, 1963)
– Moves blocks (compacts memory)

• For more information, see Jones and Lin, “Garbage Collection: 
Algorithms for Automatic Dynamic Memory”, John Wiley & Sons, 
1996.



Reference Couting

• Reference counting is a conservative technique for detecting garbage. 
• Each object has a reference count: the #references made to it. 

(in-degree of the node in object graph). When the reference count of an 
object falls to 0, then the object is garbage.

• When an object is allocated, we initialize its reference count to 0.
• Increment reference counts

– Assignment
– Parameter Passing (more like explicit assignment)

• Decrement reference counts
– New Assignment (p = q à p = r)
– Procedure exits. All objected referred to by its local variables shall

have their counts decremented. If local variables hold references to 
the same object, that object’s count must be decremented once for 
each such reference.



Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …



Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …

1 10a



Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …

2 10a

b 1 20



Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …

1 10

a

b 2 20



Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …

1 10

a
1 20



Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …

1 10

0 20



Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …

0 10



Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …



An unreachable, cyclic data structure 

• Three objects with references among them, but no references from 
anywhere else.

• If none of them is part of the root set, then they are all garbage, but 
their reference counts are each greater than 0.

• Such a situation is tantamount to a memory leak if we use 
reference counting for garbage collection.

data structures often
point back to their parent
nodes or point to each 
other as cross references



Reference Counting: Summary

Advantages:
– Does not create long pauses.
– memory efficient because it finds garbage as so on as it is produced.
– Simple. Needs no elaborate system support. (e.g., used in OS Kernel 

data structures).

Disadvantages:
• Has high overheads which is proportional to the amount of 

computation in the program and not just to the number of objects in 
the system. It indeed imposes an overhead on every operation that 
stores a pointer. e.g., a single move operation p = q will need 
manipulation of two counts.

• Cyclic structures cannot be detected as garbage.



GC Without Reference Counts

• If don’t have counts, how to deallocate?

• Determine reachability by traversing pointer graph directly
– Stop user’s computation periodically to compute reachability
– Deallocate anything unreachable



Mark-and-Sweep Collector

Two-phase collector 
• Mark Phase: Does a depth-first traversal of the object graph 

starting from the roots. 
Marks all objects visited (note reachable nodes represent live data) 

• Sweep Phase: Does a sweep over the entire heap, adding any 
unmarked node to the free list, and removing marks from nodes 
(preparing for next round) 

Needs extra bookkeeping space in each object for storing the 
marks.



Mark & Sweep: GC Example

Root pointers:

Heap:

Assume fixed-sized, single-pointer data blocks, for simplicity.

Unmarked= Marked=



Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=



Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=
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Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=



Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=



Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=



Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=



Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=



Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=



Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=

Free list:



Mark & Sweep: Summary

• Advantages:
– No space overhead for reference counts
– No time overhead for reference counts
– Handles cycles

• Disadvantage:
– Cost of collection is proportional to the entire heap size (since sweep 

traverses the whole heap). 
– Noticeable pauses for GC



Stop & Copy Garbage Collector

Two-Space Collector (Cheney’s Algorithm) 
• Heap is divided into two spaces: 

– From Space: The currently active heap 
– To Space: Space to which objects will be copied (currently inactive)

• Objects reached are copied from the From Space to To Space 

• References to copied objects are modified during the traversal. 

• From and To spaces are swapped at the end of copying



Stop & Copy: GC Example

Root pointers:

From:

Uncopied= Copied=

Assume fixed-sized, single-pointer data blocks, for simplicity.

To:



Stop & Copy: GC Example

Root pointers:

From:

Uncopied= Copied=

To:



Stop & Copy: GC Example

Root pointers:

From:

Uncopied= Copied=

To:



Stop & Copy: GC Example

Root pointers:

From:

Uncopied= Copied=

To:



Stop & Copy: GC Example

Root pointers:

From:

Uncopied= Copied=

To:



Stop & Copy: GC Example

Root pointers:

From:

Uncopied= Copied=

To:



Stop & Copy: GC Example

Root pointers:

From:

Uncopied= Copied=

To:



Stop & Copy: GC Example

Root pointers:

From:

Uncopied= Copied=

To:



Stop & Copy: GC Example

Root pointers:

From:

Uncopied= Copied=

To:



Stop & Copy: GC Example

Root pointers:

From:

Uncopied= Copied=

To:



Stop & Copy: GC Example

Root pointers:

To:

From:

Next block to allocate



Stop & Copy GC

• Needs more heap space than is currently used, but 
– Memory is compacted during copy, and hence no fragmentation 

• Cost of collection is proportional to size of live objects in heap 
(unreachable objects are not touched). 

• Objects that survive a collection may get copied repeatedly, which 
is expensive. 

• Often used as a part of a generational garbage collector



Stop & Copy GC

• Advantages:
– Handles cycles
– “Compacts” data, tends to increase spatial locality 
– Very simple allocation

• Disadvantages:
– Noticeable pauses for GC
– Double the basic heap size



Other GC Variations

• Many variations on three main themes
– Concurrent GC: Garbage collector runs concurrently (e.g., in a 

separate thread) with the program; the program is not interrupted for 
collection

– Generational GC: Objects are divided into old and new generations, 
and new generations are collected more often. It exploits the 
observation that most objects have a short lifetime.

– Conservative GC: It conservatively assumes that integers and other 
data can be cast to pointers

• Combinations of these three main themes are common
– Java uses both Copying and Mark-and-Sweep within a Generational 

GC


