
CMPSC 160
Translation of Programming Languages

Lecture 14: Code Generation: Stack
Machine Code

Code Generation

– We will discuss code generation for stack machine code and three-
address code.

– We will discuss how to deal with Boolean values, control flow (such as
loops and if-then-else statements), functions, and etc.

Register-based VS. Stack-based Machines

A register-based machine has a number of registers used for
calculations. 2 + 3 would work something like this:
• LOADI R4,#2; ：Load immediate 2 into register 4

LOADI R5,#3; ：Load immediate 3 into register 5
ADD R4,R5; ：Add R4 and R5, storing result in R4

On a stack-based machine, computation would work like this
• PUSHI #2； ：Push immediate 2 onto stack

PUSHI #3; ：Push immediate 3 onto stack
ADD; ：Pop top two numbers, add them, and push results to
the top of the stack.

Key Challenge in Code Generation

• Different hardware backends.

• Good abstraction is needed.

• We first need to understand general code generation principles.

General Code Generation Principles

• Each different type of computer has a different type of assembly
code, so what are the general principles?

• Key: the code generation method will usually need refining to
produce code of a reasonable quality: the interplay between main
memory and the arithmetic logic unit (ALU) in the CPU:
– some computers put values from the main memory into a small, fast

memory within the CPU before they can be used
– most computers can normally use one operand in main memory per

instruction; some computers can use more.

General Code Generation Principles

• Fast memory within the CPU used for arithmetic:
– several arithmetic registers (can access different registers)
– a stack memory (only access the top parts)
– a hybrid mode: stack + registers (the most common case is to use a

single accumulator register)

• ALU can only operate on fast memory or also main memory
– stack-based machine: only stack + register (if in a hybrid mode). That

is to say, data has to be loaded into fast memory before execution
– register-based machine: most of the computations and temporary

results are stored in register. Some machine also allows arithmetic
instructions with operands of data in memory.

Our Focus

• We first focus on generating code for a stack machine (w/ and w/o
accumulator) with syntax-based translation.

• We will simulate the execution of resulting code on a real machine,
e.g., the MIPS/x86 processor (or simulator)
– We simulate stack machine instructions using MIPS/x86 instructions

and registers.

• Code generation for function calls (especially the control transfer
with specialized activation record designs).

Why Use a Stack Machine ?

• Easy to describe & understand： Each operation takes operands
from the same place and puts results in the same place， In
particular，
– Location of the operands is implicit
– Always on the top of the stack
– No need to specify operands explicitly
– No need to specify the location of the result
– Instruction “add” as opposed to “add r1, r2” ⇒ Smaller encoding of

instructions ⇒ More compact programs

• This is one reason why Python and Java Bytecodes use a stack
evaluation model

Why Use a Stack Machine ?

• Easy to generate from a compiler’s perspective: code generation
for stack machines is much simpler than for register machines,
since e.g., no register allocation is needed (we’ll talk about register
allocation later in this course).

• Compact object code, which saves memory.
– The reason for this is that machine commands have no, or only one

argument, unlike instructions for register machines.
• Simple CPUs (= cheap, easy to manufacture).
• Used in e.g., the JVM and WebAssembly.

• But stack machines also have disadvantages, primarily that they
are slow (see e.g., the Wikipedia page on stack machines), but for
us here simplicity of code generation is key.

Stack Machine Instructions

• Instructions of a typical stack machine
– These are similar to instructions of JVM

multiply, divide, add, subtract
pop top two values from the operand stack perform the operation on them

and push the result back to the operand stack
and, or

pop top two values from the operand stack perform the bitwise “and” or
“or” operation on them and push the result back to the operand stack

push <constant>
push the constant value to the stack

load <location>
push the value at the given memory location to the stack

store <location>
pop the value at the top of the stack and store it to the given memory

location

Stack Machine Instructions

• Control flow

goto <label>
jumps to the instruction with the given label (address of instructions)

ifeq <label>
pop the top element from the operand stack and jump to the instruction

with the given label if it is equal to 0
ifne <label>

pop the top element from the operand stack and jump to the instruction
with the given label if it is not equal to 0

if_cmplt (or iflt) <label>
pop the top two elements from the operand stack and jump to the

instruction with the given label if the one popped second is less than
the one popped first

Similar instructions:
if_cmpeq,if_icmpne,if_cmpgt,if_cmple,if_cmpge

A simple language

Step2b: Boolean Expressions to work with control statements
E ® E1 relop E2
E ® E1 and E2
E ® E1 or E2
E ® not E1
E ® true
E ® false

Step1: Language only with Arithmetic Expressions
S ® id := E
E ® E1 + E2
E ® E1 * E2
E ® (E1)
E ® - E1
E ® id
E ® num

Step2a： Extended with control statements
S ® if E then S1 else S2
S ® while E do S1
S ® S1 ; S2

Stack Machine Code

if (x < y)

x = 5*y + 5*y/3;

else

y = 5;
x = x+y;

load x
load y
iflt L1
push 0
goto L2

L1: push 1
L2: ifne L3:

goto L4
L3: push 5

load y
multiply
push 5
load y
multiply
push 3
divide
add
store x
goto L5

L4: push 5
store y

L5: load x
load y
add
store x

pops the top
two elements and
compares them

pops the top two
elements, multiplies
them, and pushes the
result back to the stack

pushes the value
at the location x to
the stack

stores the value at the
top of the stack to the
location x

pops the top
element and
compares it to 0

Stack-Based Code Generation for
Expressions and Assignment

Productions
S ® id := E
E ® E1 + E2
E ® E1 * E2
E ® (E1)
E ® - E1
E ® id
E ® num

Attributes: E.code: sequence of instructions that are generated for E
(no place for an expression is needed since the result of an expression
is stored in the operand stack)

Procedures: gen(): Generates instruction (have to call it with appropriate arguments)
lookup(id.name): Returns the location of id from the symbol table
|| denotes concatenation

Stack-Based Code Generation for
Expressions and Assignment

Productions Semantic Rules
S ® id := E id.place ¬ lookup(id.name);

S.code ¬ E.code || gen(‘store’ id.place);
E ® E1 + E2 E.code ¬ E1.code || E2.code || gen(‘add’);

(arguments for the add instruction are at the top of the stack)
E ® E1 * E2 E.code ¬ E1.code || E2.code || gen(‘multiply’);
E ® (E1) E.code ¬ E1.code;
E ® - E1 E.code ¬ gen(‘push 0‘) || E1.code || gen(‘subtract‘);

(if there is an instruction to negate the value at the top, then we can use that)
E ® id id.place ¬ lookup(id.name);

E.code ¬ gen(‘load’ id.place);
E ® num E.code ¬ gen(‘push’ num.value);

Attributes: E.code: sequence of instructions that are generated for E
(no place for an expression is needed since the result of an expression
is stored in the operand stack)

Procedures: gen(): Generates instruction (have to call it with appropriate arguments)
lookup(id.name): Returns the location of id from the symbol table
|| denotes concatenation

Example

x := (y + z) * a S

id := E

E * E

(E)

E + E

id: a

id： y id: z
E.code = “load z”

E.code = “load y”

E.code =
“ load y
load z
add”

E.code =
“ load y
load z
add”

E.code = “load a”

E.code =
“ load y
load z
add
load a
multiply”

S.code =
“ load y
load z
add
load a
multiply
store x”

Note

• The code for e1 + e2 and other arithmetic expression unit is a
template with “holes” for code for e1 and e2.

• Stack machine code generation is recursive.

• Code for e1 + e2 consists of code for e1 and e2 glued together.

• Code generation—at least for expressions—can be written as a
postorder transversal of the AST.
– suppose we have already used ad-hoc syntax based translation for

address translation for different variables and store them in the symbol
table (see lecture 12)

Code Generation for Boolean Expressions

• Two approaches
– Numerical representation
– Implicit representation

• Numerical representation
– Use 1 to represent true, use 0 to represent false
– For stack machine code store this result in the stack
– For three-address code store this result in a temporary

• Implicit representation
– For the boolean expressions which are used in flow-of-control

statements (such as if-statements, while-statements etc.) boolean
expressions do not have to explicitly compute a value, they just need
to branch to the right instruction

– Generate code for boolean expressions which branch to the
appropriate instruction based on the result of the boolean expression

Boolean Expressions: Numerical
Representation, Stack Machine Code

Attributes : E.code: sequence of instructions that are generated for E
relop.op: operator can be ==, !=, <=, >=, >, <

Procedures: newlabel(): generates a new label

Productions Semantic Rules
E ® E1 relop E2
E ® E1 and E2
E ® E1 or E2
E ® not E1
E ® true
E ® false

Boolean Expressions: Numerical
Representation, Stack Machine Code

Attributes : E.code: sequence of instructions that are generated for E
relop.op: operator can be ==, !=, <=, >=, >, <

Procedures: newlabel(): generates a new label

Productions Semantic Rules
E ® E1 relop E2 L1¬ newlabel();

L2¬ newlabel();
E.code ¬ E1.code || E2.code

|| gen(‘if_cmp’ relop.op L1)
|| gen(`push 0’) || gen(‘goto’ L2)
|| gen(‘L1 :’) || gen(`push 1’) || gen(‘L2 :’);

E ® E1 and E2 E.code ¬ E1.code || E2.code || gen(`and’);
E ® E1 or E2 E.code ¬ E1.code || E2.code || gen(`or’);
E ® not E1 E.code ¬ E1.code || gen(`negate’);
E ® true E.code ¬ gen(`push 1’);
E ® false E.code ¬ gen(`push 0’);

This will be the
label of the
instruction that
comes after this one

Numerical Representation of Boolean
Expressions

Input boolean expression: x < y and a == b

Generated stack machine code:

load x
load y
if_cmplt L1
push 0
goto L2

L1: push 1
L2: load a

load b
if_cmpeq L3
push 0
goto L4

L3: push 1
L4: and

code generated for x < y

code generated for a == b

