
CMPSC 160
Translation of Programming Languages

Lecture 15: Code Generation: Stack 
Machine Code 



Recap on Last Lecture

if (x < y)

x = 5*y + 5*y/3;

else

y = 5;
x = x+y;

load x
load y
iflt L1
push 0
goto L2

L1: push 1
L2: ifne L3:

goto L4
L3: push 5

load y
multiply
push 5
load y
multiply
push 3
divide
add
store x
goto L5

L4: push 5
store y

L5: load x
load y
add 
store x

pops the top
two elements and
compares them

pops the top two 
elements, multiplies
them, and pushes the
result back to the stack

pushes the value
at the location x to 
the stack 

stores the value at the 
top of the stack to the 
location x 

pops the top
element and
compares it to 0 

Tips for Code Generation:
1. get an idea of your input and out programs
2. figure out their mapping

Last lecture:
1. Arithmetic Expression
2. Boolean Expression: numerical evaluation



Flow-of-Control Statements

If-then-else
• Branch based on the result of boolean test expression

boolean test
expression

then-block

Y N

Next block

else-block



Flow-of-Control Statements: Code Structure

S® if E then S1 else S2

• We have to decide on the code layout for the code for flow-of-control,
as on hardware, we can only have straight-line code + jumps

E.code

S1.code

goto L2:

S2.code

•••

L1:

L2:

if E is false, 
goto L1

This will be the 
label of the 
instruction that 
comes after this one



Flow-of-Control Statements, Stack-Based Code, 
Assuming Numeric Representation for Boolean 

Expressions 

Productions Semantic Rules

S ® if  E then S1 else S2 L1¬ newlabel(); 
L2¬ newlabel(); 
S.code ¬ E.code || gen(`ifeq L1’) || S1.code 

|| gen(‘goto L2’ ) || gen( ‘L1 :’) || S2.code ||  gen( ‘L2 :’) ;

ASSUMPTION: the code generated 
for boolean expression E will leave 
a numeric value (0 or 1) for the 
expression at the top of the stack

ifeq <label>
pop the top element from the operand 
stack and jump to the instruction with the 
given label if it is equal to 0



Flow-of-Control Statements: Code Structure

E.code

S1.code

goto L1
L2:

L1:

S® while E do S1

E.code

S1.code

goto L1

L1:

L2:

Two different layouts for while statements:

• Layout 1: • Layout 2:

if E is false, 
go to L2

if E is true, 
go to L2

•••

•••



Flow-of-Control Statements, Stack-Based Code, 
Assuming Numeric Representation for Boolean 

Expressions 

Productions Semantic Rules

S ® while E do S1 L1¬ newlabel();
L2¬ newlabel(); 
S.code ¬ gen( ‘L1 :’) || E.code || gen(`ifeq L2’) || S1.code 

|| gen(‘goto L1’) ||  gen( ‘L2 :’) ;

Attributes : S.code: sequence of instructions that are generated for S

Layout 1:



Flow-of-Control Statements, Stack-Based Code, 
Assuming Numeric Representation for Boolean 

Expressions 

Productions Semantic Rules

Attributes : S.code: sequence of instructions that are generated for S

Layout 2:

The code after E is the next statement, which
shall be executed only when E evaluates to 0.
That is why we use instruction ifne <label> to
branch out to the code S1.

S ® while E do S1 L1¬ newlabel();
L2¬ newlabel(); 
S.code ¬ gen(‘goto L1’) || gen( ‘L2 :’) || S1.code ||

gen( ‘L1 :’) || E.code || gen(`ifne L2’) || gen(‘goto L2’);



Example

Input code fragment:

while (a < b)  {
if  (c < d)

x = y + z;
else 

x = y – z
}

L1: load a 
load b
if_cmplt L2
push 0
goto L3

L2: push 1
L3:  ifeq LNext       

load c
load d
if_cmlt L4
push 0
goto L5

L4:  push 1
L5:  ifeq L6

load y
load z
add
store x
goto L7

L6:  load y
load z
subtract
store x

L7: goto L1
LNext: ...



Optimizing the Stack Machine

• The “add” instruction does 3 memory operations 
– Two reads and one write to the stack 
– The top of the stack is frequently accessed 
– Idea: keep the top of the stack in a register (called accumulator)  

Register accesses are faster 
– The “add” instruction is now acc ← acc + top_of_stack 
– Only one memory operation!

• Key: now we have arithmetic instructions to support operands both
in register and on stack. Previously, the operands must be on the
stack.



Example

• Consider the expression e1 + e2. 
• At a high level, the stack machine code will be: 

cgen(e1)
push acc on the stack 
cgen(e2)
add top stack element and acc, store in acc 
pop one elements off the stack 

We assume that cgen(e1) will keep the stack invariant before and 
after the execution of its code, and with the register acc keeping its 
evaluation results.



A Bigger Example: 3 + (7 + 5)

The stack is kept invariant before and after the evaluation of an expression
• before and after evaluating individual numbers, e.g., 3, 5, 7
• before and after evaluating (7+5)
• before and after evaluating 3+(7+5)



From Stack Machines to Real Register-
based Machines

• The compiler generates code for a stack machine with accumulator
• But mainstream processors are register-based processor （MIPS +

x86）
• We simulate stack machine instructions using MIPS/x86

instructions and registers
– This process can be rather straightforward.



Both MIPS （RISC） and x86 （CISC） are
register-based Architectures

• Different number of registers
– MIPs: 32, 32-bit registers
– x86: More registers and registers of different lengths

• Different names of registers
– MIPS: $a0, $s0, $t0, $at, $sp
– x86: EAX, EBX, CS, ES, ESI, EDI

• X86 allows partial reads/writes
– MIPS: Can only write all 32 bits
– x86: Can write to 8-, 16-, or 32-bit portions of the registers



Both MIPS and x86 use the same basic
instruction types

• Instruction types: Arithmetic logic Operations, Data Movement (load
and store), and Control

• Different memory access model.
– MIPS must use load and store instructions to use operands and results in 

memory
– x86 can directly perform arithmetic logic operation on main memory, for

example, x86 supports (register) ß (register + memory) format.
– x86 also has special pop and push instructions for stack operations.

• Different instruction lengths
– MIPS: all instructions are 32 bits
– x86: instructions range from 8 bits to over 32 bits



Simulating a Stack Machine on MIPS…

Stack
• The stack is kept in memory 
• The stack grows towards lower addresses

Register
• The accumulator is kept in MIPS register $a0 
• The address of the next location on the stack is kept in MIPS 

register $sp
• The top of the stack is at address $sp + 4



A Sample of MIPS Instructions

• li reg imm 
– reg ← imm

• w reg1 offset(reg2) 
– Load 32-bit word from address reg2 + offset into reg1 

• sw reg1 offset(reg2) 
– Store 32-bit word in reg1 at address reg2 + offset 

• add reg1 reg2 reg3 
– reg1 ← reg2 + reg3 

• addiu reg1 reg2 imm 
– reg1 ← reg2 + imm 
– “u” means overflow is not checked 

• Jump <label>
• beq reg1 reg2 <label>



Expression Code for MIPS

• The stack-machine code for 7+5 in MIPS:

acc <-- 7 : li $a0, 7 
push acc : sw $a0, 0($sp) 

addiu $sp, $sp, -4 
acc <-- 5 : li $a0, 5 
acc < acc + top_of_stack : lw $t1, 4($sp) 

add $a0, $a0, $t1 
pop : addiu $sp, $sp, 4

Good news: mostly 1-1 mapping with simple translation rules.



A Sample of x86 Instructions

• movl reg1/(memaddr1)/imm, reg2/(memaddr2)
– Move 32-bit word from register reg1 (or address memaddr1 or the immediate 

value itself) into reg2 or to memory address memaddr2
– More powerful than RISC, e.g., MIPS cannot move immediate value directly to 

memory

• push reg/(memaddr)/imm
– esp <-- reg/(memaddr)/imm; esp <-- esp – 4

• pop reg/(memaddr)/imm
– reg/(memaddr)/imm <-- esp; esp <-- esp+4

• push/pop are "higher-level" opcodes: enables faster execution paths for 
these common operations

• add reg1/(memaddr1)/imm, reg2/(memaddr2)
– reg2/(memaddr2) <-- reg1/(memaddr1)/imm + %reg2/(memaddr2)



Simulating a Stack Machine on x86…

Stack
• The stack is kept in memory 
• The stack grows towards lower addresses

Register
• The accumulator is kept in x86 register eax
• The address of the next location on the stack is kept in x86 register 

esp



Expression Code for x86

• The stack-machine code for 7+5 in x86:

acc <-- 7 : movl 7,eax
push acc : pushl eax
acc <-- 5 : movl 5, eax
acc < acc + top_of_stack : addl (%esp), eax
pop : pop %ecx

#just pop the top of
the stack to an
unused register $ecx

Again: mostly 1-1 mapping with simple translation rules.



How about Functions?

• Program for computing the Fibonacci numbers: 

def fib(x) = if x = 1 then 0 else 
if x = 2 then 1 else 

fib(x - 1) + fib(x – 2)

Extend our CFG:
S → D
D → def id(ARGS) = E; 
ARGS → id, ARGS | id
E → if E1 then E2 else E3
E → id(E1,…,En)



Our Simple Language

Step1: Language only with Arithmetic Expressions
S ® id := E
S ® S1 ; S2
E ® E1 +  E2
E ® E1 *  E2
E ® ( E1 )
E ® - E1 
E ® id
E ® num

Step2： Extended with control statements
and boolean expressions
S ® if  E then S1 else S2
S ® while E do S1
E ® E1 relop  E2
E ® E1 and E2
E ® E1 or E2
E ® not E1
E ® true
E ® false

Step3: Extended with functions
S → D
D → def id(ARGS) = E; 
ARGS → id, ARGS | id
E → if E1 then E2 else E3
E → id(E1,…,En)



The Activation Record (Lecture 12)

• For this language, an AR with the actual parameters, the 
return address suffices. 
– Actual parameters are the only variables in this 

language
– For f(x1,…,xn), push xn,…,x1 on the stack  

– We need the return address, which points to the caller’s
next instruction (code) to be executed

– The computation result is always in the accumulator 
– No need to store the result in the AR 

– We do not need to keep the control link as we can keep 
$sp the same on function exit as it was on function entry 
(special invariant property of stack machine code). 

• Note that control link is pointing to the top of caller’s
activation record (data and related information) on the
stack. 

Yes

Yes

No

No

No

No

Yes, and it is 
automatic as part of 
the stack computation



Dedicated Registers (Targeting MIPS) 

• Note: We have three dedicated registers $pc, $fp, $sp
– $fp: frame pointer
– $sp: stack pointer 
– $pc: next instruction to execute

• They are used to support function implementation, in addition to
the accumulator register $a0. They makes the generate code 
much more efficient.
– Reason for these two pointers will be clear shortly with examples.

• Note that for stack machine code, we use registers for dedicated 
usage. There is no need for register allocation optimization in a 
register-based machine code generation.



Why have $fp pointed to the “return
Address”?

• Because the stack grows when intermediate results are saved, the 
variables are not at a fixed offset from $sp

• $fp makes code generation for local variables much easier.
• Let xi be the ith (i = 1,…,n) formal parameter of the function for 

which code is being generated
– cgen(xi) = lw $a0 z($fp) ( z = 4*i )

• Example: For a function def f(x,y) = e, the activation and frame 
pointer are set up as follows:

• X is at fp + 4
• Y is at fp + 8



Code Generation for Function Call

sw $fp 0($sp)  
addiu $sp $sp -4 
cgen(en)

sw $a0 0($sp)  
addiu $sp $sp -4
… 
cgen(e1)

sw $a0 0($sp)
addiu $sp $sp -4 

sw $pc 0($sp)
mv $fp, $sp
addiu $sp $sp-4
jump f_entry

• The caller saves its value of the 
frame pointer $fp on stack

• Then it saves each of its actual  
parameters on the stack

• The caller saves the  return 
address in register $pc

• The AR so far is 4*n+ 8 bytes 
long

• f_entry points to the code for the
definition of function f.

Activation Record

This is a special implementation of pre-call (lecture 12)cgen(f(e1,…,en))
=  



Code Generation for Function Call

cgen(e)

lw $pc ($fp) 

addiu $sp $sp z 

lw $fp 0($sp) 

jump $pc

cgen(def f(x1,…,xn) = e) 
=

• We first restore the return address to $pc.
o This is important as e may included a

function call in its body.

The core part of this is a special implementation of 
epilogue (lecture 12)

• We then popping out the return address, the
actual arguments and the saved value of the
frame pointer.
o sp (caller) = sp (callee) + z

where z = 4*n + 8
• We restore the old $fp, which is stored on

bottom of callee’s stack

• Return the control to the caller



Summary

• Code generation can be done by ad-hoc syntax directed translation
– recursive traversal of the AST

• Stack machine code is easy to generate.
– When dealing with functions, the activation record must be designed

together with the code generator
• Stack machine code can also be simulated on register-based

machines.


