
CMPSC 160
Translation of Programming Languages

Lectures 16: Code Generation: Three-
Address Code + Register Allocation

Three Address Code

• Is an intermediate code used by optimizing compilers to aid in the
implementation of code-improving transformations.

• Each three address code instruction has at most three operands
and is typically a combination of assignment and a binary operator

• In three address code, there is at most one operator on the right
side of an instruction. That is no built- up arithmetic expressions are
permitted Example : x + y * z

• t1 = y * z; t2 = x + t1; where t1 and t2 are compiler-generated
temporary names. Temporary variables store the results at the
internal nodes in the AST

Three-Address Code Instructions

• Assignments
– x := y
– x := y op z op: binary arithmetic or logical operators
– x := op y op: unary operators (unary minus, negation,

integer to float conversion)
• Branch

– goto L Execute the statement with labeled L next

• Conditional Branch
– if x relop y goto L relop: <, >, =, <=, >=, ==, !=

• if the condition holds we execute statement labeled L next
• if the condition does not hold we execute the statement following

this statement next

Three-Address Code

if (x < y)

x = 5*y + 5*y/3;

else

y = 5;

x = x + y;

if x < y goto L1
goto L2

L1: t1 := 5 * y
t2 := 5 * y
t3 := t2 / 3
x := t1 + t3
goto L3

L2: y := 5
L3: x := x + y

Temporaries: temporaries correspond
to the internal nodes of the syntax tree

Variables can be represented with
their locations in the symbol table

Three-Address Code vs. Stack-Based Code

• Three-Address Code:
– Good: Statement is “self contained” in that it has the inputs, outputs,

and operation all in one “instruction”
– Bad: Requires lots of temporary variables
– Bad: Temporary variables have to be handled explicitly

• Stack-Based Code:
– Good: No temporaries, everything is kept on the stack
– Good: It is easy to generate code for this
– Bad: Requires more instructions to do the same thing

Three-Address Code

Productions
S ® id := E
E ® E1 + E2
E ® E1 * E2
E ® (E1)
E ® - E1
E ® id
E ® num

Attributes: E.place: location that holds the value of expression E
(this is the temporary variable that will hold the value of the expression)
E.code: sequence of instructions that are generated for E

Procedures: newtemp(): Returns a new temporary each time it is called
gen(): Generates instruction (have to call it with appropriate arguments)
lookup(id.name): Returns the location of id from the symbol table

|| denotes concatenation

Three-Address Code

Productions Semantic Rules
S ® id := E id.place ¬ lookup(id.name);

S.code ¬ E.code || gen(id.place ‘:=‘ E.place);
E ® E1 + E2 E.place ¬ newtemp();

E.code ¬ E1.code || E2.code || gen(E.place ‘:=‘ E1.place ‘+’ E2.place);
E ® E1 * E2 E.place ¬ newtemp();

E.code ¬ E1.code || E2.code || gen(E.place ‘:=‘ E1.place ‘*’ E2.place);
E ® (E1) E.code ¬ E1.code;

E.place ¬ E1.place;
E ® - E1 E.place ¬ newtemp();

E.code ¬ E1.code || gen(E.place ‘:=‘ ‘uminus’ E1.place);
E ® id E.place ¬ lookup(id.name);

E.code ¬ ‘’ (empty string)
E ® num E.place ¬ newtemp();

E.code ¬ gen(E.place ‘:=‘ num.value);

Attributes: E.place: location that holds the value of expression E
(this is the temporary variable that will hold the value of the expression)
E.code: sequence of instructions that are generated for E

Procedures: newtemp(): Returns a new temporary each time it is called
gen(): Generates instruction (have to call it with appropriate arguments)
lookup(id.name): Returns the location of id from the symbol table

x := (y + z) * a
S

id := E

E * E

(E)

E + E

id

id id
E.place = z
E.code = “”

E.place = y
E.code = “”

E.place = t1
E.code = “t1 := y + z”

E.place = a
E.code = “”

E.place = t2
E.code = “t1 := y + z

t2 := t1 * a”

S.code =
“ t1 := y + z
t2 := t1 * a
x := t2”

E.place = t1
E.code = “t1 := y + z”

Example

Code Generation for Boolean Expressions

• Two approaches
– Numerical representation
– Implicit representation

• Numerical representation
– Use 1 to represent true, use 0 to represent false
– For three-address code store this result in a temporary
– For stack machine code store this result in the stack

• Implicit representation
– For the boolean expressions which are used in flow-of-control

statements (such as if-statements, while-statements etc.) boolean
expressions do not have to explicitly compute a value, they just need
to branch to the right instruction

– Generate code for boolean expressions which branch to the
appropriate instruction based on the result of the boolean expression

Numerical Representation of Boolean
Expressions

100 if x < y goto 103
101 t1 := 0
102 goto 104
103 t1 := 1
104 if a = b goto 107
105 t2 := 0
106 goto 108
107 t2 := 1
108 t3 := t1 and t2

Input boolean expression: x < y and a == b

Three address code:
Instructions 100-103 are for x < y
Instructions 104-107 are for a == b

Stack machine code:
Instructions 100-105 are for x < y
Instructions 106-111 are for a == b

• These are the locations of
the instructions, they are not labels.
• We could generate code using
labels too

100 load x
101 load y
102 if_cmplt 105
103 push 0
104 goto 106
105 push 1
106 load a
107 load b
108 if_cmpeq 111
109 push 0
110 goto 112
111 push 1
112 and

Implicit Representation of Boolean
Expressions

100 if x < y goto 103
101 t1 := 0
102 goto 104
103 t1 := 1
104 if a = b goto 107
105 t2 := 0
106 goto 108
107 t2 := 1
108 t3 := t1 and t2

Input boolean expression:
x < y and a == b

Numerical representation:

if x < y goto L1
goto LFalse

L1: if a = b goto LTrue
goto LFalse

LTrue:

LFalse:

Implicit representation:

These are the locations of
three-address code instructions,
they are not labels

These labels will be generated
later on, and will be inserted
to the corresponding places

Boolean Expressions: Implicit Representation,
Three-Address Code

Productions Semantic Rules
E ® E1 and E2 E1.true ¬ newlabel();

E1.false ¬ E. false; (short-circuiting)
E2.true ¬ E. true;
E2.false ¬ E. false;
E.code ¬ E1.code || gen(E1.true ‘:’) || E2.code ;

E ® E1 or E2 E1.true ¬ E.true; (short-circuiting)
E1.false ¬ newlabel();
E2.true ¬ E. true;
E2.false ¬ E. false;
E.code ¬ E1.code || gen(E1.false ‘:’) || E2.code ;

Attributes : E.code: sequence of instructions that are generated for E
E.false: instruction to branch to if E evaluates to false
E.true: instruction to branch to if E evaluates to true
(E.code is synthesized whereas E.true and E.false are inherited)
id.place: location for id

Boolean Expressions: Implicit Representation,
Three-Address Code (continued)

Productions Semantic Rules

E ® not E1 E1.true ¬ E.false;
E1.false ¬ E. true;
E.code ¬ E1.code;

E ® E1 relop E2 E.code ¬ E1.code || E2.code
|| gen(‘if’ E1.place relop.op E2.place ‘goto’ E.true)
|| gen(‘goto’ E.false);

E ® true gen(`goto’ E.true);

E ® false gen(`goto’ E.false);

Attributes : E.code: sequence of instructions that are generated for E
E.false: instruction to branch to if E evaluates to false
E.true: instruction to branch to if E evaluates to true
id.place: location for id

Three-Address Code, Implicit Representation

Input:
x < y and a == b

E

id
name = “a”

code = “” E code = “”

E

relop

and

E

code = “ if x < y goto L1
goto __
L1:if a = b goto __
goto__”

place = a

code = “if a = b goto __
goto__”

id
name = “b”
place = b

op = “==“E

id
name = “x”

code = “” E code = “”

E

relop

place = x
id

name = “y”
place = y

op = “<“

code = “if x < y goto L1
goto __”

true = __
false= __

false attribute will
be inserted here

true attribute will be
inserted here

true = __
false= __

true = L1
false= __

Flow-of-Control Statements

If-then-else
• Branch based on the result of boolean test expression

test
expression

then-block

Y N

Next block

else-block

Flow-of-Control Statements: Code Structure

E.code

S1.code

goto S.next

S2.code

•

•
•

to E.true

to E.false

E.true:

E.false:

S.next:

S ® if E then S1 else S2

if E evaluates to true

if E evaluates to false

We have to decide on the code layout for the code for flow-of-control

Labels

Flow-of-Control Statements, Three-Address Code, Assuming
Implicit Representation for Boolean Expressions

Productions Semantic Rules

S ® if E then S1 else S2 E.true ¬ newlabel();
E.false ¬ newlabel();
S1.next ¬ S. next;
S2.next ¬ S. next;
S.code ¬ E.code || gen(E.true ‘:’) || S1.code

|| gen(‘goto’ S.next) || gen(E.false ‘:’) || S2.code ;

Attributes : S.code: sequence of instructions that are generated for S
S.next: label of the instruction that will be executed immediately after S
(S.next is an inherited attribute)

ASSUMPTION: the code generated
for boolean expression E will branch
to E.true or E.false label based on the
result of the expression

Flow-of-Control Statements: Code Structure

E.code

S1.code

goto S.begin

•
•
•

to E.true

to E.false
E.true:

E.false:

S.begin:

S ® while E do S1

E.code

S1.code

goto E.begin

•
•
•

to E.true

to E.false

E.begin:

E.false:

E.true:

S ® while E do S1

This layout places E.code
after S1.code :

Two different layouts for while statements:

The algorithms I give in the following
slides use this layout:

Flow-of-Control Statements, Three-Address Code, Assuming
Implicit Representation for Boolean Expressions

Productions Semantic Rules

S ® while E do S1 S.begin ¬ newlabel();
E.true ¬ newlabel();
E.false ¬ S. next;
S1.next ¬ S. begin;
S.code ¬ gen(S.begin ‘:’) || E.code || gen(E.true ‘:’) || S1.code

|| gen(‘goto’ S.begin);

S ® S1 ; S2 S1.next ¬ newlabel();
S2.next ¬ S.next;
S.code ¬ S1.code || gen(S1.next ‘:’) || S2.code

Attributes : S.code: sequence of instructions that are generated for S
S.next: label of the instruction that will be executed immediately after S
(S.next is an inherited attribute)

Example

Input code fragment:

while (a < b) {
if (c < d)

x = y + z;
else

x = y – z
}

L1: if a < b goto L2
goto LNext

L2: if c < d goto L3
goto L4

L3: t1 := y + z
x := t1
goto L1

L4: t2 := y – z
x := t2
goto L1

LNext: ...

E.true
for a < b
E.false
for a < b

E.true
for c < d

E.false
for c < d

Register Allocation

• Want to replace variables with some fixed set of registers
• First: need to know which variables are live after each instruction

– Two simultaneously live variables cannot be allocated to the same
register

Interference graph

• Nodes of the graph = variables
• Edges connect variables that interfere with one another
• Nodes will be assigned a color corresponding to the register

assigned to the variable
• Two colors can’t be next to one another in the graph

Interference graph

Instructions Live vars

b = a + 2

c = b * b

b = c + 1

return b * a

Interference graph

Instructions Live vars

b = a + 2

c = b * b

b = c + 1
b,a

return b * a

Interference graph

Instructions Live vars

b = a + 2

c = b * b
a,c

b = c + 1
b,a

return b * a

Interference graph

Instructions Live vars

b = a + 2
b,a

c = b * b
a,c

b = c + 1
b,a

return b * a

Interference graph

Instructions Live vars
a

b = a + 2
b,a

c = b * b
a,c

b = c + 1
b,a

return b * a

Interference graph

Instructions Live vars
a

b = a + 2
a,b

c = b * b
a,c

b = c + 1
a,b

return b * a

a

cb

eax

ebx

color register

Interference graph

Instructions Live vars
a

b = a + 2
a,b

c = b * b
a,c

b = c + 1
a,b

return b * a

a

cb

eax

ebx

color register

Graph coloring

• Questions:
– Can we efficiently find a coloring of the graph whenever possible?
– Can we efficiently find the optimum coloring of the graph?
– What do we do when there aren’t enough colors (registers) to color the

graph?

Coloring a graph

• Kempe’s algorithm [1879] for finding a K-coloring of a graph
• Assume K=3
• Step 1 (simplify): find a node with at most K-1 edges and cut it out

of the graph. (Remember this node on a stack for later stages.)

Coloring a graph

• Once a coloring is found for the simpler graph, we can always color
the node we saved on the stack

• Step 2 (color): when the simplified subgraph has been colored, add
back the node on the top of the stack and assign it a color not taken
by one of the adjacent nodes

Coloring

b

ed

eax

ebx

color register

a

c

stack:

Coloring

b

ed

eax

ebx

color register

a

stack:

c

c

Coloring

b

ed

eax

ebx

color register

a

stack:

e
c

c

Coloring

b

ed

eax

ebx

color register

a

stack:

a
e
c

c

Coloring

b

ed

eax

ebx

color register

a

stack:
b
a
e
c

c

Coloring

b

ed

eax

ebx

color register

a

stack:
d
b
a
e
c

c

Coloring

b

ed

eax

ebx

color register

a

stack:

b
a
e
c

c

Coloring

b

ed

eax

ebx

color register

a

stack:

a
e
c

c

Coloring

b

ed

eax

ebx

color register

a

stack:

e
c

c

Coloring

b

ed

eax

ebx

color register

a

stack:

c

c

Coloring

b

ed

eax

ebx

color register

a

stack:

c

Failure

• If the graph cannot be colored, it will eventually be simplified to
graph in which every node has at least K neighbors

• Sometimes, the graph is still K-colorable!
• Finding a K-coloring in all situations is an NP-complete problem

– We will have to approximate to make register allocators fast enough

Coloring

b

ed

eax

ebx

color register

a

c

stack:

Coloring

b

ed

eax

ebx

color register

a

c

stack:
d

all nodes have
2 neighbours!

Coloring

b

ed

eax

ebx

color register

a

c

stack:

b
d

Coloring

b

ed

eax

ebx

color register

a

c

stack:
c
e
a
b
d

Coloring

b

ed

eax

ebx

color register

a

c

stack:

e
a
b
d

Coloring

b

ed

eax

ebx

color register

a

c

stack:

a
b
d

Coloring

b

ed

eax

ebx

color register

a

c

stack:

b
d

Coloring

b

ed

eax

ebx

color register

a

c

stack:

d

Coloring

b

ed

eax

ebx

color register

a

c

stack:

We got lucky!

Coloring

b

ed

eax

ebx

color register

a

c

stack:

c
b
e
a
d

Some graphs can’t be colored
in K colors:

Coloring

b

ed

eax

ebx

color register

a

c

stack:

b
e
a
d

Some graphs can’t be colored
in K colors:

Coloring

b

ed

eax

ebx

color register

a

c

stack:

e
a
d

Some graphs can’t be colored
in K colors:

Coloring

b

ed

eax

ebx

color register

a

c

stack:

e
a
d

Some graphs can’t be colored
in K colors:

no colors left for e!

Spilling

• Step 3 (spilling): once all nodes have K or more neighbors, pick a
node for spilling
– Storage on the stack
– Rewrite code introducing a new temporary; rerun liveness analysis and

register allocation
• There are many heuristics that can be used to pick a node

– not in an inner loop

Rewriting code

• Consider: add t1 t2
– Suppose t2 is a selected for spilling and assigned to stack location

[ebp-4]
– Invented new temporary t35 for just this instruction and rewrite:

• mov t35, [ebp – 4]; add t1, t35
– Advantage: t35 has a very short live range and is much less likely to

interfere.
– Rerun the algorithm; fewer variables will spill

Precolored Nodes

• Some variables are pre-assigned to registers
– Eg: mul on x86/pentium

• uses eax; defines eax, edx
– Eg: call on x86/pentium

• Defines caller-save registers eax, ecx, edx
• Treat these registers as special temporaries; before beginning, add

them to the graph with their colors

Precolored Nodes

• Can’t simplify a graph by removing a precolored node
• Precolored nodes are the starting point of the coloring process
• Once simplified down to colored nodes start adding back the other

nodes as before

Optimizing Moves

• Code generation produces a lot of extra move instructions
– mov t1, t2
– If we can assign t1 and t2 to the same register, we do not have to

execute the mov
– Idea: if t1 and t2 are not connected in the interference graph, we

coalesce into a single variable

Coalescing

• Problem: coalescing can increase the number of interference
edges and make a graph uncolorable

• Solution 1 (Briggs): avoid creation of high-degree (>= K) nodes
• Solution 2 (George): a can be coalesced with b if every

neighbour t of a:
– already interferes with b, or
– has low-degree (< K)

t1 t2 t1/t2
coalesce

Summary

• Register allocation has three major parts
– Liveness analysis
– Graph coloring
– Program transformation (move coalescing and spilling)

