
CMPSC 160
Translation of Programming Languages

Lecture 1: Introduction & Overview of
Compilers

CMPSC 160

Instructor: Yufei Ding, Assist. Prof in CS
• Research areas: Programming systems (especially Compiler) for

Machine + Quantum Computing
• Lectures: TR 12:30pm - 1:45pm @
• Office hours: Monday 2:00pm-3:00pm + By appointment.

Staff
• TAs: Pengfei Xu, Zhengyang Wang
• Discussion session: 5:00pm - 5:50p @GIRV 2108 and 6:00pm -

6:50pm @PHELP2514
• Office hours: TBD (will be posted on Piazza)

CMPSC 160

• Communication
– Course website: http://www.cs.ucsb.edu/~yufeiding/cs160

• (basic information, course schedule, project descriptions and due time)
– Gradescope: https://www.gradescope.com/courses/448408

• Submit your project here.
– Piazza: https://piazza.com/ucsb/fall2022/cs160

• Besides office hours, you could also post your general questions here.

• You can post questions about the class topics and projects to the
piazza group. The TAs will respond as much as they can. You can
also answer each other’s questions BUT YOU CANNOT POST
CODE.
– If you have questions that you do not want to share with other students

send e-mail to the TAs and the Instructor. ALWAYS INCLUDE BOTH
THE TAs AND THE INSTRUCTOR.

– Top 3 students that help answer most of the questions will receive 3
extra credits towards their final grade.

http://www.cs.ucsb.edu/~yufeiding/cs160
https://www.gradescope.com/courses/448408
https://piazza.com/ucsb/fall2022/cs160

CMPSC 160

• Prerequisites: CMPSC 64 or EE 154, CMPSC 130A and CMPSC
138

• Prerequisites by Topic: Automata theory and formal languages;
Programming in C++; Data structures, algorithms, and complexity,
assembly language programming

Course Material

• We will use the following textbook:
“Engineering a Compiler” by Keith D. Cooper and Linda Torczon
Morgan Kaufman (Elsevier)

• There will be recommended reading material from the textbook
and they will be posted on the class webpage

• First reading assignment: Read Chapters 1 and 2 from the
textbook

• Slides will be uploaded to the class webpage.

Course Work

• The final grade will be determined according to the following weight
– Final exams (20% based on lecture content, more from theoretical side).
– Six Projects (75% mostly about detailed implementation).
– Two Random in-class quizzes (5% for partial attendance check).

• For the projects, the grade breakdown is as follows:
– 5% Project 1, 15% Project 2, 15% Project 3, 20% Project 4, 22.5% Project

5, 22.5% Project 6.

• The course work requires individual efforts.
– We have developed several source-code plagiarism checkers.
– The projects has been adapted from previous classes with changes.
– Your code will be checked against both your classmates and code from

previous classes.

Course Projects

• There will be 6 projects
(https://sites.cs.ucsb.edu/~yufeiding/cs160/assignments.html)
– The first two projects will be warm-up projects (project 1 is due

next Thursday)
– The goal of the last 4 projects will be to build a compiler

• Projects 3 to 6 cover all parts of the compilation process

• Compiler will work on a simple language

• You will use some well-known compiler construction tools and
some C++ code that we provide

https://sites.cs.ucsb.edu/~yufeiding/cs160/assignments.html

Course Goals

• To learn structure of compilers

• To construct a compiler for a small language

• To learn basic data structures used in compiler construction such
as abstract syntax trees, symbol tables, three-address code, and
stack machines

• To learn basic techniques used in compiler construction such as
lexical analysis, top-down and bottom-up parsing, context-sensitive
analysis, and intermediate code generation

• To learn software tools used in compiler construction such as
lexical analyzer generators, and parser generators.

Today’s lecture: Overview of Compiler

• Give you a big picture of compiler.

• It is a very challenging course. One of the most challenging
undergraduate course:

• Even we just scratch the surface of a modern compiler, there are
still lots of things to learn.

• Ask yourself whether you want to spend the time on it.

What is a Compiler?

• A compiler is a program that translates a program written in one
language (source language) into an equivalent program in another
language (target language), often along with optimizations, and
meanwhile reports errors in the source program.

• Examples:
– Domain-specific language encoded in Python/C++ to native

C++
– C to assembly code/machine code

Desirable Properties of Compilers

• Compiler must generate correct executable code
– The input program and the output program must be equivalent, the

compiler should preserve the meaning of the input program
• Compiler should provide good diagnostics for programming errors

• Output program should run fast
– For optimizing compiler, we expect the output program to be more

efficient than the input program
– Optimizations should be consistent and predictable: different inputs

• Compiler itself should be fast
– Compile time should be proportional to code size

• Compiler should support separate compilation
• Compiler should work well with debuggers
• …

Compiler vs. Interpreter

• What is an interpreter?
– A program that reads an executable program and produces the results of

executing that program

• C/C++ is typically compiled
• Python is typically interpreted
• Java is compiled to bytecodes, which are then interpreted or just-in-

time compiled.

• What is their most significant functional difference of these two?

• Which one is more challenging to build? Why?

• When to use a compiler or an interpreter?

Effectiveness of A Compiler

[Charles Leiserson, MIT 6.172]

• Performance of a matrix multiplication kernel (with n = 4,096) on Intel Xeon E5-
2666 v3E, with mostly just compiler software optimization:

53, 292X performance difference!!!!!!!

An Alternative Way for Optimization à
Library

Example:
NumPy is a library for the Python programming language, adding support
for large, multi-dimensional arrays and matrices, along with a large
collection of high-level mathematical functions to operate on these arrays.

Interpreter + Library à Compiler for more in-depth optimization.

Machine Learning frameworks like TensorFlow are experiencing this path
of development.

A Common Scope for Compiler Design

• Compilers provide an essential interface between applications and
architectures.

• Low level machine details:
– Instruction Set Architecture (ISA): instruction selection
– Memory Hierarchy: Registers and cache
– Parallelism: Pipelines
– Addressing mode
– …

• Compilers efficiently bridge the gap and shield the application
developers from low level machine details

History of Compiler Development

Traditional Three-pass Compiler

• Use an intermediate representation (IR)
• Front end maps legal source code into IR
• Middle end applies modular optimizations based on IR
• Back end maps IR into target machine code
• Admits multiple front ends and multiple passes

– Typically, front end is O(n) or O(n log n), middle and back end are NP-complete
• Different phases of compiler also interact through the symbol table

Errors

IR

Symbol
Table

Source
code

Front
End

Machine
code

Back
End

IRMiddle
End

Compiler - Example

• Source code
– Written in a high-level

programming language

//simple example
while (sum < total)

{

sum = sum + x*10;

}

• Target code
– Assembly language, which in turn is

translated to machine code

L1: loadAI R0, @sum => R1
loadAI R0, @total => R2
cbr_LT R1, R2 => L2
jumpI L3

L2: loadAI R0, @sum => R1
loadAI R0, @x => R2
loadI 10 => R3
mult R2, R3 => R2
add R1, R2 => R1
storeAI R1 => R0, @sum
jumpI L1

L3: first instruction
following the while
statement

What is the Input?

• Input to the compiler is not

//simple example
while (sum < total)
{

sum = sum + x*10;
}

• Input to the compiler is

//simple\bexample\nwhile\b(sum\b<\btotal)\b{\n\tsum\b=
\bsum\b+\bx*10;\n}\n

• How does the compiler recognize the keywords, identifiers, etc.?

Lexical Analysis (Scanning)

• The compiler scans the input file and produces a stream of tokens
（categories of basic words in the langague）

WHILE,LPAREN,<ID,sum>,LT,<ID,total>,RPAREN,LBRACE,

<ID,sum>,EQ,<ID,sum>,PLUS,<ID,x>,TIMES,<NUM,10>,

SEMICOL,RBRACE

• Each token has a corresponding lexeme (a particular instance for
that category), the character string that corresponds to the token
– For example, “while” is the lexeme for token WHILE
– “sum”, “x”, “total” are lexemes for token ID

Lexical Analysis (Scanning)

• Compiler uses a set of patterns to specify valid tokens
– tokens: LPAREN, WHILE, ID, NUM, etc.

• Each pattern is specified as a regular expression
– LPAREN should match: (
– WHILE should match: while

– ID should match: [a-zA-Z][0-9a-zA-Z]*

• It uses finite automata to recognize these patterns

a-zA-Z 0-9a-zA-Z

ID automaton

Lexical Analysis (Scanning)

• During the scan the lexical analyzer gets rid of the white space
(\b,\t,\n, etc.) and comments

• Important additional task: Error messages!
– Var%1® Error! Not a token!
– whle® Error? It matches the identifier token.

• Natural language analogy: Tokens correspond to words and
punctuation symbols in a natural language

Syntax Analysis (Parsing)

• How does the compiler recognize the structure of the program?
– Loops, blocks, procedures, nesting?

• Specify the structure of program using recursive rules: context free
grammars

• Parse the stream of tokens based on these recursive rules to get
the parse tree
– program will be on the leaves of the tree

Syntax Analysis (Parsing)

• The syntax of a programming language is defined by a set of recursive
rules. These sets of rules are called context free grammars.

Stmt ® WhileStmt | Block | ...

WhileStmt ® WHILE LPAREN Expr RPAREN Stmt

Expr ® RelExpr | ArithExpr | ...

RelExpr ® ...

• Compilers apply these rules to produce the parse tree
• Again, important additional task: Error messages!

– Missing semicolon, missing parenthesis, etc.
• Natural language analogy: It is similar to parsing English text. Paragraphs,

sentences, noun-phrases, verb-phrases, verbs, prepositions, articles,
nouns, etc.

Syntax Analysis (Parsing)

Stmt

WhileStmt

WHILE

LPAREN
RPARENExpr

RelExpr

<ID,sum> LT <ID,total>

Stmt

Block

LBRACE Stmt RBRACE

AssignStmt

<ID,sum> EQ
Expr SEMICOL

ArithExpr

Expr

<ID,sum>

PLUS
Expr

ArithExpr

Expr Expr

<ID,x>

TIMES

<NUM,10>

Intermediate Representations

• The parse tree representation has too many details
– LPAREN, LBRACE, SEMICOL, etc.

• Once the compiler understands the structure of the input program,
it does not need these details (they prevent ambiguities during
parsing)

• Compilers generate a more abstract representation after
constructing the parse tree, which does not include the details of
the derivation

• Abstract syntax trees (AST): Nodes represent operators, children
represent operands

Intermediate Representations

while

<

<id,sum> <id,total>

assign

<id,sum>
+

<id,sum> *

<id,x> <num,10>

Semantic (Context-Sensitive) Analysis

• Not everything that we care about is related to the structure (i.e.,
syntax) of the program, in some cases we have to check the
meaning (i.e., semantics)

• Do variable types match?
sum = sum + x*10;

• Are variables declared before they are used?
– We can find out if “whle” is declared by looking at the symbol table

Semantic (Context-Sensitive) Analysis

+

<id,sum> *

<id,x> <num,10>

may become

+

<id,sum>

*

<id,x> <num,10>

int2float

sum

x

float

int

Symbol
Table

sum can be a floating point number,
x can be an integer

Summary of The Front End

Source
code

Scanner IRParsertokens IR Type
Checker

Errors

The Optimizer (or Middle End)

Typical Transformations
• Discover and propagate constant values (constant propagation)
• Move a computation to a less frequently executed place
• Discover a redundant computation and remove it
• Remove unreachable code

Errors

Opt
1

Opt
3

Opt
2

Opt
n

...IR IR IR IR IR

Modern optimizers are structured as a series of passes

Improving the Code: Code Optimization

• Compilers can improve the quality of code by static analysis
– Data flow analysis, dependence analysis, code transformations, dead

code elimination, etc.

temp = x*10;

while (sum < total)

{

sum = sum + temp;

}

while (sum < total)

{

sum = sum + x*10;

}

We do not need to recompute x*10 in
each iteration of the loop

transformation
to more efficient
code

Code Generation - The Back End

• Abstract syntax trees are a high-level intermediate representation
used in earlier phases of the compilation

• There are lower-level (i.e., closer to the machine code) intermediate
representations
– Three–address code: Every instruction has at most three operands.

Very close to (MIPS, x86) assembly
– Stack based code: Assembly language for JVM (Java Virtual

Machine), an abstract stack machine.

• Intermediate code generation for these lower-level representations
and machine code generation are similar

Code Generation: Instruction Selection

• Source code
a = b + c;

• Target code

loadAI RO, @b => R1
loadAI R0, @c => R2
add R1, R2 => R1
storeAI R1 => R0, @a

We need to map statements in
the source code to instructions
of the target language

Code Generation: Register Allocation

• There are a limited number of registers available on real machines
• Registers are valuable resources (keeping the values in registers

prevents memory access), the compiler has to use them efficiently

t1 = a - b;
t2 = a - c;
t3 = t1 + t2;
t4 = t3 + t2;
t5 = t4 + t2;
d = t5;

d = (a-b)+(a-c)+(a-c)+(a-c); loadAI R0, @a => R1
loadAI R0, @b => R2
sub R1, R2 => R2
loadAI R0, @c => R3
sub R1, R3 => R1
add R1, R2 => R2
add R1, R2 => R2
add R1, R2 => R2
storeAI R2 => R0, @d

source code three-address code assembly code

Code Generation: Optimization

• Source code
a = b + c;

d = a + e;

• Target code

loadAI RO, @b => R1
loadAI R0, @c => R2
add R1, R2 => R1
storeAI R1 => R0, @a

loadAI R0, @a => R1
loadAI R0, @e => R2
add R1, R2 => R1
storeAI R1 => R0, @d

If we generate code for each
statement separately then
we will not generate efficient
code

code for
the first
statement

code for
the second
statement

This instruction
is redundant

Why Study Compilers (even if you may
never need to write one)?

• Compiler construction involves several areas of computer science
(theory, algorithms, systems, architecture) and demonstrates the
application of techniques from these areas and the interplay among
them

• By learning compilers you get an understanding of both the upper
language designs and lower hardware architecture.

• Is compiler construction a solved problem?
– No! New developments in programming languages and machine

architectures present new challenges and opportunities
– ML compiler + Quantum compiler

