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Lexical Analysis (Scanning): Input and Output

• Input to the compiler
//simple example
while (sum < total)  
{  

sum = sum + x*10;
}

• Or more accurately
//simple\bexample\nwhile\b(sum\b<\btotal)\b{\n\tsum\b=
\bsum\b+\bx*10;\n}\n

• The compiler scans the input file and produces a stream of tokens
（categories of basic words in the langague）

WHILE,LPAREN,<ID,sum>,LT,<ID,total>,RPAREN,LBRACE,

<ID,sum>,EQ,<ID,sum>,PLUS,<ID,x>,TIMES,<NUM,10>,

SEMICOL,RBRACE



What are unique here?
Natural Language VS. Programming Language

• Natural Language:
– Word

• Adjacent alphabetic letters are grouped together, left to right, to form a word. Not all 
combinations of characters are legitimate words. 

• A potential word, the word-building algorithm can determine its validity with a 
dictionary lookup. 

– Part of speech 
• If the word has a unique “part of speech” (noun, verb, …), dictionary lookup will also 

resolve that issue;
– Non-uniqueness: a word like “stress” can be either a noun or a verb; It requires 

an understanding of meaning, for both the word and its context
• Programming Language

– No dictionary lookup is needed. Instead, it is mostly rule based.
• Syntactic category: Positive integer, Real number, Identifier, …
• Some identifiers (e.g., if, while) may be reserved as keywords. These exceptions can 

be specified lexically: each with its own Syntactic category.
– Generally, no context is required to determine. 

Early Language like PL/I allows due parts of speech. More recent languages
abandoned this idea. Think of Expressiveness VS. Efficient Scanning/parsing, …



The scanner is the only pass in the compiler to touch every character in the input program. 

Compiler writers place a premium on speed in scanning, in part because the scanner’s input 
is larger.

Summary: Lexical Analysis (Scanning)

Scanner
• Transform a stream of characters into a stream of words in the input language. 
• Each word must be classified into a syntactic category, or “part of speech”, tokens.
• Discards white space and comments
• Report errors and correlated information (e.g., line number)

Today and next lecture:
1) we will introduce regular expressions, a concise representation for describing the valid 

words in a programming language.
2) We will develop formal mechanisms -- Finite Automaton -- to generate scanners from 

regular expressions, either manually or automatically. 



Lexical Concepts

• Token: Basic unit of syntax, syntactic output of the scanner
• Lexeme: A sequence of input characters which match to a pattern 

and generate the token
• Pattern: The rule that describes the set of strings that correspond 

to a token, i.e., specification of the token

WHILE while while

IF if if

ID i1, length, letter followed by
count, sqrt letters and digits

Token Lexeme Pattern



How do we specify lexical patterns?

Some patterns are easy

• Keywords and operators
– Specified as literal patterns:  if, then, else, while, =, +, … 



Some patterns are more complex
• Identifiers

– letter followed by letters and digits

• Numbers
– Integer: An optional sign (which can be “+” or “-”) followed by 0 or a digit 

between 1 and 9 followed by digits between 0 and 9
– Decimal: An optional sign (which can be “+” or “-”) followed by digit “0” or a 

nonzero digit followed by an arbitrary number of digits followed by a decimal 
point followed by an arbitrary number of digits

GOAL: We want to have concise descriptions of patterns, and we want to 
automatically construct the scanner from these descriptions

How do we specify lexical patterns?



Regular Expressions

Regular expressions (REs) describe regular languages

Regular Expression (over alphabet S, alphabet could be the ASCII character 
set for example)

• e (empty string) is a RE denoting the set {e}

• If a is in S, then a is a RE denoting {a}
• If x and y are REs denoting languages L(x) and L(y) then

– x |  y is an RE denoting L(x) È L(y)

– xy is an RE denoting L(x)L(y)

– x* is an RE denoting L(x)*

Precedence is: closure first, 
then concatenation, then 
alternation

All left-associative

x | y* z       is equivalent to
x | ((y*) z)



Question Time J

• All strings of 1s and 0s
( 0 | 1 )*

• All strings of 1s and 0s beginning with a 1

• All strings of 0s and 1s containing at least two consecutive 1s

• All strings of alternating 0s and 1s

• Examples of Regular Expressions



• All strings of 1s and 0s
( 0 | 1 )*

• All strings of 1s and 0s beginning with a 1
1 ( 0 | 1 )*

• All strings of 0s and 1s containing at least two consecutive 1s
( 0 | 1 )* 1 1( 0 | 1 )*

• All strings of alternating 0s and 1s

( e | 1 ) ( 0 1 )* ( e | 0 )

Question Time J



Extensions to Regular Expressions

• x+= x x* denotes L(x)+

• x? = x | e denotes  L(x) È {e}

• [abc] = a | b | c  matches one character in the square bracket
• a-z  =  a | b | c | ... | z   range
• [0-9a-z] =  0 | 1 | 2 | ... | 9 | a | b | c | ... | z 
• [^abc] ^ means negation

matches any character except a, b or c 
• .   = [^\n] dot matches any character except the newline 

\n means newline so dot is equivalent to [^\n]
• “[“ matches left square bracket, meta-characters in 

double quotes become plain characters
• \[ matches left square bracket, meta-character after  

backslash becomes plain character



Regular Definitions

• We can define macros using regular expressions and use them in 
other regular expressions

Letter ® (a|b|c| … |z|A|B|C| … |Z)
Digit          ® (0|1|2| … |9)
Identifier   ® Letter ( Letter | Digit )*

• Important: We should be able to order these definitions so that 
every definition uses only the definitions defined before it (i.e., no 
recursion)

• Regular definitions can be converted to basic regular expressions 
with macro expansion



Examples of Regular Expressions

Digit  ® (0|1|2| … |9)

Integer   ® (+|-)? (0| (1|2|3| … |9)(Digit *)) 

Decimal   ® Integer “.” Digit *

Real ® ( Integer | Decimal ) E (+|-)?Digit *

Complex ® “(“ Real ,  Real “)”



From Regular Expressions to Scanners

• Regular expressions are useful for specifying patterns that correspond to 
our tokens

• We need to construct a program, our compiler for example, that recognizes 
these patterns and converts them into tokens

• We need it to read through the input really fast

• To solve this problem, let’s convert our regular expressions into state 
machines! – state machines are really fast, it just requires a table lookup 
to process each character.



Deterministic Finite Automata (DFA)

• A set of states S
– S = { s0 , s1 , s2 , se}

• A set of input symbols (an alphabet) S
– S =  { R , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 }

• A transition function d : S ´ S ® S
– Maps (state, symbol) pairs to states
– d = { ( s0 , R) ® s1, ( s0 , 0-9) ® se ,( s1 , 0-9 ) ® s2 ,( s1 , R ) ® se ,

( s2 , 0-9 ) ® s2 , ( s2 , R ) ® se , ( se , R | 0-9 ) ® se }
• A start state 

– s0

• A set of final (or accepting) states
– Final = { s2 }

A DFA accepts a word x iff there exists a path in the transition graph from start 
state to a final state such that the edge labels along the path spell out x



Consider the problem of recognizing register names in an assembler

Register ® r (0|1|2| … |9) (0|1|2| … |9)*

• Allows registers of arbitrary number
• Requires at least one digit

Each RE corresponds to a recognizer (or Deterministic Finite Automata (DFA))

Example

• Recognizer for Register

S0 S2 S1 

r

(0|1|2| …|9)

accepting state

(0|1|2| …|9)

Recognizer for Registerinitial 
state



DFA simulation
• Start in state s0 and follow transitions on each input character
• DFA accepts a word x iff  x leaves it in a final state (s2 )

• “R17” takes it through s0 , s1 , s2 and accepts
• “R” takes it through s0 , s1 and fails
• “A” takes it straight to se

• “R17R” takes it through s0 , s1 , s2 , se and rejects

Example

S0 S2 S1 

R

(0|1|2| …|9)

accepting state

(0|1|2| …|9)

Recognizer for Registerinitial 
state



Simulating a DFA

state =  s0 ;
char = get_next_char();
while (char != EOF)  {

state = d(state,char);
char =get_next_char();

}
if  (state Î Final) 

report acceptance;
else

report failure;

d R

0,1,2,3,
4,5,6,
7,8,9

other

S0 S1 Se Se

S1 Se S2 Se

S2 Se S2 Se

Se Se Se Se

•The recognizer translates directly into 
code
•To change DFAs, just change the arrays

•Takes O(|x|) time for input string x

Final = { s2 }
We can also store the final states in an array

We can store the transition table in a
two-dimensional array:



• On a real computer, however, the set of register names is severely 
limited— say, to 32, 64, 128, or 256 registers. 
• One way for a scanner to check validity of a register name is to convert the 

digits into a number and test whether or not it falls into the range of valid 
register numbers. 

• The alternative is to adopt a more precise re specification, such as: 

• The corresponding DFA looks like: 

Example



Which DFA is better in terms of performance? Why?

Performance Analysis

The cost of operating an DFA is proportional to the length of the input, not to the 
length or complexity of the re that generates the DFA!!!

On modern computers, the speed of memory accesses often governs the speed of 
computation. A smaller recognizer may fit better into the processor’s cache memory. 



RE： ( a | b )* abb 

More Complicated Regular Expression

Can you automatically generate a DFA for it?



Non-deterministic Finite Automata (NFA)

Why study NFAs?
• They are the key to automating the RE®DFA construction

Non-deterministic Finite Automata (NFA) for the RE ( a | b )* abb 

This is a little different

• S0 has a transition on e (empty string)
– e-transitions are allowed

• S1 has two transitions on “a”
– Transition function  d : S ´ S ® 2S maps (state, symbol) pairs to sets of 

states 

a | b

S0 S1 S4 S2 S3 

e a bb



NFA

• Ideally, each time the NFA must make a nondeterministic choice, it 
follows the transition that leads to an accepting state for the input 
string, if such a transition exists. 

• In practice, each time the NFA must make a nondeterministic 
choice, the NFA clones itself to pursue each possible transition. 
Thus, for a given input character, the NFA is in a specific set of 
states, taken across all of its clones. In this model, the NFA
pursues all paths concurrently. 

• At any point, we call the specific set of states in which the NFA is 
active its configuration. When the NFA reaches a configuration in 
which it has exhausted the input and one or more of the clones has 
reached an accepting state, the NFA accepts the string. 



Relationship between NFAs and DFAs

DFA is a special case of an NFA
• DFA has no e-transitions
• DFA’s transition function is single-valued
• Same rules will work

DFA can be simulated with an NFA
– Obvious

NFA can be simulated with a DFA 
– Less obvious



NFA vs. DFA Scanners

• Given a regular expression r we can convert it to an NFA of size O(|r|)
• Given an NFA we can convert it to a DFA of size O(2|r|)
• We can simulate a DFA on string x in O(|x|) time
• We can simulate an NFA  (constructed by Thompson’s construction) on 

a string x in O(|N| ´ |x|) time

Automaton
Type

Space 
Complexity

Time
Complexity

NFA O(|r|) O(|r| ´ |x|)

DFA O(2|r|) O(|x|)

Recognizing input string x for regular expression r



Relationship between RE/NFA/DFA

RE®NFA  (Thompson’s construction)
• Build an NFA for each term
• Combine them with e-moves

NFA ®DFA (subset construction)
• Build the simulation

DFA ® Minimal DFA

• Hopcroft’s algorithm                         

DFA ®RE

• Union together paths from s0 to a final state

minimal 
DFA

RE NFA DFA

The Cycle of  Constructions

You have learned all these algorithms 
in CMPSC138!



RE ® NFA using Thompson’s Construction
Ken Thompson, CACM, 1968

• It has a template for building the NFA that corresponds to a single-letter 
RE, and a transformation on NFAs that models the effect of each basic re 
operator: concatenation, alternation, and closure. 

S0 S1 
a

NFA for a

S0 S1 
a

S3 S4 
b

NFA for ab

e

NFA for a | b

S0 

S1 S2 
a

S3 S4 
b

S5 

e

e e

e

S0 S1 
e S3 S4 

e

NFA for a*

a

e

e

S0 S1 
a

NFA for b



Understanding the deep insights behind
these algorithm designs

S0 S1 
a

NFA for a

S0 S1 
a

S3 S4 
b

NFA for ab

e

NFA for a | b

S0 

S1 S2 
a

S3 S4 
b

S5 

e

e e

e

S0 S1 
e S3 S4 

e

NFA for a*

a

e

e

S0 S1 
a

NFA for b

• Key insight: to simplify the combination process, we want to have a starting
node with no incoming edges and a single accepting node.



Thompson’s Construction

• Two key steps:

– The construction begins by building trivial NFAs for each 
character in the input RE. 

– Next, it applies the transformations for alternation, 
concatenation, and closure to the collection of trivial NFAs in 
the order dictated by precedence and parentheses. 



Thompson’s Construction: End-to-End Example

Let’s try a( b | c )*

*

|

a

+

b c



NFA -> DFA

• a( b | c )*

Question: can you build a DFA for ( a | b ) a* ? Can this
process be done automatically for any regular expression?



NFA ® DFA with Subset Construction

• The complex part of the construction is the derivation of the set of DFA
states from the NFA states N, and the derivation of the DFA transition 
function. 

The pseudocode for subset construction

Take e-closure of the start state of the NFA 
and make it the start state of the DFA

for each new state q of the DFA and each a 
Î S, take the e-closure of the result and 
make it a state of the DFA.

Record the state transition rule.

Termination condition



NFA ® DFA with Subset Construction

• The subset construction is an example of fixed-point computation.
– These computations terminate when they reach a state where further 

iteration produces the same answer—a “fixed point” in the space of 
successive iterates. 

– Fixed-point computations play an important and recurring role in 
compiler construction. 

• Termination arguments for fixed-point algorithms usually depend on 
known properties of the domain. 
– For subset construction, why we are 100% sure the algorithm will

always terminate?
– Maximum #iteration = 2^N, where N is the number of NFA states. It 

may, of course, reach a fixed point and halt more quickly than that. 



Example: NFA ®DFA with Subset Construction

Iteration DFA
State

Contains NFA
states

e-closure(
move(s,a)) 

e-closure(
move(s,b)) 

e-closure(
move(s,b)) 



Example: NFA ®DFA with Subset Construction

Iteration DFA
State

Contains NFA
states

e-closure(
move(s,a)) 

e-closure(
move(s,b)) 

e-closure(
move(s,b)) 

1 d0 {0} {1,2,3,4,6,9} {} {}

2 d1 {1,2,3,4,6,9} {} {5,8,9,3,4,6} {7,8,9,3,4,6}

3 d2 {5,8,9,3,4,6} {} {5,8,9,3,4,6} {7,8,9,3,4,6}

4 d3 {7,8,9,3,4,6} {} {5,8,9,3,4,6} {7,8,9,3,4,6}

Final states
(contain a 

final state of  
the NFA)

Iteration 3 does not add a new state, and all the states are processed, so the algorithm halts



Example: NFA ®DFA with Subset Construction

Iteration DFA
State

Contains NFA
states

e-closure(
move(s,a)) 

e-closure(
move(s,b)) 

e-closure(
move(s,b)) 

1 d0 {0} {1,2,3,4,6,9} {} {}

2 d1 {1,2,3,4,6,9} {} {5,8,9,3,4,6} {7,8,9,3,4,6}

3 d2 {5,8,9,3,4,6} {} {5,8,9,3,4,6} {7,8,9,3,4,6}

4 d3 {7,8,9,3,4,6} {} {5,8,9,3,4,6} {7,8,9,3,4,6}

5 d4 {} {} {}



Any possible improvement for subset construction?

Iteration DFA
State

Contains NFA
states

e-closure(
move(s,a)) 

e-closure(
move(s,b)) 

e-closure(
move(s,b)) 

1 d0 {0} {1,2,3,4,6,9} {} {}

2 d1 {1,2,3,4,6,9} {} {5,8,9,3,4,6} {7,8,9,3,4,6}

3 d2 {5,8,9,3,4,6} {} {5,8,9,3,4,6} {7,8,9,3,4,6}

4 d3 {7,8,9,3,4,6} {} {5,8,9,3,4,6} {7,8,9,3,4,6}

We need to repeatedly compute the e-closure of node 5 and 7.



Any possible improvement for subset
construction?

Solution: An offline algorithm that computes ε-closure( {n}) for each state n in the 
transition graph. The algorithm is another example of a fixed-point computation. 

An Offline Algorithm for ε-closure. 



Example: NFA ®DFA with Subset Construction

The DFA for ( a | b ) a* 

• Not much bigger than the original but
– In the worst case the number of states in the DFA is 2Q (where Q is 

the number of states in the NFA)
• All transitions are deterministic 
• Use same code skeleton as before

s0 

a s1 

b

s3 
b s4 

s2 b

a

b a | b
a

a



DFA à minimal DFA

S0 S1 

a | b
a

s0 

a s1 

b

s3 
b s4 

s2 b

a

b a | b
a

a

Hopcroft’s algorithm: automatically minimize a DFA to a minimal state DFA.

The key is to find a representative set of non- distinguishable state.



Understanding the deep insights behind
these algorithm designs

• Combining subset construction (NFAàDFA) and hopcroft’s
algorithm (DFAà minimal DFA), at worst time, could still lead to a
state exponential blowup, but when?

• Understanding the worst case would let you know the limitations of
regular expressions.

• Could you prove that any DFA for the language Ln must have at 
least 2n states?



Building Faster Scanners from DFAs

Table-driven recognizers (which store the
transition function in an array) waste a lot of effort
• Read (& classify) the next character
• Find the next state 
• Assign to the state variable 
• Branch back to the top

We can do better
• Encode state & actions in the code 
• Do transition tests locally
• Generate ugly, spaghetti-like code (it is OK, this is automatically 

generated code)
• Takes fewer operations per input character

state = s0 ;
string = e;
char = get_next_char();
while (char != eof) {

state = d(state,char);
string = string + char;
char = get_next_char();

}
if   (state in Final) then 

report acceptance;
else

report failure;



Building Faster Scanners from the DFA

A direct-coded recognizer for Num

• Many fewer operations per character
• State is encoded as the location in the code

goto s0;

s0:  string¬ e;
char ¬ get_next_char();
if  (char = ‘+’ || char=‘–’)

then goto s1;
else goto se;

s1: string¬ string+ char;
char ¬ get_next_char();
if  (‘0’ ≤ char ≤  ‘9’) 

then goto s2;
else goto se;

s2: string¬ string+ char;
char ¬ get_next_char();
if  (‘0’ ≤ char ≤  ‘9’) 

then goto s2;
else if  (char = ‘.’)

then goto s3

else goto se;
s3 :  string¬ string+ char;

char ¬ get_next_char();
if  (‘0’ ≤ char ≤  ‘9’) 

then goto s3;
else if  (char = eof)

then report 
acceptance;

else goto se;
se: print error message;

return failure;



Limits of Regular Languages

If  REs are so useful … Why not use them for everything?

• If we add balanced parenthesis to the expressions grammar, we 
cannot represent it using regular expressions:

• A DFA of size n cannot recognize balanced parenthesis with 
nesting depth greater than n
– Not all languages are regular

Solution: Use a more powerful formalism: context-free grammars

Id ® [a-zA-Z] ([a-zA-z] | [0-9])*

Num   ® [0-9]+

Term ® Id | Num 
Op ® “+” | “–” | “*” | “/”
Expr  ® Term  | Expr Op Expr | “(“ Expr “)”



What is hard about lexical analysis?

Poor language design can complicate scanning

• Reserved words are important
– In PL/I there are no reserved keywords, so you can right a valid 

statement like:
if then then then = else; else else = then

• Significant blanks  

– In Fortran blanks are not significant

do 10 i = 1,25 do loop
do 10 i = 1.25      assignment to variable do10i

• Closures
– Limited identifier length adds states to the automata to count length



Summary of Lexical Analysis

The main ideas here are that:

a) When we are done with scanning, we will have a stream of 
tokens

b) These tokens are found by searching for a match to some 
regular expression in the input program. The matches can be 
prioritized (for example, to handle keywords)

c) To implement this efficiently, we can convert the regular 
expressions into state machines (which are implemented as a 
table lookup)

d) Luckily for us, other people have done this for us and built this 
functionality into a set of tools



Scanner Implementations

• An automatically generated scanner.
• A hand-coded approach. 

• Course: the use of generated scanners
• Most commercial compilers and open-source compilers use hand- crafted 

scanners. 
– performance gain VS. convenience
– scanners are simple and they change infrequently



fas can be viewed as specifications for a 
recognizer. However, they are not particularly 
concise specifications. To simplify scanner 
implementation, we need a concise notation for 
specifying the lexical structure of words, and a 
way of turning those specifications into an fa and 
into code that imple- ments the fa. The remaining 
sections of this chapter develop precisely those 
ideas. 
a...z, 
A...Z, s s0...9 
0 a...z, 1 A...Z 



To eliminate any ambiguity, parentheses have 
highest precedence, followed 
by closure, concatenation, and alternation, in that 
order. 



Lexical Analysis (Scanning)

• Compiler uses a set of patterns to specify valid tokens
– tokens: LPAREN, WHILE, ID, NUM, etc.

• Each pattern is specified as a regular expression
– LPAREN should match: (
– WHILE should match:  while
– ID should match: [a-zA-Z][0-9a-zA-Z]* 

• It uses finite automata to recognize these patterns

a-zA-Z 0-9a-zA-Z

ID automaton



Lexical Analysis (Scanning)

• During the scan the lexical analyzer gets rid of the white space
(\b,\t,\n, etc.) and comments

• Important additional task: Error messages!
– Var%1® Error! Not a token!
– whle® Error? It matches the identifier token.

• Natural language analogy: Tokens correspond to words and 
punctuation symbols in a natural language



Operations on Languages

Operation Definition

Union of L and M
Written L È M L È M = {s | s Î L or s Î M }

Concatenation of L and M
Written LM LM = {st | s Î L and t Î M }

Kleene closure of L
Written L* L* = È0£i£¥ Li

Exponentiation of L
Written Li Li = 

{e} if i = 0
Li-1L if  i > 0

Is this a regular expression (language)?
xn yn z



Automating Scanner Construction

To build a scanner:
1 Write down the RE that specifies the tokens
2 Translate the RE to an NFA
3 Build the DFA that simulates the NFA
4 Systematically shrink the DFA
5 Turn it into code 

Scanner generators
• Lex , Flex, Jlex, and Jflex work along these lines
• Algorithms are well-known and well-understood



From Regular Expression to Scanner

• Three key steps 
– Thompson’s construction: RA à NFA
– The subset construction: NFA à DFA
– Hopcroft’s algorithm: minimizing a DFA. 

• To establish the equivalence of RE and DFA
– Kleene’s construction: DFA à RA.



Recap on lexical analysis (Scanner)

Key concepts:
• Token: Basic unit of syntax, syntactic output of the scanner
• Pattern: The rule that describes the set of strings that correspond 

to a token, i.e., specification of the token.
• Lexeme: A sequence of input characters which match to a pattern 

and generate the token

GOAL: We want to have concise descriptions of patterns (e.g., numbers,
keywords, identifiers…), and we want to automatically construct the 
scanner from these descriptions

Solution: the key is regular expression (RA) and DFA.

minimal 
DFA

RE NFA DFA

all these algorithms in CMPSC138


