
CMPSC 160
Translation of Programming Languages

Lecture 3: Lexical Analysis (Scanning) 
+ Introduction to Parsing



Relationship between RE/NFA/DFA

RE®NFA  (Thompson’s construction)
• Build an NFA for each term
• Combine them with e-moves

NFA®DFA (subset construction)
• Build the simulation

DFA® Minimal DFA
• Hopcroft’s algorithm                         

DFA®RE

• Union together paths from s0 to a final state

minimal 
DFA

RE NFA DFA

The Cycle of  Constructions

You have learned all these algorithms 
in CMPSC138!



Automating Scanner Construction

To build a scanner:
1 Write down the RE that specifies the tokens
2 Translate the RE to an NFA
3 Build the DFA that simulates the NFA
4 Systematically shrink the DFA
5 Turn it into code 

Scanner generators
• Lex , Flex, Jlex, and Jflex work along these lines
• Algorithms are well-known and well-understood



Scanner Implementations

• An automatically generated scanner.
• A hand-coded approach. 

• Course: the use of generated scanners
• Most commercial compilers and open-source compilers use hand-crafted 

scanners. 
– performance gain VS. convenience
– scanners are simple and they change infrequently



Building Faster Scanners from DFAs

Table-driven recognizers (which store the
transition function in an array) waste a lot of effort
• Read (& classify) the next character
• Find the next state 
• Assign to the state variable 
• Branch back to the top

We can do better
• Encode state & actions in the code 
• Do transition tests locally
• Generate ugly, spaghetti-like code (it is OK, this is automatically 

generated code)
• Takes fewer operations per input character

state = s0 ;
string = e;
char = get_next_char();
while (char != eof) {

state = d(state,char);
string = string + char;
char = get_next_char();

}
if   (state in Final) then 

report acceptance;
else

report failure;



Building Faster Scanners from the DFA

A direct-coded recognizer for Num

• Many fewer operations per character
• State is encoded as the location in the code

goto s0;

s0:  string¬ e;
char ¬ get_next_char();
if  (char = ‘+’ || char=‘–’)

then goto s1;
else goto se;

s1: string¬ string+ char;
char ¬ get_next_char();
if  (‘0’ ≤ char ≤  ‘9’) 

then goto s2;
else goto se;

s2: string¬ string+ char;
char ¬ get_next_char();
if  (‘0’ ≤ char ≤  ‘9’) 

then goto s2;
else if  (char = ‘.’)

then goto s3

else goto se;
s3 :  string¬ string+ char;

char ¬ get_next_char();
if  (‘0’ ≤ char ≤  ‘9’) 

then goto s3;
else if  (char = eof)

then report 
acceptance;

else goto se;
se: print error message;

return failure;



Limitation of DFA/RE?

• Combining subset construction (NFAàDFA) and hopcroft’s
algorithm (DFAà minimal DFA), at worst time, could still lead to a
state exponential blowup, but when?

• Understanding the worst case would let you know the limitations of
regular expressions.

• Could you prove that any DFA for the language Ln must have at 
least 2n states?

• Solution: Use a more powerful formalism: context-free grammars
(pushdown automata).



The Front End: Parser

Parser
• Input: A sequence of words (along with its syntactic category, i.e.,

token)
• Output: A parse tree, a syntactic structure for the program, which

fits the words into a grammatical model of the source programming 
language. 

Source
code

Scanner IRParser IR Type
Checker

Errors

token

get next
token



Parser VS Scanner

v Unlike scanners, where hand-coding is common, tool-generated parsers 
are more common than hand-coded parsers. 

v About Five Lectures:
v 1 Lectures: Introduction to parsing
v 1 lectures: Top-down parsing in the form of recursive-descent parsers 

and LL(1) parsers 
v 1- 2 Lectures: Bottom-up parsing as exemplified by LR(1) parsers 
v 1- 2 Lecture: Several practical issues that arise in parser construction 



Why not RE?

• Case analysis: recognizing algebraic expressions over variables 
and the operators +, -, × , and ÷
– variable:
– Expression

• Any problem? a + b × c 
– Missing Precedence; no idea of evaluation order😭
– Adding parentheses?

• we cannot find a RE that will match all expressions with balanced 
parentheses 

• Paired constructs, such as “begin” and “end”， “{“ and “}”, play an 
important role in most programming languages 

• The language (m )n where m = n is not regular. In principle, DFAs cannot 
count. 

RE lack the power to describe the full syntax of most programming languages 



Context-free Grammar

v Context-free Grammar (CFGs):
• A CFG is precise and understandable
• large subclasses of the CFGs have the property that they lead to 

efficient recognizer

• It is so effective because it embraces the recursive nature of most 
programming languages 
v Example sentence: if(x){  if(y){  if(z) { } } } 
v Example grammar: B -> if(id) { B }

• The collection of sentences that can be derived from G is called the 
language defined by G, denoted G 

• The set of languages defined by context-free grammars is called the 
set of context-free languages.

v Key: powerful than RE, but still could lead to efficient recognizer. 



An Example Context-free Grammar (CFG)
Grammar

1 Start ® Expr
2 Expr ® Expr Op Expr
3 | num
4     | id
5 Op    ® +
6 | -
7 | *
8      | /

Start symbol: S = Start abstraction for all sentences for the CFG
Non-terminal symbols: N = { Start, Expr, Op } syntactic structure abstraction
Terminal symbols: T = { num, id, +, -, *, / } from our scanner
Productions: substrings (key structure) for our language

v Suppose we want to describe all legal arithmetic expressions using addition, 
subtraction, multiplication, and division.



Context-free Grammar

Formally, a grammar is a four-tuple, G = (S,N,T,P)

• T is a set of terminal symbols
– These correspond to tokens returned by the scanner
– For the parser, tokens are indivisible units of syntax

• N is a set of non-terminal symbols                    
– These are syntactic variables that can be substituted during a 

derivation
– Variables that denote sets of substrings occurring in the language

• S is the start symbol : S Î N                                      
– All the strings in L(G) are derived from the start symbol

• P is a set of productions or rewrite rules : P : N ® (N È T)*



RE can be turned into CFG

v NFA à CFG

A
a

B A -> aB A
e

B A -> B

C A -> e

• Lexical rules can be described with CFG.
• CFGs are most useful in describing the nested chain structure or syntactic structure such 

as balanced parenthesis, if else etc.
and these can’t be defined by Regular Expression.

• By using the CFG, it is very difficult to construct the recognizer.
• Only use powerful tool when needed, as it comes with overhead.
• Key: powerful than RE, but still could lead to efficient recognizer. 



Vocabulary from the Derivation process

• Sentence of G: String of terminals in L(G)

• Derivation: A sequence of rewrites according to productions

• The process of discovering a derivation for a sentence is called 
parsing

• Sentential Form of G: String of non-terminals and terminals from 
which a sentence of G can be derived.



Key steps in Derivations

• At each step, we make two choices 
1. Choose a non-terminal to replace
2. Choose a production to apply

• Different choices lead to different derivations

Two types of derivation are of interest
• Leftmost derivation — replace leftmost non-terminal at each step
• Rightmost derivation — replace rightmost non-terminal at each step

These are the two systematic derivations (the first choice is fixed)



Leftmost vs. Rightmost derivations

Q1) For every leftmost derivation, there is a rightmost derivation, and vice 
versa. True or False? 

Q2) Does every word generated by a CFG have a leftmost and a rightmost 
derivation?

Q3) Could there be sentences which have more than leftmost and a 
rightmost derivation?



A Leftmost Derivation and the 
Corresponding Parse Tree

A leftmost derivation for x – 2 * y
S

<id,x> 

Expr

Expr Op

-

<num,2> 

Expr

Expr

Expr

<id,y>

Op

*

One natural way to evaluate 
the expression is with a 

simple postorder tree-walk. 

This evaluates as   x - ( 2 * y )

Rule Sentential Form
— S
1 Expr
2 Expr Op Exp
4 <id,x> Op Expr
6 <id,x> - Expr
2   <id,x> - Expr Op Exp
3 <id,x> - <num,2> Op Expr
7 <id,x> - <num,2> * Expr
4 <id,x> - <num,2> * <id,y>



A Rightmost Derivation and the 
Corresponding Parse Tree

A rightmost derivation for x – 2 * y

S

<id,x> 

Expr

Expr Op

-

<num,2> 

Expr

Expr

Expr

<id,y>

Op

*

This evaluates as   x - ( 2 * y ) too

Rule Sentential Form
— S
1 Expr
2 Expr Op Expr
2 Expr Op Expr Op Expr
4 Expr Op Expr Op <id,y>
7 Expr Op Expr * <id,y>
3 Expr Op <num,2> * <id,y>
6 Expr - <num,2> * Expr
4 <id,x> - <num,2> * <id,y>



Production Rule Order VS Final Parse Tree

A leftmost derivation A rightmost derivation

Rule Sentential Form
— S
1 Expr
2 Expr Op Exp
4 <id,x> Op Expr
6 <id,x> - Expr
2   <id,x> - Expr Op Exp
3 <id,x> - <num,2> Op Expr
7 <id,x> - <num,2> * Expr
4 <id,x> - <num,2> * <id,y>

Rule Sentential Form
— S
1 Expr
2 Expr Op Expr
2 Expr Op Expr Op Expr
4 Expr Op Expr Op <id,y>
7 Expr Op Expr * <id,y>
3 Expr Op <num,2> * <id,y>
6 Expr - <num,2> * Expr
4 <id,x> - <num,2> * <id,y>

v The leftmost and rightmost derivations use the same set of rules; they apply 
those rules in a different order. 

v Because a parse tree represents the rules applied, but not the order of their 
application, the parse trees for the two derivations are identical. 

v What will lead to different parse tree? à The evaluation order.



Another Rightmost Derivation and the 
Corresponding Parse Tree

Another rightmost derivation and corresponding parse tree

<id,x> <num,2> 

S

E

Op EE

E Op E <id,y>

-

*This evaluates as   ( x - 2 ) * y

Rule Sentential Form
— S
1 Expr
2 Expr Op Expr
4 Expr Op <id,y>
7 Expr * <id,y>
2 Expr Op Expr * <id,y>
3 Expr Op <num,2> * <id,y>
6 Expr - <num,2> * <id,y>
4 <id,x> - <num,2> * <id,y>

This parse tree is different than the parse
tree for the previous rightmost derivation, 
and gets the precedence wrong



Ambiguity

• One grammar can produce two different parse trees for the same 
sentence.
– From a theoretical standpoint, this is fine. The sentence can be derived

from the grammar and everyone is happy
– The problem is that the way the program is interpreted stems from the 

parse tree

• We need to ensure that for each sentence in G, there is only one 
parse tree for that sentence
– If there is more than one parse tree for a given sentence, our grammar

is ambiguous
– To show a grammar G is ambiguous, find a sentence in G with two 

parse trees



Ambiguous Grammars

Classic example — the dangling-else problem

1 Stmt   ® if  Expr then Stmt
2                 |    if  Expr then Stmt  else  Stmt

|    more



Ambiguity

Two parse trees for “if Expr1 then if 
Expr2 then more else more”.

Stmt

Expr1

Expr2

production 2, then 
production 1

production 1, then 
production 2

if then else moreStmt

if then more

Stmt

Expr1

Expr2

if then

else more

Stmt

if then more

1 Stmt   ® if  Expr then Stmt
2          | if  Expr then Stmt  else  Stmt

| more

Any idea to Remove the Ambiguity？



Removing the Ambiguity

• Rewrite the grammar to avoid generating the problem
• It accepts the same set of sentences as the original grammar, but 

ensures that each else has an unambiguous match to a specific if.
• Match each else to innermost unmatched if (common sense rule)



Removing the Ambiguity

• Rewrite the grammar to avoid generating the problem
• It accepts the same set of sentences as the original grammar, but 

ensures that each else has an unambiguous match to a specific if.
• Match each else to innermost unmatched if (common sense rule)

• New rules enforce that only a “matched” statement (an if statements
with an else part) can come before an else   

Stmt ® If Expr then Stmt
| If Expr then WithElse else Stmt
| Assignment

Withelse ® If Expr then ??? else ???
| Assignment



Ambiguity

Try the dangling-else derivations:

W

Expr1

Expr2

if then elseW

if then
NO ELSE

Can’t make a parse tree where the “else”
associates with the first “if”

assignment

S



Parse Trees and Precedence

No notion of precedence à multiple order of evaluation between 
different operators à ambiguity.

For algebraic expressions 
• Multiplication and division, first
• Subtraction and addition, next

To add precedence
• Create a non-terminal for each level of precedence
• Isolate the corresponding part of the grammar
• Force parser to recognize high precedence sub-expressions first



Precedence

Adding the standard algebraic precedence：

1 S        ® Expr

2 Expr ® Expr  +  Term

3 |    Expr - Term

4 |    Term

5 Term  ® Term  *  Factor

6 |    Term   / Factor

7 |    Factor

8 Factor ® num

9 | id



Precedence

The leftmost derivation

This produces  x - ( 2 * y ) , along with an appropriate parse tree.

Both the leftmost and rightmost derivations give the same parse tree and 
the same evaluation order, because the grammar directly encodes the 
desired precedence.

S

E

-E

T

F

<id,x>

T

T

F

F*

<num,2>

<id,y>

Its parse tree

Rule Sentential Form
S

1 Expr
3 Epr - Term
7 Term - Term
8 Factor - Term
3 <id,x> - Term
7 <id,x> - Term * Factor
8 <id,x> - Factor * Factor
4 <id,x> - <num,2> * Factor
7 <id,x> - <num,2> * <id,y>



Associativity

1 S        ® Expr

2 Expr ® Expr  +  Term

3 |    Expr - Term

4 |    Term

5 Term  ® Term  *  Factor

6 |    Term   / Factor

7 |    Factor

8 Factor ® num

9 | id

1 S        ® Expr

2 Expr ® Term + Expr

3 |    Term - Expr

4 |    Term

5 Term  ® Factor * Term

6 |    Factor / Term 

7 |    Factor

8 Factor ® num

9 | id

V.S



Associativity

The rightmost derivation

This produces ( 5 - 2  ) - 2 , along with an appropriate parse tree.

Both the leftmost and rightmost derivations give the same parse tree and 
the same evaluation order

S

E

-E

T

F

<num,5>

T

Its parse tree

F

<num,2>

E

- T

F

<num,2>

Rule Sentential Form
S

1 Expr
3 Epr - Term
7 Expr - Factor
8 Expr - <num,2>
3 Expr - Term - <num,2>
7 Expr - Factor - <num,2>
8 Expr - <num,2> - <num,2>
4 Term - <num,2> - <num,2>
7 Factor - <num,2> - <num,2>
8 <num,5> - <num,2> - <num,2>



Parsing Techniques

Top-down parsers     (LL(1), recursive descent parsers)
• Start at the root of the parse tree from the start symbol and grow toward 

leaves (similar to a derivation)
• Pick a production and try to match the input
• Bad “pick”Þ may need to backtrack
• Some grammars are backtrack-free  (predictive parsing)

Bottom-up parsers     (LR(1), shift-reduce parsers)
• Start at the leaves and grow toward root
• We can think of the process as reducing the input string to the start 

symbol
• At each reduction step, a particular substring matching the right-side of 

a production is replaced by the symbol on the left-side of the production
• Bottom-up parsers handle a large class of grammars



Construct the root node of the parse tree, label it with the start symbol, and 
set the current-node to root node 

Repeat until all the input is consumed (i.e., until the frontier of the parse tree 
matches the input string)

1 If the label of the current node is a non-terminal node A, select a 
production with A on its lhs and, for each symbol on its rhs, construct the 
appropriate child

2 If the current node is a terminal symbol:
If it matches the input string, consume it (advance the input pointer)
If it does not match the input string, backtrack

3 Set the current node to the next node in the frontier of the parse tree
If there is no node left in the frontier of the parse tree and input is 
not consumed, then backtrack                            

The key is picking the correct production in step 1
• That choice should be guided by the input string

Top-down Parsing Algorithm


