
CMPSC 160
Translation of Programming Languages

Lecture 4: Top-down parsing and LL(1)
parsing



Recap on Last Lecture

• RE vs. CFG
– Expressiveness and performance

• Key concepts
– Parse tree, Derivation, Leftmost/rightmost derivation, Sentential form

• Ambiguity: if there is multiple parse tree for one input, then there is 
ambiguity in our CFG grammar.
– Break the tie between different choices: else-dangling example
– Clarify Precedence and Associativity

• Existence: If there is a parse tree, there must be a leftmost and a 
rightmost derivation. 

• But we have not yet talked about how to find/build such a parse tree 
efficiently? Two general parsing techniques:
– Top-down parses + Predicative LL parsers
– Bottle-up parses



Construct the root node of the parse tree, label it with the start symbol, and 
set the current-node to root node 

Repeat until all the input is consumed (i.e., until the frontier of the parse tree 
matches the input string)

1 If the label of the current node is a non-terminal node A, select a
(random) production with A on its lhs and, for each symbol on its rhs, 
construct the appropriate child (not terminating)

2 If the current node is a terminal symbol:
If it matches the input string, consume it (advance the input pointer)
If it does not match the input string, backtrack1

3 Set the current node to the next node in the frontier of the parse tree
If there is no node left in the frontier of the parse tree and input is 
not consumed, then backtrack2

Top-down Parsing Algorithm

Performance issue: two sources of backtracking + one concern of just not terminating



Example

And the input: x – 2 * y

Let’s use the expression grammar with correct precedence and 
associativity as an example

1 S        ® Expr

2 Expr ® Expr  +  Term

3 |    Expr - Term

4 |    Term

5 Term  ® Term  *  Factor

6 |    Term   / Factor

7 |    Factor

8 Factor ® num

9 | id



Let’s try  x – 2 * y :

Example: backtrack1

S

Expr

Term+Expr

Term

Fact.

<id,x>

Rule Sentential Form Input
- S ­ x – 2 * y
1 Expr ­ x – 2 * y
2 Expr + Term ­ x – 2 * y
4 Term + Term ­ x – 2 * y
7 Factor + Term ­ x – 2 * y
9 <id,x> + Term ­ x – 2 * y

<id,x> + Term x ­ – 2 * y



Example: backtrack1

Let’s try  x – 2 * y :

Note that “–” doesn’t match “+”

The parser must backtrack to here

S

Expr

Term+Expr

Term

Fact.

<id,x>

Rule Sentential Form Input
- S ­x – 2 * y
1 Expr ­x – 2 * y
2 Expr + Term ­x – 2 * y
4 Term + Term ­x – 2 * y
7 Factor + Term ­x – 2 * y
9 <id,x> + Term ­x – 2 * y

<id,x> + Term x ­– 2 * y



Example

Continuing with x – 2 * y : S

Expr

Term–Expr

Term

Fact.

<id,x>

Rule Sentential Form Input
- S ­x – 2 * y
1 Expr ­x – 2 * y
3 Expr – Term ­x – 2 * y
4 Term – Term ­x – 2 * y
7 Factor – Term ­x – 2 * y
9 <id,x> – Term ­x – 2 * y
- <id,x> – Term x ­– 2 * y
- <id,x> – Term x – ­2 * y

This time “–” and “–” matched

We can advance past “–” to look at “2”
Now we need to extend Term, the
last NT in the fringe of the parse tree



Example: backtrack2

Trying to match the “2” in  x – 2 * y :

Where are we?
• num matches “2”
• We have more input, but no NTs left to expand
• The expansion terminated too soon
Þ Need to backtrack

S

Expr

Term–Expr

Term

Fact.

<id,x>

Fact.

<num,2>

Rule Sentential Form Input
– <id,x> – Term x – ­2 * y
7 <id,x> – Factor x – ­2 * y
9 <id,x> – <num,2> x – ­2 * y
– <id,x> – <num,2> x – 2 ­* y



Example: backtrack2

Trying again with “2” in x – 2 * y :

This time, we matched and  consumed all the input
Þ Success!

S

Expr

Term–Expr

Term

Fact.

<id,x>

Fact.

<id,y>

Term

Fact.

<num,2>

*

Rule Sentential Form Input
- <id,x> – Term x – ­2 * y
5 <id,x> – Term * Factor x – ­2 * y
7 <id,x> – Factor * Factor x – ­2 * y
8 <id,x> – <num,2> * Factor x – ­2 * y
- <id,x> – <num,2> * Factor x – 2 ­* y
- <id,x> – <num,2> * Factor x – 2 * ­y
9 <id,x> – <num,2> *  <id,y> x – 2 * ­y
- <id,x> – <num,2> *  <id,y> x – 2 * y ­



Other choices for expansion are possible

This does not terminate                                                                    
• Wrong choice of expansion leads to non-termination, the parser will 

not backtrack since it does not get to a point where it can backtrack
• Non-termination is a bad property for a parser to have
• Parser must make the right choice

Another possible parsing

Rule Sentential Form Input 
— S ­x - 2 * y 
1 Expr ­x - 2 * y 
2 Expr  + Term  ­x - 2 * y 
2 Expr  + Term +Term ­x - 2 * y 
2 Expr + Term + Term +Term ­x - 2 * y 
2 Expr +Term + Term + …+Term ­x - 2 * y 

 

 

consuming no input !



Left Recursion

Top-down parsers cannot handle left-recursive grammars

Our expression grammar is left-recursive
• This can lead to non-termination in a top-down parser
• For a top-down parser, any recursion must be right recursion
• We would like to convert the left recursion to right recursion 

(without changing the language that is defined by the grammar)

A grammar is left recursive if there exists a non-terminal A such
that  there exists a derivation A Þ+ Aa, for some string a Î (NT È T )+

Þ+ means a bunch of (1 or more) productions applied in series
a Î (NT È T )+ means that a is a non-empty sequence of nonterminal 

and terminal symbols



Eliminating Immediate Left Recursion

To remove left recursion, we can transform the grammar

Consider a grammar fragment of the form
A ® A a

|   b

where a or b are strings of terminal and non-terminal symbols
and neither a nor b start with A
We can rewrite this as 

A ® b R
R ® a R

|  e
where R is a new non-terminal

This accepts the same language, but uses only right recursion

A

A a

aA

b

A

a

b R

R

a R

e



A ® A a
|   b

A ® b R
R ® a R

|  e

?

Given

Question Time J



Eliminating Immediate Left Recursion

v The general form for left recursion is

is can be replaced by

’

Is the converted CFG much more complicated?



Example

The expression grammar contains two cases of left recursion

Applying the transformation yields

Expr ® Term  Expr¢
Expr¢ ® +  Term  Expr¢

| - Term  Expr¢
| e

Expr ® Expr  + Term
| Expr  – Term
| Term

Term ® Term * Factor
| Term  / Factor
| Factor

Term ® Factor Term¢
Term¢ ® * Factor Term¢

| / Factor Term¢
| e

’



Left-Recursive and Right-Recursive Grammar

1 S ® Expr
2 Expr ® Expr  + Term
3 | Expr  – Term
4 | Term
5 Term ® Term  * Factor
6 | Term  / Factor
7 | Factor
8 Factor ® num
9 | id

1 S ® Expr
2 Expr ® Term Expr¢
3 Expr¢ ® + Term Expr¢
4 | – Term Expr¢
5 | e
6 Term ® Factor Term¢
7 Term¢ ® * Factor Term¢
8 | / Factor Term¢
9 | e
10 Factor ® num
11 | id

Q: Will the transformation change the associativity and precedence?

This grammar is correct,  if  somewhat non-intuitive.

A top-down parser will  terminate using it.



Preserves Precedence

S

E

T–E

T

F

<id,x>

F

<id,y>

T

F

<num,2>

*

S

E

E’

–

T

T’F

<id,x>

F

<id,y>

T

<num,2>

*

e

E’

e
T’

F

T’

eKey: the root node for a multiplication subtree will still be Term (T)
must be a child node of some E, a root node for a subtraction subtree.



A -> Cx 
B -> Cy 
C -> A | B | z

Rule: first establish some kind of order for non-terminals, 
and then find all paths where indirect recursion happens.

Eliminating Indirect Left Recursion

Order: C < B < A

C -> Cx | Cy | z

C  ->  zC’ 
C’ ->  xC’ | yC' | e

NT can only have NT with lower order on the RHS of its production rule 

Done!!!

A -> Cx 
B -> Cy 
C  ->  zC’ 
C’ ->  xC’ | yC' | e

Example:



Eliminating Left Recursion

The previous transformation eliminates immediate left recursion
What about more general, indirect left recursion?

The general algorithm (Algorithm 4.1 in the Textbook):
Arrange the NTs into some order A1, A2, …, An

for i ¬ 1 to n

for j ¬ 1 to i-1
replace each production Ai ® Aj g with 

Ai ® d1 g ½d2 g½…½dk g,  
where Aj  ® d1 ½d2½…½dk are all the current productions for Aj

eliminate any immediate left recursion on Ai using the direct 
transformation



Efficiency with Backtracking?

If it picks the wrong production, a top-down parser may backtrack 
Alternative is to look ahead in input & use context to pick correctly.

Solution: Predictive Parsing

Basic idea 
The main idea is to look ahead at the next few tokens and use that 
token to pick the production that you should apply

What is the potential problem here?
A à aB | aC

X  ® + X
|   - Y

Here we can use the + and –
to decide which rule to apply 



A graphical explanation for the left-factoring

becomes …

Left Factoring 

A ® ab1
| ab2

| abn

A ® a Z
Z ® b1

|  b2
|  bn

A

ab1

ab3

ab2

aZ

b1

b3

b2A



Left Factoring

• We already learned one transformation: Removing left-recursion
• There is another transformation called left-factoring

" A  Î NT,
find the longest prefix a that occurs in two 

or more right-hand sides of  A

if a ≠ e then replace all of the A productions,
A ® ab1 | ab2 | … | abn | g1 | g2 | … | gk , 

with 
A ® a Z  |  g1 | g2 | … | gk
Z ® b1 | b2 | … | bn

where Z is a new element of  NT

Repeat until no common prefixes remain

Left-Factoring Algorithm:



More on Predictive Parsing

• Suppose all three rules have some NT on the RHS?
• Which rule to select if the next token is “x”? No idea.

v First Set for a Non-Terminal (NT) a :
x Î FIRST(a)          iff 1) a Þ* x g,  for some g Î (NT È T )* and x Î T

2) a Þ* e and x = e 
ALL tokens that can be at the beginning of a string that can be derived from a

v First set for a Terminal (T) x 
x = FIRST(x) 

Predict(A ⟶ α1) = First(α1) 
Predict(A ⟶ α2) = First(α2) 
Predict( A ⟶ α3) = First(α3)

It seems that if all first sets are distinct, we are done!



Question Time J

S  ® AB
A  ® x | y
B ® 0 | 1

FIRST(S) = { }

S  ® AB
A  ® x | y | e
B ® 0 | 1

S  ® AB
A  ® x | y | e
B ® 0 | 1 | e

FIRST(S) = { }

FIRST(S) = { }

Definition: ALL terminals that can 
be at the beginning of a string that 
can be derived from S.



Examples: Compute FIRST(S) 

S  ® AB
A  ® x | y
B ® 0 | 1

FIRST(S) = { x, y }

S  ® AB
A  ® x | y | e
B ® 0 | 1

S  ® AB
A  ® x | y | e
B ® 0 | 1 | e

FIRST(S) = { x, y, 0, 1, e }

FIRST(S) = { x, y, 0, 1 }



How to Compute FIRST Sets

To construct FIRST(X) for a grammar symbol X, apply the following rules until no 
more symbols can be added to FIRST(X) 

1. If X is a terminal, then FIRST(X) = X
2. If X is a non-terminal and X ® e is a production, then put e in FIRST(X)
3. If X is a non-terminal and X ® t is a production (t is a terminal), then put t in FIRST(X)
4. If X is a non-terminal and X ®Y1|Y2 ... |Yk is a production, then let FIRST(X) =

FIRST(Y1) ∪ FIRST(Y2) … ∪ FIRST(Yk)
5. If  X is a non-terminal and X ®Y1Y2 ... Yk is a production, then

– put every symbol in FIRST(Y1) other than e to FIRST(X)
– if e is in FIRST(Yj) for all 1 £ j < I, put every symbol in FIRST(Yl) other than e to 

FIRST(X)
– put e in FIRST(X) if e is in FIRST(Yi) for all 1 £ i £ k



We still have those pesky epsilons …

• We shall also examine the set of characters that can follow the 
current non-terminal If we have e in our FIRST sets

• This is what the FOLLOW set defines. 
– FOLLOW(A) for a non-terminal symbol A. 

• The set of terminal symbols that can appear immediately to 
the right of A in some sentential form. 

T ® S z
S  ® AB
A  ® x | y | e
B ® 0 | 1 | e

FIRST(S) = { x, y, 0, 1, e }

• Suppose we current node to process is S, and the next token is z. 
Are we having an error?



How to Compute FOLLOW Sets?

To construct FOLLOW(A) for a non-terminal symbol A, apply the following rules
until no more symbols can be added to FOLLOW(A):

1. Put $ in FOLLOW(S)    ($ is the end-of-file symbol, S is the start symbol)

2. If  there is a production B ® a A b,
– then put everything in FIRST(b) - except e - in FOLLOW(A)
– if e is in FIRST(b), then put everything in FOLLOW(B) in FOLLOW(A)

3. If  there is a production B ® a A, then put everything in FOLLOW(B) in 
FOLLOW(A)



FIRST/FOLLOW Example

Expression ® Function
|  ( Expression )
|  Primary + Expression
|  Primary

Primary    ® id
| num

Function   ® id ( ParamList ) 
ParamList  ® Expression ParamList

|  e

FIRST (Expression) = {}
FIRST (Primary) = {}
FIRST (Function) = { }
FIRST (ParamList) = {}

FOLLOW (Expression) = {}
FOLLOW (Primary) = {}
FOLLOW (Function) = {}
FOLLOW (ParamList) = { }

Example Input: x + y ( z + a ( b ) )

• First (a): ALL tokens that can be at 
the beginning of a string that can be 
derived from a.

• FOLLOW(a): The set of terminal 
symbols that can appear 
immediately to the right of a in some 
sentential form. 



FIRST/FOLLOW Example

Expression ® Function
|  ( Expression )
|  Primary + Expression
|  Primary

Primary    ® id
| num

Function   ® id ( ParamList ) 
ParamList  ® Expression ParamList

|  e

FIRST (Expression) = { ( , num, id }
FIRST (Primary) = { num, id }
FIRST (Function) = { id }
FIRST (ParamList) = { id , num, ( , e }

FOLLOW (Expression) = { $ , ( , ) , id, num }
FOLLOW (Primary) = { $ , ( , ) , + , id, num }
FOLLOW (Function) = { $ , ( , ) , id, num }
FOLLOW (ParamList) = { ) }

Example Input: x + y ( z + a ( b ) )

• First (a): ALL tokens that can be at 
the beginning of a string that can be 
derived from a.

• FOLLOW(a): The set of terminal 
symbols that can appear 
immediately to the right of a in some 
sentential form. 



LL(1) Grammars

Left-to-right scan of the input, Leftmost derivation, 1-token look-ahead

A grammar G is LL(1) if for each set of its productions  
A ® a1 | a2 | ... | an:

FIRST(a1), FIRST(a2), ..., FIRST(an), are all pair-wise disjoint

If ai Þ* e , then FIRST (aj) Ç FOLLOW (A) = Æ for all 1 £ i £ n, i ¹ j

• In other words, LL(1) grammars
– during leftmost derivation, productions are uniquely predictable with a 

one token lookahead



Where are we in the process?

compiler

scan parse

top down parsing
with backtracking

predictive parsing

top down bottom up

LL(1)


