
CMPSC 160
Translation of Programming Languages

Lecture 5: Top-down parsing +
Introduction to Bottom-up Parsing

Where are we in the process?

compiler

scan parse

top down parsing
with backtracking

predictive parsing

top down bottom up

LL(1)

Predictive Parsing with LL(1) Grammars

Basic idea
Given A ® a | b, the parser should be able to choose between a and b

based on peeking at the next token in the stream

LL(1): Left-to-right scan of the input, Leftmost derivation, 1-token look-ahead

A grammar G is LL(1) if for each set of its productions
A ® a1 | a2 | ... | an:

FIRST(a1), FIRST(a2), ..., FIRST(an), are all pair-wise disjoint

If aiÞ* e , then FIRST (aj) Ç FOLLOW (A) = Æ for all 1 £ i £ n, i ¹ j

In other words, LL(1) grammars
• during leftmost derivation, productions are uniquely predictable with a

one token lookahead

General Predictive Parsing

How much look-ahead is needed?
• In general, an arbitrarily large amount
• Use the Cocke-Younger, Kasami, or Earley’s algorithm

– Complexity is O(|x|3) where x is the input string

Fortunately,
• Large subclasses of context free grammars can be parsed

efficiently with limited look-ahead
– Linear complexity, O(|x|) where x is the input string

• Most programming language constructs fall in those subclasses

Among the interesting subclasses is the LL(1) grammars.

Recursive Descent Parsing

1 S ® if E then S else S
2 | begin S L
3 | print E
4 L ® end
5 | ; S L
6 E ® num = num

void S() {
switch(lookahead) {

case IF: match(IF); E(); match(THEN); S();
match(ELSE); S(); break;

case BEGIN: match(BEGIN); S(); L(); break;
case PRINT: match(PRINT); E(); break;
default: error();

}
}

void E() { match(NUM); match(EQ); match(NUM); }

void L() {
switch(lookahead) {

case END: match(END); break;
case SEMI: match(SEMI); S();

L(); break;
default: error();

}
}

void main() {
lookahead=getNextToken();
S();
match(EOF);

}

void match(int token) {
if (lookahead==token)

lookahead=getNextToken();
else

error();
}

Where are we in the process?

compiler

scan parse

top down parsing
with backtracking

predictive parsing

top down bottom up

LL(1)

Parsing Techniques

Top-down parsers (LL(1), recursive descent parsers)

Bottom-up parsers (LR(1), shift-reduce parsers)

Context-Free Grammars

LR(1)

LL(1)

RE

S

look-ahead input
string

?

start symbol

left-to-right
scan

S

A B

?
look-ahead

fringe of the
parse tree

left-most
derivation

Top-down Parsing

D C

When we start with a predictive top-down
parser, the look-ahead symbol we read
from our input string MUST fully specify the
parse tree from S to the input symbol. In
the example, we have to know that S®AB
before we even see any of B

Top-Down Parsing v.s. Bottom-Up Parsing

C

A ?

look-ahead

upper fringe of
the parse tree

Bottom-up Parsing

D

S

right-most
derivation
in reverse

In a bottom-up parser, we can delay this
decision because we only need to build
the tree up above the part of the input
string we have examined so far.

In the graphical example on the left, you
can see that even though we are at the
same point in the input string, the
production S®AB has not been specified
yet. This delayed decision allows us to
parse more grammars than predictive
top-down parsing (LL).

As a nice side effect, bottom-up parsing allows us to handle left-recursive grammars
without modification

Top-Down Parsing v.s. Bottom-Up Parsing

Bottom-Up Parsers

• Given a stream of tokens w, reduce it to the start symbol.

Parsing for id + id:

Reduction ≡ Derivation in Reverse (Rightmost Derivation)
LR: Left-to-right scanning, Rightmost Derivation

Shift-Reduce Parsing: An Example

Stack: sentential form + rightmost derivation in reverse
Input stream: from left to right
Two key actions: shift or reduce

Key question: when to reduce? which production rule to choose?

Handles

• Handle: A structure that furnishes a means to perform reductions

• Handles are substrings of sentential forms:
• A substring that matches the right-hand side of a production
• Reduction using that rule can lead to the start symbol

• Handle Pruning: The process of discovering a handle & reducing it to the
appropriate left-hand side is called handle pruning.

Shift-Reduce Parsing

Key operations (based on the stack and input stream):
• Shift: Construct leftmost handle on top of stack
• Reduce: Identify handle and replace by corresponding RHS
• Accept: Continue until string is reduced to start symbol and input token stream is empty
• Error: Signal parse error if no handle is found.

Implementations:
• Stack to hold grammar symbols (corresponding to tokens seen thus far).
• Stack is initially empty (denoted by $).
• Input stream of yet-to-be-seen tokens.
• Start with the key operations above.
• Handles appear on top of stack.
• Parse is successful if stack contains only the start symbol when the input stream ends.

Handle-pruning, Bottom-up Parsers

One implementation of a simple shift-reduce parser

push $
lookahead = get_ next_token()
repeat until (top of stack == start symbol and lookahead == $)

if the top of the stack is a handle a®b
then /* reduce b to a */

pop |b| symbols off the stack
push a onto the stack

else if (token ¹ $)
then /* shift */

push lookahead
lookahead = get_next_token()

How do errors show up?

• failure to find a handle

• hitting $ and needing to
shift (final else clause)

Either generates an error

“pop |b| symbols off the stack” means that if we have some production A®BCx then
we need to pop B, C, and x off the stack (|b| = 3 in this case) before we push A

Keys for Shift-Reduce Parsing

• Identify a handle in string.
• Top of stack is the rightmost end of the handle.

• What is the leftmost end?
• If there are multiple productions with the handle on the RHS,

which one to choose?

Existence of a Unique Handler for
Rightmost Derivation

Insight
If G is unambiguous, then every right-sentential form has a
unique handle.

If we can find those handles, we can build a derivation!

Sketch of Proof:
1 G is unambiguous Þ rightmost derivation is unique (through a list of

sentential forms g1, … gn)
2 Þ a unique production a ® b applied to take sentential form gi-1 to gi
3 Þ a unique position k at which a®b is applied
4 Þ a unique handle < a®b , k >: replacing b at k with a.

This all follows from the definitions

LR Parsers

• LR(k) parsers could parse a set of CFGs, for which the handles
can be deterministically indented with k lookahead of the
input stream.
– The key part is recognizing the handles

• Wait a minute… recognizing… we studied something that
recognizes strings: State machines (aka automata)!

• The big picture is that LR parsers use a state machine (to
recognize handles) in coordination with a stack (to handle the
recursive nature of grammars) to parse an input.

A Simple Example of LR Parsing

• For input stream: aa

Any insights about why we should select these handles respectively???
Can you turn these insights into general principles???

A Simple Example of LR(0) Parsing

• States: Productions with “• ” somewhere on the RHS.
• Grammar symbols before the “• ” are on stack
• Grammar symbols after the “• ” represent symbols in the input stream.

1
2
3
4

• Closure: What other items are “equivalent” to the given item?
Given an item A → α• Bβ, closure(A → α• Bβ) is the smallest set that contains the item
A → α• Bβ, and every item in closure(B → • γ) for every production B → γ ∈ CFG

Example: States of an LR(0) parser

• Instead of generating the states along with the inputs to parse, we could do a preprocessing
and store all possible states (along with their transition) in a table before the parsing process.

• The parsing process becomes largely a table lookup process (just like the scanner part).

States to Table

Action Table Goto table

There are in fact two different tables
The ACTION table tells you if you should shift, reduce, accept, or throw and error.

It additionally tells you how to update the state on a shift
The GOTO table tells you how to update the state on a reduce action

Quiz: States of an LR(0) parser

Example: States of an LR(0) parser

Closure: What other items are “equivalent” to the given item?
Given an item A → α• Bβ, closure(A → α• Bβ) is the smallest set that contains
the item A → α• Bβ, and every item in closure(B → • γ) for every production B → γ ∈ CFG

For example, to match [S → • V = E] we need to first match V. Let us
connect the NFA states together with ε-transitions whenever one state
needs to make a “subroutine” call to another state.

0 S’® S $
1 S ® V = E
2 S ® E
3 E ® V
4 V ® x
5 V ® * E

example

S → • V = E S → V • = E S →V = • E S → V = E •
V = E

S’→ • S $ S’→ S • $ S’→ S $ •
S $

S → • E S → E •
E

E → • V E → V • V

V → • x V → x •
x

V → • * E V → * • E
*

V →* E •
E

εε

ε

ε

ε

ε

ε

ε

ε

Things behind the automation: NFA to DFA

