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Context-sensitive (semantics) analysis

• One of the jobs of the compiler front-end is to reject ill-formed inputs. 
• This is usually done in three stages. 

– Lexical analysis: detects inputs with illegal lexical syntax. 
– Parsing: detects inputs with ill-formed syntax (no parse-tree).
– Semantic analysis: catch ’all’ remaining errors.

• Why do we need a separate semantic analysis phase at all? 
– Some language constraints are not expressible using CFGs (too 

complicated). The situation is similar to the split between lexing and 
parsing: not everything about syntactic well-formedness can be expressed 
by regular expressions & FSAs, so we use CFGs later.
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What kind of errors can not be found with
parsing?

• Can you think of any?



What kind of errors can not be found with
parsing?

fie(int a, int b, int c, int d)
{ … }

fee()
{

int f[3], g[4], h, i,  j, k;
char *p;
call fie(h, i, “ab”, j, k); 
k = f * i + j;
h = g[17];
printf(“<%s,%s>.\n”,p,q);
p = 10;

}

What is wrong with this program?

• declared g[4], used g[17]

• wrong number of  args to fie()

• “ab” is not an int

• wrong dimension on use of  f

• undeclared variable q

• 10 is not a character string

All of  these are 

“deeper than syntax”



What kinds of checks does semantic 
analysis do?

Some examples. The precise requirements depend on the language. 

• All identifiers declared before use? 
• Are all types correctly declared? 
• Do the inheritance relationships make sense? 
• Are classes and variables defined only once? 
• Methods defined only once? 
• Are private methods and members only used within the defining 

class? 
• Stupid operations like cosine(true) or ”hello”/7?.



Why Lexing/Parsing is not good enough?

• The compiler must build up a large base of knowledge about the 
detailed computation encoded in the input program. 
– parsing level: only variable name; we just need to know it is a variable.

Nothing beyond that.

• It must know what values are represented, where they reside, and 
how they flow from name to name.

• All of these facts can be derived from the source code. The 
compiler must perform deeper analysis than is typical for a scanner 
or a parser, the context-sensitive analysis.

• These kinds of analysis are either performed alongside parsing or 
in a post pass that traverses the IR produced by the parser.



Caveat

• When we say that semantic analysis catches ’all’ remaining errors, 
that does not include application-specific errors. It means catching 
errors that violate the well-formedness constraints that the 
language itself imposes. 

• Naturally, those constraints are chosen by the language designers 
with a view towards efficient checkability by the compiler.



Rice’s theorem and undecidability

• Rice’s theorem. No interesting property of programs (more 
precisely: program execution) is decidable. 

• That means for essentially any property that programs might have 
(e.g. does not crash, terminates, loops forever, uses more than 
1782349 Bytes of memory) there cannot be a perfect checker, i.e.,
a program that determines with perfect accuracy whether the 
chosen property holds of any input program or not. 

• Informally, one may summaries Rice’s theorem as follows: to work 
out with 100% certainty what programs do, you have to run 
them (with the possibility of non-termination), there is no 
shortcut.



Rice’s theorem and undecidability

• Not all hope is lost! 

• We can approximate a property of interest, and our approximation 
will have either false positives or false negatives (or both).



Rice’s theorem and undecidability

• So, our semantic analysis must approximate. 

• A compiler does this in a conservative way (“erring on the side of 
caution”): every program the semantic analysis accepts is 
guaranteed to have to properties that the semantic analysis check 
for, but the semantic analysis will reject a lot of safe programs 
(having the required property). 

• Example: Our semantic analysis guarantees that programs never 
try to multiply an integer and a string like cosine("hello"). 

• Is the following program is safe?
– if ( x*x = -1 ) { y = 3 / "hello" } else y = 3 / 43110 } 

• Yet any typing system in practical use will reject it. (Why?)



Semantic Analysis V.S. Lexing/Parsing

For lexing and parsing we proceeded in two steps. 
1. Specify our expectation formally (RE for lexing, CFGs for parsing) 
2. Invented algorithm to check our program given in (1): DFA to 

decide REs, (top-down/bottom-up) parser to decide CFGs. 

For semantic analysis such a nice separation between specification 
and algorithm is difficult / an open problem. 
• It seems hard to express our expectation (or constraints)

independent from giving an algorithm that checks for them. 
• The whole session on semantic analysis will be more superficial 

than those on lexing/parsing.



Different Semantic Analysis

• Semantics analysis is not one analysis, but a set of analysis.

• The compiler will have an abstraction for each of these categories 
of analysis.

• It uses abstractions that represent some aspect of the code, such 
as a type system, a storage map, or a control-flow graph. 
– For example, with type system, to variables of type string, we can 

apply operations such as println, but we cannot multiply two strings/
– It must understand the program’s name space: the kinds of data 

represented in the program, the kinds of data that can be associated 
with each name and each expression, and the mapping from a name’s 
appearance in the code back to a specific instance of that name. 

– It must understand the flow of control, both within procedures and
across procedures.



Commonality of Different Semantics
Analysis

What kind of error detections are semantics analysis?
• Analysis depend on values, not just tokens 

– Analysis depend on attributes of tokens
• Analysis involve non-local information

– variable declarations, procedures
• Analysis may involve computation

How can we answer these questions?
• Use formal methods

– Context-sensitive grammars
– Attribute grammars (semantic rules do not have side effects)                                   

• Use ad-hoc techniques
– Symbol tables
– Syntax-directed translation (use semantic rules that can have side effects)                                                                



Attribute Grammars

• Attribute grammar: An attribute grammar consists of a context-free 
grammar augmented by a set of rules that specify computations. 

– We must decide what attributes each node (T/NT) needs.

– We must elaborate the productions with rules that define values for these 
attributes in terms of the values of other attributes. 

– The rules are functional; they imply no specific evaluation order and they 
define each attribute’s value uniquely. 



Build Attribute Grammars from CFG: An
Example

• A context-free grammar for signed binary numbers (SBN)

• We would like to augment it with rules that compute the decimal value of 
each valid input string

• SBN generates all signed binary 
numbers, such as -101, +11, -01, 
and +11111001100. 

• It excludes unsigned binary 
numbers, such as 10. 



Define Attributes for Grammar Symbols

• The compiler writer determines a set of attributes for each symbol in the 
grammar.

• Simpler attribute grammars can solve this particular problem; we have 
chosen this one to demonstrate particular features of attribute grammars.



Define Rules to Facilitate the Information
Flow among These Attributes

• The compiler writer also designs a set of rules to compute their values 
– These rules are functional.
– Each rule implicitly defines a set of dependences.

Subscripts are added to grammar 
symbols whenever a specific 
symbol appears multiple times in 
a single production. 



Attribute Dependence Graph

• Example: Attribute Dependence Graph for -101.
• Edges in the graph follow the flow of values in the evaluation of a rule.

Based on the dependence graph, we can define an evaluation order to calculate all attributes.



Categories of Attributes

• Attribute types à information flow directions à evaluation order

• We distinguish between attributes based on the direction of value flow.
– Synthesized attributes are defined by bottom-up information flow

• A synthesized attribute can draw values from the node itself, its descendants 
in the parse tree, and constants. 

– Inherited attributes are defined by top-down and lateral information flow
• an inherited attribute can draw values from the node itself, its parent and its 

siblings in the parse tree, and constants. 



Categories of Attributes

What type of attributes are
them?
• Value
• Negative
• position



S-Attributed Grammars

• A grammar that uses only synthesized attributes is called an:
S-attributed grammar
– S-attributed grammars can be evaluated in a single bottom-up pass of

the parse tree.

• LR parsers can easily deal with S-attributed grammars without
explicitly building the parse tree (huge memory consumption).
– Store the attributes of the symbols in the parser stack

– When a reduce action is taken 
• Symbols in the RHS of the production and their attributes are already in the 

stack 
• Compute the synthesized attributes of the symbol in the LHS of the 

production using the attributes of the symbols on the RHS



L-Attributed Grammars

• L-attributed grammar： If inherited attribute of a symbol is computed using 
the inherited attributes of its parent and attributes of symbols on its left in 
the production, then the grammar is called an:

• Every S-attributed grammar is also L-attributed.

• L-attributed grammars can be evaluated using a depth-first traversal of 
the parse tree and can be incorporated conveniently in LL parsers.

procedure dfsvisit(n: node)
begin

for each child m of n from left to right do
evaluate inherited attributes of m;
dfsvisit(m);

endfor
evaluate synthesized attributes of n

end

The nodes in this algorithm
are the nodes of the parse tree

Start the depth-first traversal 
by calling the dfsvisit on the 
root of the parse tree



Evaluator Generator and Evaluator Methods

For more general cases, the compiler writer must create an evaluator as
an implementation.

– an ad hoc program 
– or by using an evaluator generator—the more attractive option. 
– This indeed is the attraction of attribute grammars.

Dependence-based methods
• Build the parse tree
• Build the attribute dependence graph
• Topological sort the dependence graph
• Compute the attributes in topological order

Oblivious methods
• Evaluate nodes in some pre-selected order repeatedly
• e.g., repeated right-to-left passes, and alternating left-to-right and right-to-left 

passes. 

More details can be found in book 4.3.1.


