
CMPSC 160
Translation of Programming Languages

Lecture 9: Context-sensitive Analysis
and Type System



Recap on Attribute Grammars

• Context-sensitive analysis
– non-local information
– value beyond syntax
– computation

• Attribute grammar: An attribute grammar consists of a context-free 
grammar augmented by a set of rules that specify computations. 

• Category of attribute grammar
– S-Attributed Grammars
– L-Attributed Grammars



Rules must be “local” for Attribute Grammar

• The scope of each rule
is constrained by
production

• Each rule only touch
attributes of NT/T of
the local production.



Recap on Attribute Dependence Graph

• Information flow within each subgraph.
• Far-away information can only be transferred along the tree.

Based on the dependence graph, we can define an evaluation order to calculate all attributes.



An Attribute-Grammar Example

Grammar for a block of assignments

Block0 → Block1 Assign
" Assign

Assign → Ident  =  Expr  ;
Expr0 → Expr1  + Term

" Expr1  – Term
" Term

Term0 → Term1  *  Factor
" Term1  /  Factor
" Factor

Factor → (  Expr  )
" Number
" Identifier

Estimate execution time

• Each operation has a COST

• load/store

• compute

• Assume a load per value

• Assume no reuse

Another example to illustrate the weaknesses of attribute grammars 



An Attribute-Grammar Example (continued)

Block0 ® Block1 Assign Block0.cost ¬ Block1.cost + Assign.cost 
 ½ Assign Block0.cost ¬ Assign.cost 
Assign ® Ident  =  Expr  ; Assign.cost ¬ COST(store) + Expr.cost 
Expr0 ® Expr1  + Term Expr0.cost ¬ Expr1.cost + COST(add) + 

                       Term.cost 
 ½ Expr1  – Term Expr0.cost ¬ Expr1.cost + COST(add) +  

                       Term.cost 
 ½ Term Expr0.cost ¬ Term.cost 
Term0 ® Term1  *  Factor Term0.cost ¬ Term1.cost + COST(mult ) +  

                        Factor.cost 
 ½ Term1  /  Factor Term0.cost ¬ Term1.cost + COST(div) +  

                        Factor.cost 
 ½ Factor Term0.cost ¬ Factor.cost 
Factor ® (  Expr  ) Factor.cost ¬ Expr.cost 
 ½ Number Factor.cost ¬ COST(loadi) 
 ½ Identifier Factor.cost ¬ COST(load) 

 

 

All the attributes are synthesized !
Good fit to bottom-up, shift/reduce parser



What about an improvement?

Values are loaded only once per block (not at each use)
• Need to track which values have been already loaded

Adding load tracking
• Need new attributes: Two sets: Before and After for each production



A Better Execution Model

Factor ® (  Expr  ) Factor.cost ¬ Expr.cost ; 
Expr.Before ¬ Factor.Before ; 
Factor.After ¬ Expr.After 

 ½ Number Factor.cost ¬ COST(loadi) ; 
Factor.After ¬ Factor.Before 

 ½ Identifier If (Identifier.name Ï Factor.Before) 
   then 
        Factor.cost ¬ COST(load); 
        Factor.After ¬ Factor.Before È 
                                   Identifier.name 
   else 
       Factor.cost ¬ 0 
       Factor.After ¬ Factor.Before 

 

 

Factorà Identifier is the only rule that is associated with loading.



A Better Execution Model

Block0 ® Block1 Assign Block0.cost ¬ Block1.cost + Assign.cost 
Block1.before ¬ Block0.before 
Assign.before ¬ Block1.after 
Block0.after ¬ Assign.after 
 

 ½ Assign Block0.cost ¬ Assign.cost 
Assign.before ¬ Block0.before 
Block0.after ¬ Assign.after 
 

Assign ® Ident  =  Expr  ; Assign.cost ¬ COST(store) + Expr.cost 
Expr.before ¬ Assgin.before 
Assign.after ¬ Expr.after 
 

……   …… 
 

 

• Sets Before and After for each production
• Must be updated, and passed around the tree



A Better Execution Model

Expr0 ® Expr1  + Term 
 
 
 
 
…. 

Expr0.cost ¬ Expr1.cost + COST(add) + 
                        Term.cost ; 
Expr1.Before ¬ Expr0.Before ; 
Term.Before ¬ Expr1.After; 
Expr0.After ¬ Term.After 
….. 

Term0 ® Term1  *  Factor 
 
 
 
 
…… 

Term0.cost ¬ Term1.cost + COST(mult ) +  
                        Factor.cost 
Term1.Before ¬ Term0.Before ; 
Factor.Before ¬ Term1.After; 
Term0.After ¬ Factor.After 
…… 

 

 
• Sets Before and After for each production

• Must be updated, and passed around the tree



• These copy rules incurs large overhead
• Each creates an instance of the set, but many of them

are very similar to each other.
• Lots of work, lots of space, lots of rules to write

Huge Overhead



Problems with the Attribute-Grammar Approach 

• Non-local computation
– An attribution rule can only connect attribute values associated with a 

grammar symbol that appears in the same production rule.
– Thus, it only allows nearby, or local, information communications.
– Copy rules are needed to move those “non-local” values to the points 

where they are used.
– But copy rules increase computation complexity and space 

requirements

• Non-local computation are the key to many context-sensitive analysis

– e.g., to pass declaration information around the parse tree 

– This problem reflects a fundamental clash between the functional 
nature of the attribute-grammar paradigm and the imperative use to 
which it might be put in the compiler. 



Addressing the Problem 

Use rules with side effects, store the results in global variables

• This is called ad-hoc syntax directed translation
– This is the approach we use when we write semantic actions in Yacc

(Bison is the GNU implementation/extension of Yacc).

• Avoids all the copy rules, allocation and storage headaches

• All inter-assignment attribute flow is through table
– Clean, efficient implementation

– Good techniques for implementing the (symbol) table

– When its done, information is in the table!            

– Cures most of the problems

• This design violates the functional paradigm



Reworking the Example (with load tracking)
Using Ad-Hoc Syntax Directed Translation

Block0 ® Block1 Assign  
 ½ Assign cost ¬ 0; 
Assign ® Ident  =  Expr  ; cost¬ cost  + COST(store); 
Expr0 ® Expr1  + Term cost¬ cost  + COST(add); 
 ½ Expr1  – Term cost¬ cost  + COST(sub); 
 ½ Term  
Term0 ® Term1  *  Factor cost¬ cost  + COST(mult); 
 ½ Term1  /  Factor cost¬ cost  + COST(div); 
 ½ Factor  
Factor ® (  Expr  )  
 ½ Number cost¬ cost  + COST(loadI); 
 ½ Identifier i¬ hash(Identifier); 

if (Table[i].loaded = false) 
   then 
      cost ¬ cost + COST(load); 
     Table[I].loaded ¬ true; 

 

 

• For the previous 
example, use a central 
repository for 
attributes: symbol 
table to indicate
information about
loaded/not loaded state

• The compiler can 
accumulate cost in a 
single variable, rather 
than creating a cost 
attribute at each node 
in the parse tree. 

Actions for each production in ad-hoc method are applied as a unit rule. The entire
evaluation order has to be specified by the programmer.



Actions in ad-hoc method are applied as a unit; 
not true for attribute grammar rules

• Based on the dependence graph, we can define an evaluation order to calculate
different attributes.

• For attribute rule 5, the position part is evaluated much earlier than the value
part.



Symbol Tables in a Compiler

• Symbol Table is an important data structure created and maintained by 
the compiler in order to keep track of semantics of variables.

Symbol
Table

Errors

Source
Code

Middle
End

Front
End

Machine
code

Back
End

IR IR

• It is initially built during the front-end processing (often integrated into lexical
and syntax analysis).

• Its information is used/refined during later passes: semantics analysis in the
front end, compiler optimizations in the middle end, and code synthesis in the
back end.

• We can rediscover this information every time we need it by traversing the Irs
(e.g., AST), but using a symbol table is more efficient.



Symbol Tables： Contents and Operations

• Key information stored in Symbol Tables
– textual name
– data type
– for arrays: dimension, upper and lower bounds for each dimension
– for records or structures: list of fields and their information
– for functions and procedures: number and type of arguments 
– storage information (memory location: base address and offset)
– …

• Key operators
– allocate(): to allocate a new empty symbol table
– free(): to remove all entries and free the storage of the symbol table
– insert()： frequently used to add information about unique names 

occurring in the source code.
– lookup(): frequently used to search a name if the symbol is initialized +

if the symbol declared multiple times.



Symbol Tables: Implementations

• Array (Sorted) :
– Insertion Time O(n). When inserting an element, traversing must be 

done in order to shift elements to right. 
– Lookup Time O(log n) time. A binary search can be used to find an 

element. 
• Linked List (unsorted):

– Insertion Time O(1). If we have to check that an entry was not 
entered before, then insert will be O(N).

– Lookup Time – O(n). While fetching a data item the linked list must be 
traversed completely ( linear search ). 

• Hash
– Insertion Time O(1).
– Lookup Time O(1)
– potential issue: the disadvantage of this implementation is when there 

are too many collisions the time complexity increases to O(n).
– Open hashing and Open addressing



Problems with the Ad-hoc syntax directed 
translation Approach 

• An attribute rule can record information directly into a global table, 
where other rules can read the information. 
– the implicit dependence between them is removed from the 

attribute dependence graph. 

• The missing dependence should constrain the evaluator to ensure 
that the two rules are processed in the correct order.

• Compiler writer have to deal with this evaluation order manually.
– The common routine is to integrate arbitrary snippets of code into the 

parser and lets the parser sequence the actions and pass values 
between them. 



Ad-hoc methods vs. Attributed Grammar

Most parsers are based on this ad-hoc style of context-sensitive analysis 
using ad-hoc syntax directed translation

Advantages
• Addresses the shortcomings of the attribute grammars
• Efficient, flexible

Disadvantages
• Must write the code with little assistance
• Programmer deals directly with the details



Real Case Study for Semantics Analysis

To generate code, a compiler needs to answer many questions:
• Type analysis

– is x a scalar, an array or a function?
– is the expression x*y+z type-consistent?
– in an array reference a[ i , j , k], does a have three dimensions?
– how many arguments does a function take? 

. . .
• Name analysis

– is x declared? Are there names declared but not used?
– which declaration of x does each use reference?



Type Analysis



Type Analysis

• Type: Definition and Benefits.

• Two notions of typing for programming languages are to be 
distinguished:
– static vs. dynamic
– strong vs. weak

• Static (compilation time) Type Checking
– Type equivalence
– Type Inference for expressions
– Ad-hoc Syntax-directed Translation on a simple language



Type

• Type: for each data value in the program, there are a collection of 
properties associated it, known as the value’s type.

• With each type t we associate values and operators that we can 
apply to values of type t. 
– type of int also gives ranges of values −231 ≤ i < 231

– To values of type string, we can apply operations such as println, but 
we cannot multiply two string.

• Conversely, with each operator with associate types that describe 
the nature of the operator’s arguments and result. 

Result Types for Addition in FORTRAN77



Benefits: types as two-version programming

• In languages such as Java, programs are annotated with types.

• This can be seen as a weak form of two-version programming: the 
programmer specifies twice what the program should do, once by the 
actual code, and a second time through the types. 

• By saying something twice, but in somewhat different languages (Java
computation vs types) the probability that we make the same mistake 
in both expressions is lower than if we state our intention only once. 

• The key idea behind semantic analysis is to look for contradictions 
between the two specifications and reject programs with such 
contradictions.



Benefits: type for expressiveness

• An operator that has different meanings based on the types of its arguments is 
"overloaded." 

• Still, for the previous example. Fortran has a single addition operator, +, and 
uses type information to determine how it should be implemented. 



Type is not everything

• Note that types can only prevent stupid mistakes like 
"hello" * "world". 

• They cannot (usually) prevent more complicated problems, like out-
of-bounds indexing of arrays. 

int [] a = new int [ 10 ] 
a [ 20 ] = 3



Type-checking

• An important distinction is that between type-checking (old-
fashioned) and type-inference (modern). 

• In type-checking (e.g.， Java), we verify that the programmer-
written type-annotations are consistent with the program code. 
– E.g.,

def f ( x : String ) : Int = { 
if ( x = "Moon" ) true 
else false 

} 
is easy to see as inconsistent. 



Type Inference

• Types are determined from the context of the reference, rather than 
just by assignment statement

• The compiler can trace how values flow through variables and 
function arguments

• Any remaining ambiguity is treated as an error the programmer 
must fix by adding explicit declarations



Type inference

def f ( y : ??? ) : ??? = { 
if ( x = y ) y 
else x+1 

}

What types could you give to x, y and the return value of f? 

Clearly x has type integer, y has type integer.



Another Example

That was easy. What about this program 
def f ( x : ??? ) : ??? = { 

while ( x.g ( y ) ) { y = y+1 }; 
if ( y > z ) z = z+1 
else println ( “hello” ) ；

} 

What types could you give to x, y, z, g and f? 
y and z are integers, x must be a class A such that A has a method g 
which takes and integer and returns a boolean. 
Finally, f returns nothing, so should be of type void



Contrasts in Type Systems

Type systems are often described by their design decisions along 
several dimensions.
• Static vs. dynamic types

– time of the type binding
• Strong vs. Weak typing

– Explicit vs. implicit type conversion



Type Binding

Type Binding is an association between a name and a type attribute

Type Binding time is the time at which a binding takes place.
• Language design time, e.g., bind operator symbols to operations
• Language implementation time, e.g., bind floating point type to a 

representation
• Compile time, e.g., bind a variable to a type in C or Java
• Link time
• Load time, e.g., references to dlls in C/C++
• Runtime, e.g., dynamic type bindings



Static Type Binding

• In a static type system, types are fixed before the program is run 
(e.g., compile time)

• Compatibility checking can be done by a compiler and errors 
flagged

• Some claim that most program errors are type errors

• The advantage is that the resulting code need not check for type 
mismatches at run time, which speeds up execution

• It typically requires adding type declarations (a pain) but these can 
also be seen as a kind of documentation (a benefit), note that this is 
only for explicit declarations



Dynamic Type Binding

• A variable’s type can change as the program runs
• might be re-bound on every assignment.
• Used in scripting languages (Javascript, PHP, Python) and some 

older languages (Lisp, Basic, Prolog, APL)

• Here’s a javascript example
list = [2, 4.33, 6, 8];
list = 17.3;



Dynamic Type Binding

• Flexibility for the programmer
• Obviates the need for “polymorphic” types
• Development of generic functions (e.g., sort)
• But there are disadvantages as well

– Types have to be constantly checked at run time
– A compiler can’t detect errors via type mis-matches
– Mostly used by scripting languages today



Strong/Weak Typing

• Definition: Strong/weak typing
– Strong/weak typing is about how strictly types are distinguished (e.g.,

implicit conversion).
– If a language specification requires its typing rules strongly (i.e., more 

or less allowing only those automatic type conversions that do not lose 
information), one can refer to the process as Strongly typed, if not, 
as Weakly typed.

– Weakly-typed languages make conversions between unrelated 
types implicitly.

– Strongly-typed languages don’t allow implicit conversions between 
unrelated types. 



Languages

1. Weakly and dynamically typed
2. Strongly and dynamically typed
3. Strongly and statically typed
4. Weakly and statically typed

C#

scala Java

Haskell
F#

C

C++
PHP

JavaScript

Python

Ruby

ERlang

Weak

StaticDynamic

Strong



Weakly and Dynamically Typed Language

A small JavaScript program:

• Any Error?

• What is the result?

• What happened？

o No Error

o 1010

o 10 is implicitly converted to a string “10”,
and then concatenated with the other
string together.

function add(a, b) {
result = a + b;
return result;

}

x = "10"
y = 10

result = add(x, y);

console.log(result);



Strongly and Dynamically Typed Language

A small Python program:

• Any Error?

• What is the result?

• What happened？

Note: all these discussion are based on common features of these languages.
For example, we could also use type annotations in Python and enable checking 
statically the types.



Strongly and Statically Typed Language

A small Scala program:

• Any Error?

• What is the result?

• What happened？

add.scala: error: type mismatch; 
found : String 
required: Int 

val result = add_(x, y)
^ 

one error found

This makes the code feel dynamically typed.
But it is not.
The key is ”type inference”.



Weakly and Statically Typed Language

A small C program:

• Any Error?

• What is the result?

• What happened？

o No Error

o 58



Untyped Language?

• Assembly language for instance is said to be untyped since there 
is no type checking. 

• The absence of type checking allows a lot of freedom, necessary 
for strong optimizations.

• In general, you don‘t write Assembly code except for very specific 
projects.

• We write in a higher-level language and the compiler produces 
Assembly code for you).


