CS293S Iterative Data-Flow Analysis

Yufei Ding
Review: Computing Available Expressions

The Big Picture

1. Build a control-flow graph
2. Gather the initial data: \text{DEEXPR}(b) \& \text{EXPRKILL}(b)
3. Propagate information around the graph, evaluating the equation

\[
\text{AVAIL}(b) = \cap_{x \in \text{pred}(b)} \ (\text{DEEXPR}(x) \cup \text{AVAIL}(x) \cap \text{EXPRKILL}(x))
\]

Entry point of block b \quad Exit point of block x

Works for loops through an iterative algorithm: finding the fixed-point.

All data-flow problems are solved, essentially, this way.
Live Variables

A variable \(v \) is live at a point \(p \) if there is a path from \(p \) to a use of \(v \), and that path does not contain a redefinition of \(v \).

Example: \(I: a \leftarrow b + c \)

A statement/instruction \(I \) is a definition of a variable \(v \) if it may write to \(v \). \(\text{def}[I] = a \)

A statement is a use of variable \(v \) if it may read from \(v \). \(\text{use}[I] = \{ b, c \} \)

```
  e = b + c
  c = x + y

  a = b + c
  c = a

  e = a
  c = e

  a = e + c
```

Point \(p \)
Live Variables

A variable \(v \) is **live** at point \(p \) if and only if there is a path from \(p \) to a use of \(v \) along which \(v \) is not redefined.

Usage

- Global register allocation
- Improve SSA construction
 - reduce # of f-functions
- Detect references to uninitialized variables & defined but not used variables
- Drive transformations
 - useless-store elimination
Live Variables at Special Points

For an instruction I
LIVEIN[I]: live variables at program point before I
LIVEOUT[I]: live variables at program point after I

For a basic block B
LIVEIN[B]: live variables at the entry point of B
LIVEOUT[B]: live variables at the exit point of B

If I = first instruction in B, then LIVEIN[B] = LIVEIN[I]
If I = last instruction in B, then LIVEOUT[B] = LIVEOUT[I]
How to Compute Liveness?

Question 1: for each instruction I, what is the relation between \(\text{LIVEIN}[I] \) and \(\text{LIVEOUT}[I] \)?

Question 2: for each basic block B, what is the relation between \(\text{LIVEIN}[B] \) and \(\text{LIVEOUT}[B] \)?

Question 3: for each basic block B with successor blocks \(B_1, \ldots, B_n \), what is the relation between \(\text{LIVEOUT}[B] \) and \(\text{LIVEOUT}[B_1], \ldots, \text{LIVEOUT}[B_n] \)?
Part 1: Analyze Instructions

Question: what is the relation between the sets of live variables before and after an instruction \(I \)?

Examples:

<table>
<thead>
<tr>
<th>LIVEIN([I]) = {y,z}</th>
<th>LIVEIN([I]) = {y,z,t}</th>
<th>LIVEIN([I]) = {x,t}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = y+z;)</td>
<td>(x = y+z;)</td>
<td>(x = x+1;)</td>
</tr>
<tr>
<td>LIVEOUT([I]) = {z}</td>
<td>LIVEOUT([I]) = {x,t}</td>
<td>LIVEOUT([I]) = {x,t}</td>
</tr>
</tbody>
</table>

... is there a general rule?
Analyze Instructions

Two Rules:

Each variable live after I is also live before I, unless I defines (writes) it.

Each variable that I uses (reads) is also live before instruction I

Mathematically:
\[\text{LIVEIN}[I] = (\text{LIVEOUT}[I] - \text{def}[I]) \cup \text{use}[I] \]

where: \(\text{def}[I] \) = variables defined (written) by instruction I
\(\text{use}[I] \) = variables used (read) by instruction I

The information flows **backward!**
Analyze block

Example: block B with three instructions I1, I2, I3:

Live1 = LIVEIN[B] = LIVEIN[I1]
Live2 = LIVEOUT[I1] = LIVEIN[I2]
Live3 = LIVEOUT[I2] = LIVEIN[I3]
Live4 = LIVEOUT[I3] = LIVEOUT[B]

Relation between Live sets:

\[
\text{Live1} = (\text{Live2} - \{x\}) \cup \{y\}
\]
\[
\text{Live2} = (\text{Live3} - \{y\}) \cup \{x,z\}
\]
\[
\text{Live3} = (\text{Live4} - \{t\}) \cup \{d\}
\]
Analyze Block

Two Rules:

Each variable live after B is also live before B, unless B defines (writes) it.

Each variable v that B uses (reads) before any redefinition in B is also live before B

Mathematically:
LIVEIN[B] = (LIVEOUT[B] − VarKill(B)) ∪ UEVar(B)

where:

VARKILL(B) = variables that are defined in B
UEVAR(B) = variables that are used in B before any redefinition in B, i.e., upward-exposed variables
Analyze CFG

Question: for each basic block B with successor blocks B_1, ..., B_n, what is the relation between $\text{LIVEOUT}[B]$ and $\text{LIVEIN}[B_1]$, ..., $\text{LIVEIN}[B_n]$?

Example:

```
B
\{x,y,z\}

{z} B_1
{y} B_2
{z} B_3
```

General rule?
Analyze CFG

Rule: A variables is live at end of block B if it is live at the beginning of one (or more) successor blocks

Mathematically:

\[\text{LIVEOUT}[B] = \bigcup_{B' \in \text{succ}(B)} \text{LIVEIN}[B'] \]

\[= \bigcup_{B' \in \text{succ}(B)} ((\text{LIVEOUT}[B'] - \text{VARKILL}(B')) \bigcup \text{UEVAR}(B')) \]

Again, information flows **backward:** from successors B’ of B to basic block
Equations for Live Variables

\text{LIVEOUT}(B) \text{ contains the name of every variable that is live on exit from n (a basic block)}

\text{UEVAR}(B) \text{ contains the upward-exposed variables in n, i.e. those that are used in n before any redefinition in n}

\text{VARKILL}(B) \text{ contains all the variables that are defined in n}

Equation (n_f is the exit node of the CFG)

\[
\text{LIVEOUT}[B] = \bigcup_{B' \in \text{succ}(B)} ((\text{LIVEOUT}[B'] - \text{VARKILL}(B')) \bigcup \text{UEVAR}(B'))
\]

Note: \(A - B = A^{\cup} \overline{B} \)
Three Steps in Data-Flow Analysis

Build a CFG

Gather the initial information for each block (i.e., (UEVAR and VARKILL))

Use an iterative fixed-point algorithm to propagate information around the CFG
Algorithm

// Get initial sets

for each block b
 UEVAR(b) = Ø
 VARKILL(b) = Ø
for i=1 to number of instr in b
 (assuming inst I is “x = y op z”)
 if y ∉ VARKILL(b) then
 UEVAR(b) = UEVAR(b) ∪ {y}
 if z ∉ VARKILL(b) then
 UEVAR(b) = UEVAR(b) ∪ {z}
 VARKILL(b) = VARKILL(b) ∪ {x}

// update LiveOut version 1

set LIVEOUT(b_i) to Ø for all blocks
Worklist ← {all blocks}
while (Worklist ≠ Ø)
 remove a block b from Worklist
 recompute LIVEOUT(b)
 if LIVEOUT(b) changed then
 Worklist ← Worklist ∪ pred(b)

LIVEOUT[B] = \bigcup_{B'\in succ(B)} ((LIVEOUT[B'] - VARKILL(B')) \cup UEVAR(B'))
Algorithm

// Get initial sets

for each block b
 UEVAR(b) = Ø
 VARKILL(b) = Ø

for i=1 to number of instr in b
 (assuming inst I is “x= y op z”)
 if y \notin VARKILL(b) then
 UEVAR(b) = UEVAR(b) ∪ \{y\}
 if z \notin VARKILL(b) then
 UEVAR(b) = UEVAR(b) ∪ \{z\}
 VARKILL(b) = VARKILL(b) ∪ \{x\}

// update LiveOut version2

set LIVEOUT(b_i) to Ø for all blocks
changed = true
while (changed)
 changed = false
 for i = 1 to N (number of blocks)
 recompute LIVEOUT(i)
 if LIVEOUT(i) changed then
 changed = true

\[
LIVEOUT[B] = \bigcup_{B' \in succ(B)} ((LIVEOUT[B'] \setminus VARKILL[B']) \cup UEVAR[B'])
\]
Example

```
B_0: i ← 1
    i <= 100
    i > 100

B_1:
    a ← ...
    c ← ...

B_2:
    b ← ...
    c ← ...
    d ← ...

B_3:
    a ← ...
    d ← ...

B_4:
    d ← ...

B_5:
    c ← ...

B_6:
    b ← ...

B_7:
    y ← a + b
    z ← c + d
    i ← i + 1
    i <= 100
    i > 100
```
Example (cont.)

<table>
<thead>
<tr>
<th></th>
<th>B0</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
<th>B6</th>
<th>B7</th>
</tr>
</thead>
<tbody>
<tr>
<td>UEVar</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>a, b, c, d, i</td>
</tr>
<tr>
<td>VarKill</td>
<td>i</td>
<td>a, c</td>
<td>b, c, d</td>
<td>a, d</td>
<td>d</td>
<td>c</td>
<td>b</td>
<td>y, z, i</td>
</tr>
</tbody>
</table>

Example (cont.)

Can the algorithm converge in fewer iterations?

LiveOut (b)

<table>
<thead>
<tr>
<th>iteration</th>
<th>B0</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
<th>B6</th>
<th>B7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>1</td>
<td>Ø</td>
<td>Ø</td>
<td>a,b,c,d,i</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>a,b,c,d,i</td>
<td>Ø</td>
</tr>
<tr>
<td>2</td>
<td>Ø</td>
<td>a,i</td>
<td>a,b,c,d,i</td>
<td>Ø</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,b,c,d,i</td>
<td>i</td>
</tr>
<tr>
<td>3</td>
<td>i</td>
<td>a,i</td>
<td>a,b,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,b,c,d,i</td>
<td>i</td>
</tr>
<tr>
<td>4</td>
<td>i</td>
<td>a,c,i</td>
<td>a,b,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,b,c,d,i</td>
<td>i</td>
</tr>
<tr>
<td>5</td>
<td>i</td>
<td>a,c,i</td>
<td>a,b,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,b,c,d,i</td>
<td>i</td>
</tr>
</tbody>
</table>

\[
LIVEOUT[B] = \bigcup_{B' \in \text{succ}(B)} ((LIVEOUT[B']-\text{VARKILL}(B')) \bigcup \text{UEVAR}(B'))
\]
\[LIV E O U T[B] = \bigcup_{B' \in \text{succ}(B)} ((LIV E O U T[B'] - V A R K I L L(B')) \cup U E V A R(B')) \]

Preorder: parents first.

w/o considering backedges.
$$LIVEOUT[B] = \bigcup_{B' \in \text{succ}(B)} ((LIVEOUT[B'] - \text{VARKILL}(B')) \bigcup \text{UEVAR}(B'))$$

Postorder: children first.

w/o considering backedges.
Algorithm

// Get initial sets

for each block b
 UEVAR(b) = Ø
 VARKILL(b) = Ø

for i=1 to number of instr in b
 (assuming inst I is “x= y op z”)
 if y \notin VARKILL(b) then
 UEVAR(b) = UEVAR(b) \cup \{y\}
 if z \notin VARKILL(b) then
 UEVAR(b) = UEVAR(b) \cup \{z\}
 VARKILL(b) = VARKILL(b) \cup \{x\}

// update LiveOut version2

set LIVEOUT(bi) to Ø for all blocks
changed = true
while (changed)
 changed = false
 for i = 0 to N
 // different orders could be used
 recompute LIVEOUT(i)
 if LIVEOUT(i) changed then
 changed = true

\[
LIVEOUT[B] = \bigcup_{B' \in succ(B)} \left((LIVEOUT[B'] - VARKILL(B')) \cup UEVAR(B')\right)
\]
Postorder (5 iterations becomes 3)

<table>
<thead>
<tr>
<th>iteration</th>
<th>B0</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
<th>B6</th>
<th>B7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>1</td>
<td>i</td>
<td>a,c,i</td>
<td>a,b,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,b,c,d,i</td>
<td>Ø</td>
</tr>
<tr>
<td>2</td>
<td>i</td>
<td>a,c,i</td>
<td>a,b,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,b,c,d,i</td>
<td>i</td>
</tr>
<tr>
<td>3</td>
<td>i</td>
<td>a,c,i</td>
<td>a,b,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,c,d,i</td>
<td>a,b,c,d,i</td>
<td>i</td>
</tr>
</tbody>
</table>
Order

Parent relation does not consider backedges.

Preorder: visit parents before children.

also called reverse postorder

Postorder: visit children before parents.

Forward problem (e.g., AVAIL):

A node needs the info of its predecessors.
Preorder on CFG.

Backward problem (e.g., LIVEOUT):

A node needs the info of its successors.
Postorder on CFG.
Comparison with AVAIL

Common
Three steps
Fixed-point algorithm finds solution

Differences
AVAIL: domain is a set of expressions
LIVEOUT: domain is a set of variables
AVAIL: forward problem
LIVEOUT: backward problem
AVAIL: intersection of all paths (all path problem)
 Also called Must Problem
LIVEOUT: union of all paths (any path problem)
 Also called May Problem
Other Data Flow Analysis
Very Busy Expressions

Def: e is a very busy expression at the exit of block b if
- e is evaluated and used along every path that leaves b, and
evaluating e at the end of b produces the same result.

useful for code hoisting

saves code space

```
...  
...  
```

```
...  
...  
```

```
...  
```

```
...  
```

```
...  
```

```
...  
```

```
e = a + b
```

...
Very Busy Expressions

VERYBUSY(b) contains expressions that are very busy at end of b
UEEXPR(b): up exposed expressions (i.e. expressions defined in b and not subsequently killed in b)
EXPRKILL(b): killed expressions

A backward flow problem, domain is the set of expressions

\[
\text{VERYBUSY}(b) = \cap_{s \in \text{succ}(b)} \text{UEEXPR}(s) \cup (\text{VERYBUSY}(s) \cap \text{EXPRKILL}(s))
\]

\[
\text{VERYBUSY}(n_f) = \emptyset
\]
Constant Propagation

Def of a constant variable \(v \) at point \(p \):
Along every path to \(p \), \(v \) has same known value
Specialize computation at \(p \) based on \(v \)'s value

\[
\begin{align*}
a &= 7; \\
c &= a \times 2; \\
b &= c - a; \\
a &= 9; \\
d &= c - a; \\
e &= c - b; \\
b &= a;
\end{align*}
\]
Constant Propagation: Another Data Flow Problem

Domain is the set of pairs \(<v_i, c_i>\) where \(v_i\) is a variable and \(c_i \in C\)

\[
\text{CONSTANTS}(b) = \bigwedge_{p \in \text{preds}(b)} f_p(\text{CONSTANTS}(p))
\]

\(\bigwedge\) performs a pairwise meet on two sets of pairs

\(f_p(x)\) is a block specific function that models the effects of block \(p\) on

the \(<v_i, c_i>\) pairs in \(x\)

A forward flow problem, domain is the set of pairs \(<v, c>\).

\(C\): constants or \(\bot\).

\(\bot\): non-constant or unknown value
\[\text{CONSTANTS}(b) = \bigwedge_{p \in \text{preds}(b)} f_p(\text{CONSTANTS}(p)) \]

Meet operation \(<v, c_1> \land <v, c_2>\)

\(<v, c_1> \text{ if } c_1 = c_2, \text{ else } <v, \bot>\)

\(\bot: \text{non-constant or unknown value}\)

What about \(f_p\) ?

if \(p\) has only one statement, update the constant set with

the results if operands are all constants

\(\bot\) if the result is unknown or non-constant

If \(p\) has \(n\) statements then

\[f_p(\text{CONSTANTS}(p)) = f_n(f_{n-1}(f_{n-2}(\ldots f_2(f_1(\text{CONSTANTS}(p)))\ldots))), \]

where \(f_i\) is the function generated by the \(i\)th statement in \(p\)
\[\text{CONSTANTS}(b) = \bigwedge_{p \in \text{preds}(b)} f_p(\text{CONSTANTS}(p)) \]

Meet operation \(<v, c_1> \land <v, c_2>\)
\(<v, c_1>\) if \(c_1 = c_2\), else \(<v, \bot>\)

\(\bot\): non-constant or unknown value

Formal definition of \(p\):

If \(p\) has one statement then
\[x \leftarrow y \text{ with } \text{CONSTANTS}(p) = \{\ldots<x,l_1>,\ldots<y,l_2>\ldots\} \]
then \(f_p(\text{CONSTANTS}(p)) = \{\text{CONSTANTS}(p) - <x,l_1>\} \cup <x,l_2>\)
\[x \leftarrow y \text{ op } z \text{ with } \text{CONSTANTS}(p) = \{\ldots<x,l_1>,\ldots<y,l_2>\ldots ,\ldots<z,l_3>\ldots\} \]
then \(f_p(\text{CONSTANTS}(p)) = \{\text{CONSTANTS}(p) - <x,l_1>\} \cup <x, l_2 \text{ op } l_3>\)

If \(p\) has \(n\) statements then
\[f_p(\text{CONSTANTS}(p)) = f_n(f_{n-1}(f_{n-2}(\ldots f_2(f_1(\text{CONSTANTS}(p))))\ldots))) \]
where \(f_i\) is the function generated by the \(i^{th}\) statement in \(p\)

\(f_p\) interprets \(p\) over \text{CONSTANTS}
Data-Flow Analysis Frameworks

Generalizes and unifies data flow problems.

Important components:

- **Direction D**: forward or backward.
- **A Semilattice**: a domain V and a *meet* operator \wedge that captures the effect of path confluence.
- **A transfer function $F(m)$**: compute the effect of passing through a basic block and include function value at boundary conditions.

\[
\text{A semilattice is an algebra } S = (S, \ast) \text{ satisfying, for all } x, y, z \in S,
\]

1. $x \ast x = x$,
2. $x \ast y = y \ast x$,
3. $x \ast (y \ast z) = (x \ast y) \ast z$.

33
Examples

(\(D, V, F, ^\))

LIVE

\(\bullet D: \) backward
\(\bullet V: \) all variables
\(\bullet F_m: \) \(UEVAR(m) \cup (\text{LIVEOUT}(m) \cap \overline{\text{VARKILL}(m)})\) \(; \) \(\text{LIVEOUT}(n_f) = \phi\)
\(\bullet ^\land : \cup\)

AVAIL

\(\bullet D: \) forward, \(V: \) all expressions
\(\bullet F_m: \) \(\text{DEEXPR}(m) \cup (\text{AVAIL}(m) \cap \overline{\text{EXPRKILL}(m)})\) \(; \) \(\text{AVAIL}(n_0) = \phi\)
\(\bullet ^\land : \cap\)
Summary

<table>
<thead>
<tr>
<th>Domain</th>
<th>Direction</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVAIL</td>
<td>Expressions</td>
<td>Forward</td>
</tr>
<tr>
<td>VERYBUSY</td>
<td>Expressions</td>
<td>Backward</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>Pairs <v,c></td>
<td>Forward</td>
</tr>
</tbody>
</table>
Why to Study Data Flow Analysis

Data-flow analysis

A collection of techniques for compile-time reasoning about the run-time flow of values.

Backbone of scalar optimizing compilers
Limitation of Data-Flow Analysis

Imprecision from pointers, and procedure calls
Assume all paths will be taken

If \(y \) is always no less than \(x \), \(x \) is not live before \(B_2 \). But data-flow analysis may not figure that out.