
CS 293S Pointer Analysis

Yufei Ding

Slides adapted from Wei Le, Stephen Chong

2

Focus of this lecture

� Terms and concepts
� Algorithms: Andersen-Style and Steensgaard-Style
� Advanced topics

3

What is Pointer/Alias/points-to Analysis?
� Pointer analysis statically determines:

� the possible runtime values of a pointer
� what storage locations a pointer can point to
� there are certain models can represent the storage

locations:

� Pointer analysis is hard, but essential for enabling many
compiler optimizations.

Note: pointer analysis, alias analysis, points-to analysis often
are used interchangeably

4

May and Must Aliasing
� May aliasing:

� aliasing that may occur during execution (e.g., if (c) p = &i)
� Must aliasing:

� aliasing that must occur during execution (e.g., p = &i)
� Easiest alias analysis: nothing must alias, everything may alias

5

Example Optimizations

� GCSE needs info on what is read/written:
� Can p point to a or b?

� Reaching definitions and constant propagation:
� Can p point to x?

x = 5;
*p = 42;
y = x;

*p = a + b;
x = a + b;

6

How Hard Is This Problem?

� Undecidable [Landi1992] [Ramalingan1994]

� Approximation algorithms, worst-case complexity, range from
almost linear to doubly exponential [Hind2001]

� Two primary algorithms for point-to analysis
� Andersen-style Analysis
� Steensgaard-style Analysis

7

Andersen-Style Pointer Analysis [Andersen1994]

� Flow-insensitive, context-insensitive analysis
�First for C programs, later for Java

� View pointer assignments as subset constraints:

8

Andersen-Style Pointer Analysis

� Basic idea:
� map to subset constraints
� construct the constraint graphs
� compute transitive closure to propagate points-to relations

along the edges of the constraint graphs

� Constraint graph:
� one node for each variable representing its points-to set, e.g.,

pts(p), pts(a)
� one directed edge for certain constraint

9

Andersen-Style Pointer Analysis:
Constructing Constraint Graphs

10

Andersen-Style Pointer Analysis

11

Andersen-style analysis: Algorithm Analysis

� Can be reduced to computing the transitive closure of a
dynamic graph

�dynamic graph: the graph changes over the analysis of the
program

�the transitive closure of a directed acyclic graph (DAG) is the
reachability relation of the DAG. (graph: a set of nodes, and
binary relations among the nodes)

� A well-studied problem for which the best known complexity
is O(n3) (n is the number of node)

12

Andersen-Style Pointer Analysis: Cycle Elimination

� Impart optimization for Anderson-style analysis
� Detect strongly connected components in points-to graph,
collapse to a singe node

�Why? All nodes in an SCC will have the same points-to relation at
the end of analysis

� How to detect cycles efficiently?
� Some reduction can be done statically, some on-the-fly as new

edges added

� See Fast and Accurate Pointer Analysis for Millions of Lines of Code,
Hardekopf and Lin, PLDI 2007.

13

Andersen-Style Pointer Analysis: Cycle Elimination

14

Steensgaard-Style Pointer Analysis [Steensgaard1996POPL]

� Points-to Analysis in almost linear time
� Uses equality constraints instead of subset constraints
� Unification based approach: assignment unifies the graph

nodes, e.g., x = y (unified x and y in the same node), also
called union-find algorithm, exclusion-based approaches,
nearly linear complexity

� O(n · α(n)), where α(n) is the inverse Ackermann’s function,
α(2132) < 4
� Scalable
� Less precise than Andersen-style, thus more

15

Steensgaard-Style Pointer Analysis

� Key idea: maintain a set of disjoint sets and supports two
operations:

� FIND(x): return the set containing x
� UNION(x, y): union the two sets containing x and y

16

Steensgaard-Style Pointer Analysis [Steensgaard1996POPL]

17

Andersen vs. Steensgaard Style Pointer Analysis

18

Andersen vs. Steensgaard Style Pointer Analysis

19

Andersen vs. Steensgaard Style Pointer Analysis

20

Andersen vs. Steensgaard Style Pointer Analysis

21

Points-to Analyses Work in Real Data FlowProblems?

Summary: Andersen vs. Steensgaard

� Both are flow-insensitive and context-insensitive
� Control flow information is not used, the order of

statements is not considered

� Differ in points-to set construction
� Andersen-style: many out edges, one variable per node

� Steensgaard-style: one out edge, many variables per node

� Andersen-style: inclusion-based, subset-based
� the slowest but most precise flow-insensitive algorithm

� Steensgaard-style: equality-based, unification-based

� the fastest but least precise
22

Advanced point-to analysis

The Horwitz-Shapiro Approach: 1997
POPL –Fast and Accurate Flow-
Insensitive Points-ToAnalysis 23

Advanced point-to analysis

24

Advanced point-to analysis

25

Advanced point-to analysis

26

Advanced point-to analysis

27

Advanced point-to analysis

28

Advanced point-to analysis

29

Advanced point-to analysis

30

Advanced point-to analysis

31

Advanced point-to analysis

32

