CS 2938 Pointer Analysis

Yufei Ding

Slides adapted from Wei Le, Stephen Chong

Focus of this lecture

[J Terms and concepts
1 Algorithms: Andersen-Style and Steensgaard-Style
J Advanced topics

What is Pointer/Alias/points-to Analysis?

J Pointer analysis statically determines:
[the possible runtime values of a pointer
[J what storage locations a pointer can point to

[J there are certain models can represent the storage
locations:

[J Pointer analysis is hard, but essential for enabling many
compiler optimizations.

Note: pointer analysis, alias analysis, points-to analysis often
are used interchangeably

May and Must Aliasing
[0 May aliasing:
[J aliasing that may occur during execution (e.g., if (c) p = &i)
J Must aliasing:
[J aliasing that must occur during execution (e.g., p = &i)
[Easiest alias analysis: nothing must alias, everything may alias

Example Optimizations

1 GCSE needs info on what is read/written:
1 Can p point to a or b?

*p = a + b;
X =a + b;

1 Reaching definitions and constant propagation:
1 Can p point to x?
x = 5;
*p = 42;
y =X

How Hard Is This Problem?

[J Undecidable [Landil992] [Ramalingan|994]

[0 Approximation algorithms, worst-case complexity, range from
almost linear to doubly exponential [Hind2001]

[0 Two primary algorithms for point-to analysis
1 Andersen-style Analysis
[J Steensgaard-style Analysis

Andersen-Style Pointer Analysis |4,4ersen19947

[J Flow-insensitive, context-insensitive analysis

CIFirst for C programs, later for Java

1 View pointer assighments as subset constraints:

Constraint type | Assighment | Constraint Meaning
Base a=&b a 2 {b} loc(b) € pts(a)
Simple a=b a2b pts(a) 2 pts(b)
Complex a=%*b 2.2%b vvepts(b). pts(a) 2 pts(v)
Complex *a=b *a2b vvepts(a). pts(v) 2 pts(b)

Andersen-Style Pointer Analysis

1 Basic idea:

[J map to subset constraints
[J construct the constraint graphs

[J compute transitive closure to propagate points-to relations
along the edges of the constraint graphs

1 Constraint graph:

(1 one node for each variable representing its points-to set, e.g.,

pts(p), pts(a)
1 one directed edge for certain constraint

Andersen-Style Pointer Analysis:
Constructing Constraint Graphs

Assgmt. |Constraint Meaning Edge
a=&b a 2 {b} b € pts(a) no edge
a=b a2b pts(a) 2 pts(b) b—a
a="%b a2 *h vvepts(b). pts(a) 2 pts(v) no edge
*Ya=b b vvepts(a). pts(v) 2 pts(b) no edge

Andersen-Style Pointer Analysis

P Initialize graph and points to sets using base and simple constraints
P Let W = { v | pts(v) #@ } (all nodes with non-empty points to sets)
P While W not empty
*v « select from W
e for each a € pts(v) do
» for each constraint p 2*v
»add edge a— p, and add a to W if edge is new
« for each constraint *v 2 q
»add edge q—a, and add q to W if edge is new

e for each edge v—q do

* pts(q) = pts(q) u pts(v), and add g to W if pts(q) changed

10

Andersen-style analysis: Algorithm Analysis

1 Can be reduced to computing the transitive closure of a
dynamic graph

[Jdynamic graph: the graph changes over the analysis of the
program

[the transitive closure of a directed acyclic graph (DAG) is the
reachability relation of the DAG. (graph: a set of nodes, and
binary relations among the nodes)

1 A well-studied problem for which the best known complexity
is O(n3) (n is the number of node)

11

Andersen-Style Pointer Analysis: Cycle Elimination

[0 Impart optimization for Anderson-style analysis

[J Detect strongly connected components in points-to graph,
collapse to a singe node

[1Why!? All nodes in an SCC will have the same points-to relation at
the end of analysis

[J How to detect cycles efficiently?

[1 Some reduction can be done statically, some on-the-fly as new
edges added

[1 See Fast and Accurate Pointer Analysis for Millions of Lines of Code,
Hardekopf and Lin, PLDI 2007.

12

Andersen-Style Pointer Analysis: Cycle Elimination

13

Steensgaard-Style Pointer Analysis geegaaraiosrors)

[0 Points-to Analysis in almost linear time
1 Uses equality constraints instead of subset constraints

1 Unification based approach: assighment unifies the graph
nodes, e.g., x =y (unified x and y in the same node), also
called union-find algorithm, exclusion-based approaches,
nearly linear complexity

0 O(n - afn)), where a(n) is the inverse Ackermann’s function,
a(2132) < 4

1 Scalable
1 Less precise than Andersen-style, thus more

14

Steensgaard-Style Pointer Analysis

1 Key idea: maintain a set of disjoint sets and supports two
operations:

[0 FIND(x): return the set containing x
[UNION(x, y): union the two sets containing x and y

15

Steensgaard-Style Pointer Analysis geegaaraiosrors)

merge (x, V)
{
x = FIND(x),; y = FIND(y)
if (x == y) then return;
UNION (x,V) ;
merge (points-to (x) ,points-to(y));

for each constraint LHS = RHS

merge (LHS ,RHS)

16

Andersen vs. Steensgaard Style Pointer Analysis

hat i1s, in Andersen’s Algorithm we
might have

E—
O

In Steensgaard’s Algorithm we would
instead have

In effect any two locations that
Eight be pointed to by the same

pointer are placed in a single
quivalence class.

17

Andersen vs. Steensgaard Style Pointer Analysis

Steensgaard’s Algorithm is sometimes
less accurate than Andersen'’s
Algorithm. For example, the following
points-to graph, created by
Andersen's Algorithm, shows that p
may point to a or b whereas g may
only point to a:

—O-—"=C0
©

In Steensgaard’s Algorithm we get

incorrectly showing that if p may
point to a or b then so may q.

18

Andersen vs. Steensgaard Style Pointer Analysis

» Horwitz and Shapiro examined 61 C
programs, ranging in size from 300 to
24,300 lines.

. As expected, Steensgaard is less
precise: On average points-to sets are
4 times bigger; at worst 15 times
bigger.

. As expected, Andersen is slower. On
average 1.5 times slower: at worst 31
times slower.

Both are much better than the naive
“address taken” approach.

. Bottom line: Use Andersen for small
programs, use Steensgaard (or
something else) for large programs.

19

Andersen vs. Steensgaard Style Pointer Analysis

Name | Size (LoC) | Andersen(sec) | Steensgaard(sec)
triangle 1986 2.9 0.8
gzip 4584 1-f 1.1
I 6054 738.5 4.7
bc 6745 5.5 1.6
less 12152 1.9 1.9
make 15564 260.8 6.1
tar 18585 232 3.6
espresso 22050 1373.6 10.2
screen 24300 514.5 10.1

75MHz SuperSPARC, 256MB RAM

[Shapiro-Horwitz POPL'97]

20

Points-to Analyses Work in Real Data Flow Problems?

In “Which Pointer Analysis Should |
Use,” Hind and Pioli survey the
effectiveness of a number of points-
to analyses in actual data flow
analyses (mod/ref, liveness, reaching
defs, interprocedural constant
propagation).

Their conclusions are essentially the
same across all these analyses:

. Steensgaard’s analysis is significantly
more precise than address-taken
analysis and not significantly slower.

. Andersen’s analysis produces modest,
but consistent, improvements over
Steensgaard’s analysis.

. Both context-sensitive points-to
analysis and flow-sensitive points-to
analysis give little improvement over

21

Summary: Andersen vs. Steensgaard

1 Both are flow-insensitive and context-insensitive

1 Control flow information is not used, the order of
statements is hot considered

1 Differ in points-to set construction
[J Andersen-style: many out edges, one variable per node

] Steensgaard-style: one out edge, many variables per node

0 Andersen-style: inclusion-based, subset-based
1 the slowest but most precise flow-insensitive algorithm
[J Steensgaard-style: equality-based, unification-based

[the fastest but least precise .

Advanced point-to analysis

Horwitz and Shapiro suggest each
node in the points-to graph be
limited to out degree k, where
1<k<n

If k =1 then they have Steensgaard’s

approach.

If k =n (n is number of nodes in
points to graph), then they have
Andersen’s approach.

Their worst case run-time is

0(k? n), which is not much worse
than Steensgaard if k is kept
reasonably small.

The Horwitz-Shapiro Approach: 1997
POPL — Fast and Accurate Flow-
Insensitive Points-To Analysis

Advanced point-to analysis

lo use their approach assign each
variable that may be pointed to to
one of k categories.

Now if p may point to x and p may
also point to y, we merge x and y
only if they both are in the same
category.

If x and y are in different categories,
they aren't merged, leading to more

accurate points-to estimates.

24

Advanced point-to analysis

Example
Pl = &a;
Pl = &b;
Pl = &cC;
P2 = &C;

Say we have k = 2 and place a and b
in category 1 and c in category 2.

We then build:
C T
Sl
®—(°)

This points-to graph is just as
accurate as that built by Andersen’s
approach.

Advanced point-to analysis

But...

What if we chose to place a in
category 1 and b and c in category 2.

We now have:

SO
@—(ec)

This graph is inexact, since it tells us
p2 may point to b, which is false.

(Steensgaard would have been worse
still, incorrectly telling us p2 may

point to a as well as b and ¢).

26

Advanced point-to analysis

What if we ran Shapiro and Horwitz's
points-to analysis twice, each with
different category assignments?

Each run may produce a different
points-to graph. One may say p2
points to b whereas the other says it
can't.

Which do we believe?

Neither analysis misses a genuine

points-to relation. Rather, merging of
nodes sometimes creates false points+
to information.

So we will believe p2 may point to b
only if all runs say so.

This means multiple runs may “filter
out” many of the false points-to

relations caused by merging.

27

Advanced point-to analysis

How Many Runs Are Needed?

How Are CateGoRries 10 be Ser?

We want to assign categories so that
during at least one run, any pair of
pointed-to variables are in different
categories.

This guarantees that if all the runs
tell us p may pointtoa and b, it is
not just because a and b always
happened to be assigned the same
category.

To force different category
assignments for each pair of variables,
we assign each pointed-to variable an
index and write that index in base k
(the number of categories chosen).

28

Advanced point-to analysis

a

b
c
a

For example, If we had variables a, b,
c and g, and chose k = 2, we'd use
the following binary indices:

Note that the number of base k digits
needed to represent indices from O to
n-1 is just ceiling(logy n).

This number is just the number of
runs we need!

00
01
10
1

29

Advanced point-to analysis

hy?
In the first run, we'll use the right
most digit in a variable’s index as its
ategory.
In the next run, we'll use the second

digit from the right, then the third
digit from the right, ...

ifferent index values, so they must

rny two distinct variables have
d
d

iffer in at least digit position.

30

Advanced point-to analysis

Returning to our example,

a 00
b 01
c< 10
a 1N

On run #1 we give a and c category O
and b and 4 category 1.

On run #2, a and b get category O
and ¢ and a4 get category 1.

So using just 2 runs in this simple
case, we eliminate much of the
inaccuracy Steensgaard’s merging
introduces.

Run time is now O(logy(n) kZ n).

31

Advanced point-to analysis

How WEell does this Approach
Work?

On 25 tests, using 3 categories,
Horwitz & Shapiro points-to sets on
average are 2.67 larger than those of
Andersen (Steensgaard's are 4.75
larger).

This approach is slower than
Steensgaard but on larger programs it
is 7 to 25 times faster than Andersen

32

