Introduction to CS 2938

Advanced Compiler Technology
--- Code Optimizations for Scalar and Parallel
Programs

Yufei Ding

UC SANTA BARBARA

Biography

T.ransf?r oG, Join CS at UCSB as an
Work.mg W_'th my Ph.D. Assistant Professor, as of
advisor Xipeng Shen Nov 2017
2012 2017

2005-2012 2012-2017 2017- 2020

B.S.and M.S. in My research resides in the Explore Quantum Computing +
Condensed Matter Physics intersection of Compiler Computer Systems

+ Laser Optics Technology and (Big) Data Recently, also system support for

Analytics Brain-computer Interfaces

https://people.engr.ncsu.edu/xshen5/

About Me

» Yufel Ding, Assist. Prof in CS
» addressed by Prof. Ding
 Married, two kids

Research Interest

« Making computing more intelligent and efficient
through software systems (compiler, runtime,
library, tools, etc.)

* And many other interesting research problems
(e.g., machine learning, quantum computing,
brain-computer interface)

Course Management

* No textbooks.
» Slides define the scope of the course

» Slides would be posted online after the
class

Teaching Philosophy

 Make students think...
* and think critically.

Grading Policy

30% assignment (3 homework),

20% paper review (2 paper, paper list will be sent
out later)

20% paper presentation (50 mins)
30% project and a final project presentation.
« 1-3 students in a group.

No cheating.
No late submission accepted.

Communication

« See course webpage for other important
policy and details.
http://www.cs.ucsb.edu/~yufdeiding/cs293s

« Email to yufeiding@cs.ucsb.edu.

http://www.cs.ucsb.edu/~yufeiding/cs293s
mailto:yufeiding@cs.ucsb.edu

Introduction to Code Optimization

« Simple definition: Enhance the quality of a program.

« What is the metric for quality of a program?
 Why is it important to enhance the quality?

10

Introduction to Code Optimization

« Simple definition: Enhance the quality of a program.
 What is the quality of a program?

* Speed, energy, power, code size, memory footprint,
reliability, security, resilience, readabillity,
extensibility, etc.

11

Importance of Code Optimization

 Modern humanity development is based on
computing

« Code quality determines the quality of computing and
hence the quality of humanity development

2

12

Importance of Code Optimization

QOCD simulation
» Scientifically: scope and
precision of scientific
simulation, reliability for
critical missions

» Economically: “1%
performance improvement
saves Google millions of
dollars” —Google :

» Health, defense, ...

Cluster, 1996

| SRR 2EY
(Mo my

Introduction to Code Optimization

» Simple definition: Enhance the quality of a
program.

» Who makes the enhancement?
» How to do it?

14

Introduction to Code Optimization

» Simple definition: Enhance the quality of a program.
» Who makes enhancement?

» Compiler, runtime, programmer
» How todoit? The core of this course.

» Program analysis to understand programs

» Program transformation to materialize the
enhancement

15

v=anlo]n #
8 Em_umcm%_:s_
é%m_mgm_,

< ‘

Compiler

XML

' er"+PascaI
alB
C

alBasic: -
Vorv:k“AI -
t

=3
Q.
i
isua
35
I; g,
=
Smal

992.__

v U

iew O
erl
g::_
§, ISuU
hon
§
sha

Overv

Compiler

1O OO i
DO -HOC
100w i

——HO000O
OO C
OOy

Compilers

What is a compiler?

1 A program that translates a program in one language
iInto a program in another language

It should improve the program, in some way

What is an interpreter?

- A program that reads a program and produces the
results of executing that program

17

Compilers

1 Cis typically compiled, Scheme is typically
Interpreted

1 Java is compiled to bytecodes (code for the Java
VM)

. which are then interpreted
- Or a hybrid strategy is used
1 Just-in-time compilation

18

Structure of a Compiler

[

[

[

[

[

Source Front
Code End

Our focus

End

N

It
%

S————

Back
End

Machine

»
»

code

Use an intermediate representation (IR)

Front end maps legal source code into IR
Back end maps IR into target machine code
Admits multiple front ends and backends

> Errors

Middle end with multiple passes for different optimizations

Typically, front end is O(n) or O(n log n), while back end is NPC

19

The Front End

Source

Scanner
code

v

tokens

Parser

IR

Scanner

» Errors

1 Break the inputs into individual pieces
~ Decide the functionality of each piece

X=X+2;

becomes <id,x> = <id,x> + <number,2>

1 Reports errors
~ Analogy:

Dogs are animals. => noun verb noun

20

v

The Front End

tokens

\ 4

IR

Parser

> Errors

Organize the pieces back based on some predefined

Source R
code Scanner
Parser
j n
production rules
- Reports errors
- Analogy:

Dogs are animals. ==> @

Cnoun >
Canimals>

21

The Front End

A parser can be represented by a tree (parse tree or syntax tree)

v
expr

v

/g) s

i goal — expr

1.
term ¥ <number,2> 2. expr — expr op term
3. | term
<id,x> 4. term — number
This contains a lot of unneeded 5. | id
Information. f73- op —I> +

22

The Front End

Compilers often use an abstract syntax tree (AST)

X+2-y

<id,y>

<id,x> <number,2>

This iIs much more concise.

The AST summarizes
grammatical structure,
without including detail
about the derivation

AST is one form of intermediate representation (IR)

23

Traditional Three-Pass Compiler

Source Front
Code End

IR

Middle
End

IR

Back
End

Machine

»

code

Code Improvement (or Optimization)

7 Analyzes IR and rewrites (or transforms) IR

> Errors

© Primary goal is to reduce running time of the compiled code
1 May also improve space, power consumption, ...

- Must preserve “meaning” of the code

1 Definition of “meaning” varies

24

N

The Optimizer (or Middle End)

IR Opt | IR

Opt

IR

Opt

IR

Opt

IR

> Errors

Modern optimizers are structured as a series of passes

Typical Transformations

Discover & propagate some constant value

1 Move a computation to a less frequently executed place
Specialize some computation based on context

1 Discover a redundant computation & remove it

1 Remove useless or unreachable code

25

The Back End

IR Instruction

Selection

IR

Instruction
Scheduling

IR

Register
Allocation

Machine

»

code

Responsibilities

[Translate IR into target machine code

> Errors

[Choose instructions to implement each IR operation

[Decide which value to keep in registers
0 Ensure conformance with system interfaces

Automation has been much less successful in the back end

26

N

Classification of Compilers

Time of compilation

1 Offline compilation
1e.g., GCC
- Just-In-Time compilation (JIT)
1 e.g. JIT in Java Virtual Machine
1 e.g., Javascript compiler (V8) in Chrome

Unit of compilation

- Function (or Method)
1e.g., GCC
1 Trace
1 e.g., Old Javascript JIT in Mozilla

27

Considerations of Optimization

- Profitability
1 Safety
- Risk

28

Examples

Void f1 (int *px, int *py){

“pX +=*py;
“pX +=*py;

Void f2 (int *px, int *py){

pX += 2 * *py;

- Which example is more efficient? Why?

- Can an optimizing compiler automatically do the
transformation, if one is better than the other?

29

Examples

int £();

¥

int func1() {

return f() + £f() + £f(O) + £();

int £();

int func2() {
return 4*£();

h

- Which example is more efficient? Why?

- Can an optimizing compiler automatically do the
transformation, if one is better than the other?

30

Examples

int £();

¥

int funcl() {

return f() + £f() + £f(O) + £();

int £();

int func2() {
return 4*£();

¥

int counter = 0;
int () {

¥

return counter++;

31

Sources of Inefficiencies

from code development
- Programmer
- Source-language abstraction
1 e.g., Al j], Ali, j+1], function call
from translation
- Context-oblivious translation
- a=0;
-~ b=Db%a;
1 Side effects of transformations

1 e.g., compiler introduced load/store to temporary
variables

32

Components in Program Optimization

Program Analysis

~ Understanding the program
1 Relations among statements (or control flows)
1 Relations among data (or data flows)
7 Invariants in both

Program Transformations

~ Enhancing the program
- Reducing the overhead of abstraction
- E.g. array-address calculation
1 Taking advantage of special cases
- E.g. constant propagation

1 Matching processor resources
- E.g. minimizing memory accesses
- E.g. parallelization 33

Three Paradigms of Optimizations

N
1950s | staic g

1980s Profile

N

Dynamic

-

1990s

34

Static Code Analysis

1 Example of function inlining:

for (1=0; 1< n;
1++){

b=1;

foo ();

J
void foo ()

{

a+=Db;

function inlining

—

for 1=0; 1< n; 1++){
b=1;
a+=Db;

Q: Should we inline every function call?

35

Static Code Analysis

1 Example of function inlining:

for (1=0; 1< n;
1++){

b=1;

foo ();

J
void foo ()

{

a+=Db;

for (1=0; 1< n; 1++){
b=1;
function inlining a+=Db;
I ——
¥

Q: Should we inline every function call?
- code size, recursive calls, register
(cache) performance, ...

36

Three Paradigms of Optimizations

N
1950s | staic g

1980s Profile

N

Dynamic

-

1990s

37

Profiling-Based Optimizations

1 Instrumentation: Insert some recording statements
into the program

1 Run the program on some inputs
1 Recompile the program according to the

observations. prof record(n);
for (1i=0; i< n; i++){ for (1=0; 1<n; 1++){
foo (); == o0 ()
j j

The instrumented codes will be removed when releasing the
software. They are costly.

38

Cons

1 Limited by the training runs, hard to adapt
to new program inputs.

if (xoption > 0)
n*=1000; In all training runs,
_prof_record(n); xoption < O.
for (i=0; i< n; i++)1
foo ();
}

39

Dynamic Optimizations

N\
) Behavior)

Adaptive to runtime behaviors

<

Widely used in Java, C#, etc

Observe

40

Dynamic Optimizations

- Observe and optimize a program during runtime
1 Example: Java Virtual Machine.

if (xop’rion > 0) During run’rime, JVM
Keeps observing the
n*=1000; .
’ stack to determine the
for (i=0; i< n; i++)§ hotness of a method.
foo ();
! If a method is found to

be hot, inline it.

41

Limitations

1 Delay and inaccuracy for being reactive
and learning from recent history

if (xoption > 0)
n*=1000;
for (i=0; i< n; i++)§
foo ();
}

42

