
Introduction to CS 293S
Advanced Compiler Technology
--- Code Optimizations for Scalar and Parallel
Programs

Yufei Ding

Biography

2005-2012
B.S. and M.S. in

Condensed Matter Physics
+ Laser Optics

2012-2017
My research resides in the
intersection of Compiler
Technology and (Big) Data

Analytics

2017- 2020
Explore Quantum Computing +

Computer Systems
Recently, also system support for

Brain-computer Interfaces

2012

Transfer to CS,
Working with my Ph.D.
advisor Xipeng Shen

2017

Join CS at UCSB as an
Assistant Professor, as of

Nov, 2017

https://people.engr.ncsu.edu/xshen5/

About Me

• Yufei Ding, Assist. Prof in CS
• addressed by Prof. Ding

• Married, two kids

4

Research Interest

• Making computing more intelligent and efficient
through software systems (compiler, runtime,
library, tools, etc.)

• And many other interesting research problems
(e.g., machine learning, quantum computing,
brain-computer interface)

5

Course Management

• No textbooks.
• Slides define the scope of the course

• Slides would be posted online after the
class

6

Teaching Philosophy

• Make students think…
• and think critically.

7

Grading Policy

• 30% assignment (3 homework),
• 20% paper review (2 paper, paper list will be sent

out later)
• 20% paper presentation (50 mins)
• 30% project and a final project presentation.

• 1-3 students in a group.

• No cheating.
• No late submission accepted.

8

Communication
• See course webpage for other important

policy and details.
http://www.cs.ucsb.edu/~yufdeiding/cs293s

• Email to yufeiding@cs.ucsb.edu.

9

http://www.cs.ucsb.edu/~yufeiding/cs293s
mailto:yufeiding@cs.ucsb.edu

Introduction to Code Optimization

• Simple definition: Enhance the quality of a program.

• What is the metric for quality of a program?
• Why is it important to enhance the quality?

10

Introduction to Code Optimization

• Simple definition: Enhance the quality of a program.
• What is the quality of a program?

• Speed, energy, power, code size, memory footprint,
reliability, security, resilience, readability,
extensibility, etc.

11

Importance of Code Optimization

• Modern humanity development is based on
computing

• Code quality determines the quality of computing and
hence the quality of humanity development

12

Importance of Code Optimization

» Scientifically: scope and
precision of scientific
simulation, reliability for
critical missions

» Economically: “1%
performance improvement
saves Google millions of
dollars” —Google

» Health, defense, …

13

Cluster, 1996
QCD simulation

Google datacenter

Introduction to Code Optimization

» Simple definition: Enhance the quality of a
program.

» Who makes the enhancement?
» How to do it?

14

Introduction to Code Optimization

» Simple definition: Enhance the quality of a program.
» Who makes enhancement?

» Compiler, runtime, programmer
» How to do it? The core of this course.

» Program analysis to understand programs
» Program transformation to materialize the

enhancement

15

16

Overview of Compiler

Compiler

17

Compilers

What is a compiler?
� A program that translates a program in one language

into a program in another language
� It should improve the program, in some way

What is an interpreter?
� A program that reads a program and produces the

results of executing that program

18

Compilers

� C is typically compiled, Scheme is typically
interpreted

� Java is compiled to bytecodes (code for the Java
VM)
� which are then interpreted
� Or a hybrid strategy is used

� Just-in-time compilation

19

� Use an intermediate representation (IR)
� Front end maps legal source code into IR
� Back end maps IR into target machine code
� Admits multiple front ends and backends
� Middle end with multiple passes for different optimizations

Errors

Source
Code

Middle
End

Front
End

Machine
code

Back
End

IR IR

Our focus

Typically, front end is O(n) or O(n log n), while back end is NPC

Structure of a Compiler

20

The Front End

Scanner
� Break the inputs into individual pieces
� Decide the functionality of each piece

x = x + 2 ;
becomes <id,x> = <id,x> + <number,2>

� Reports errors
� Analogy:

Dogs are animals. => noun verb noun

Source
code Scanner

IR
Parser

Errors

tokens

21

The Front End

Parser
� Organize the pieces back based on some predefined

production rules
� Reports errors
� Analogy:

Dogs are animals. ==>

Source
code Scanner

IR
Parser

Errors

tokens

sent.

noun verb phrase

Dogs verb noun

animalsare

22

The Front End
A parser can be represented by a tree (parse tree or syntax tree)

x + 2 - y

This contains a lot of unneeded
Information.

term

op termexpr

termexpr

goal

expr

op

<id,x>

<number,2>

<id,y>

+

-

1. goal ® expr

2. expr ® expr op term
3. | term

4. term ® number
5. | id

6. op ® +
7. | -

23

The Front End
Compilers often use an abstract syntax tree (AST)

This is much more concise.

AST is one form of intermediate representation (IR)

+

-

<id,x> <number,2>

<id,y> The AST summarizes
grammatical structure,
without including detail
about the derivation

x+2-y

24

Traditional Three-Pass Compiler

Code Improvement (or Optimization)
� Analyzes IR and rewrites (or transforms) IR
� Primary goal is to reduce running time of the compiled code

� May also improve space, power consumption, …
� Must preserve “meaning” of the code

� Definition of “meaning” varies

Errors

Source
Code

Middle
End

Front
End

Machine
code

Back
End

IR IR

25

Typical Transformations
� Discover & propagate some constant value
� Move a computation to a less frequently executed place
� Specialize some computation based on context
� Discover a redundant computation & remove it
� Remove useless or unreachable code

Errors

Opt
1

Opt
3

Opt
2

Opt
n

...IR IR IR IR IR

Modern optimizers are structured as a series of passes

The Optimizer (or Middle End)

26

The Back End

Responsibilities
� Translate IR into target machine code
� Choose instructions to implement each IR operation
� Decide which value to keep in registers
� Ensure conformance with system interfaces

Automation has been much less successful in the back end

Errors

IR Instruction
Scheduling

Instruction
Selection

Machine
code

Register
Allocation

IR IR

Classification of Compilers

Time of compilation
� Offline compilation

� e.g., GCC
� Just-In-Time compilation (JIT)

� e.g. JIT in Java Virtual Machine
� e.g., Javascript compiler (V8) in Chrome

Unit of compilation
� Function (or Method)

� e.g., GCC
� Trace

� e.g., Old Javascript JIT in Mozilla

27

28

Considerations of Optimization

� Profitability
� Safety
� Risk

29

Examples

Void f1 (int *px, int *py){
…
*px += *py;
*px += *py;
…

}

Void f2 (int *px, int *py){
…
*px += 2 * *py;
…

}

- Which example is more efficient? Why？
- Can an optimizing compiler automatically do the
transformation, if one is better than the other?

30

Examples

int f();

int func1() {
return f() + f() + f() + f();

}

int f();

int func2() {
return 4*f();

}

- Which example is more efficient? Why？
- Can an optimizing compiler automatically do the
transformation, if one is better than the other?

31

Examples

int f();

int func1() {
return f() + f() + f() + f();

}

int f();

int func2() {
return 4*f();

}

int counter = 0;
int f() {

return counter++;
}

32

Sources of Inefficiencies

from code development
� Programmer
� Source-language abstraction

� e.g., A[i, j], A[i, j+1], function call
from translation

� Context-oblivious translation
� a=0;
� b = b*a;

� Side effects of transformations
� e.g., compiler introduced load/store to temporary

variables

Components in Program Optimization
Program Analysis

� Understanding the program
� Relations among statements (or control flows)
� Relations among data (or data flows)
� Invariants in both

Program Transformations
� Enhancing the program

� Reducing the overhead of abstraction
� E.g. array-address calculation

� Taking advantage of special cases
� E.g. constant propagation

� Matching processor resources
� E.g. minimizing memory accesses
� E.g. parallelization 33

Three Paradigms of Optimizations

34

Dynamic

Profile

Static1950s

1980s

1990s

Static Code Analysis

� Example of function inlining:

35

for (i=0; i< n;
i++){

b = i;
foo ();

}
void foo ()
{

a += b;
...

}

function inlining

for (i=0; i< n; i++){
b = i;
a += b;
...

}

Q: Should we inline every function call?

Static Code Analysis

� Example of function inlining:

36

for (i=0; i< n;
i++){

b = i;
foo ();

}
void foo ()
{

a += b;
...

}

function inlining

for (i=0; i< n; i++){
b = i;
a += b;
...

}

Q: Should we inline every function call?
- code size, recursive calls, register
(cache) performance, …

Three Paradigms of Optimizations

37

Dynamic

Profile

Static1950s

1980s

1990s

Profiling-Based Optimizations

� Instrumentation: Insert some recording statements
into the program

� Run the program on some inputs
� Recompile the program according to the

observations.

38

for (i=0; i< n; i++){
foo ();

}

_prof_record(n);
for (i=0; i< n; i++){

foo ();
}

The instrumented codes will be removed when releasing the
software. They are costly.

Cons

� Limited by the training runs, hard to adapt
to new program inputs.

39

if (xoption > 0)
n*=1000;

_prof_record(n);
for (i=0; i< n; i++){

foo ();
}

In all training runs,
xoption < 0.

Dynamic Optimizations

40

Behavior

Observe OptimizeAdaptive to runtime behaviors

Widely used in Java, C#, etc.

Dynamic Optimizations

� Observe and optimize a program during runtime
� Example: Java Virtual Machine.

41

if (xoption > 0)
n*=1000;

for (i=0; i< n; i++){
foo ();

}

During runtime, JVM
keeps observing the
stack to determine the
hotness of a method.

If a method is found to
be hot, inline it.

Limitations

� Delay and inaccuracy for being reactive
and learning from recent history

42

if (xoption > 0)
n*=1000;

for (i=0; i< n; i++){
foo ();

}

