
CS293S Redundancy Removal: SVN & DVN

Yufei Ding

2

Review of Last Class

Redundancy Elimination
� Goal: Removing redundant expressions
� Data Structure to encode our target program: types of

intermediate representations
� Two methods for removing redundant expressions

� DAG: version tracking
� Linear representation: value numbering

3

Missed opportunities
(need stronger methods)

m ¬ a + b
n ¬ a + b

A

p ¬ c + d
r ¬ c + d

B

y ¬ a + b
z ¬ c + d

G

q ¬ a + b
r ¬ c + d

C

e ¬ b + 18
s ¬ a + b
u ¬ e + f

D e ¬ a + 17
t ¬ c + d
u ¬ e + f

E

v ¬ a + b
w ¬ c + d
x ¬ e + f

F

Local Value Numbering <-> Linear IR
Local Value Numbering

• 1 block at a time

• Strong local results

• No cross-block effects

*

4

Missed opportunities
(need stronger methods)

m ¬ a + b
n ¬ a + b

A

p ¬ c + d
r ¬ c + d

B

y ¬ a + b
z ¬ c + d

G

q ¬ a + b
r ¬ c + d

C

e ¬ b + 18
s ¬ a + b
u ¬ e + f

D e ¬ a + 17
t ¬ c + d
u ¬ e + f

E

v ¬ a + b
w ¬ c + d
x ¬ e + f

F

Can we find set of blocks that also ensures the sequential execution
order in the basic block?

Local Value Numbering <-> Linear IR
Local Value Numbering

• 1 block at a time

• Strong local results

• No cross-block effects

5

Topics of This Class

� Scope of optimization
� Basic block -> Local value numbering
� Extended basic block -> Superlocal value numbering (SVN)
� Dominator -> Dominator-based value numbering (DVN)

� Global Common Subexpression Elimination (GCSE)
� More close to DAG-based methods
� Work on lexical notation instead of expression values.

6

Basic blocks

� A basic block is a maximal-length segment of straight-line,
unpredicated code. In another word, it has one entry point
(i.e., no code within it is the destination of a jump
instruction), one exit point and no jump instructions
contained within it.

� Example

L2:

L1:

m = 2;
c = m + n;
if(c>0) goto L1;
d = 4;
goto L2;
c = 5;

7

CFG

m ¬ a + b
n ¬ a + b

A

p ¬ c + d
r ¬ c + d

B

y ¬ a + b
z ¬ c + d

G

q ¬ a + b
r ¬ c + d

C

e ¬ b + 18
s ¬ a + b
u ¬ e + f

D e ¬ a + 17
t ¬ c + d
u ¬ e + f

E

v ¬ a + b
w ¬ c + d
x ¬ e + f

F

Control-flow graph (CFG)

• Nodes for basic blocks

• Edges for branches

• Basis for many program
analysis & transformation

This CFG, G = (N,E)

• N = {A,B,C,D,E,F,G}

• E = {(A,B),(A,C),(B,G),(C,D),
(C,E),(D,F),(E,F),(F,E)}

• |N| = 7, |E| = 8

Extended basic block (EBB)

� An EBB is a set of blocks B1,
B2, ..., Bn, where Bi, 2<= i <= n
has a unique predecessor, which
is in the EBB.
� May have multiple exits
� A tree structure
� If a block is added to the EBB,

all of its predecessors must be
included. Bi is the one with on
predecessor, i.e., the root of the
EBB.

m ¬ a + b
n ¬ a + b

A

p ¬ c + d
r ¬ c + d

B

y ¬ a + b
z ¬ c + d

G

q ¬ a + b
r ¬ c + d

C

e ¬ b + 18
s ¬ a + b
u ¬ e + f

D e ¬ a + 17
t ¬ c + d
u ¬ e + f

E

v ¬ a + b
w ¬ c + d
x ¬ e + f

F

Can you find the maximum EBB？

9

Superlocal Value Numbering

m ¬ a + b
n ¬ a + b

A

p ¬ c + d
r ¬ c + d

B

y ¬ a + b
z ¬ c + d

G

q ¬ a + b
r ¬ c + d

C

e ¬ b + 18
s ¬ a + b
u ¬ e + f

D e ¬ a + 17
t ¬ c + d
u ¬ e + f

E

v ¬ a + b
w ¬ c + d
x ¬ e + f

F

1. First find the maximum EBB:
ABCDE, F, G

2. Apply local method to EBBs’ paths

• Do {A,B}, {A,C,D}, {A,C,E}, {F}, {G}

10

Implementation

� Reuse the value numbering results of some common blocks for
efficiency

� Which necessitates the undoing of a block’s effect
� After {A,C,D}, it must recreate the state of {A,C} before

processing E.
� Options:
1. Record the state of the tables at each block boundary, and restore the

state when needed
2. Walking backward and undo the effect. Need record the “lost”

information.
3. Scoped hash tables (Lowest cost)

keep the table produced at the current block

11

Scoped Value Table

m ¬ a + b
n ¬ a + b

A

p ¬ c + d
r ¬ c + d

B

y ¬ a + b
z ¬ c + d

G

r ¬ c + d
q ¬ a + b

C

e ¬ b + 18
s ¬ a + b
u ¬ e + f

D
t ¬ c + d
u ¬ a + b

E

v ¬ a + b
w ¬ c + d
x ¬ e + f

F

a->1
b->2
1+2->3
m->3
n->3

c->4
d->5
4+5->6
r->6
q->3

t->6
u->3

c->4
d->5
4+5->6
p->6
r->6

12

Scoped Value Table

a¬ b + c

e¬ b - c

b -> 1
c -> 2
1 + 2 ->3
a -> 3

d¬ b - c
f ¬ b - c

1-2 -> 4
e -> 4

1-2 -> 4
d-> 4
f-> 4

13

Rewritten

a¬ b + c

e¬ b - c

b -> 1
c -> 2
1 + 2 ->3
a -> 3

1->b
2->c
3->a

d¬ b - c
f ¬ b - c

1-2 -> 4
e -> 4

4 -> e 4 -> d1-2 -> 4
d-> 4
f-> 4

d¬ b - c
f ¬ d

14

Rewritten

a¬ b + c

a¬ 17
e ¬ b + c

d¬ b + c

Renaming is still needed. But does it work in all scenarios?

a1¬ b1 + c1

a2¬ 17
e1 ¬ b1 + c1

d1¬ b1 + c1

Extra Complexity

15

a1¬ b + c

a3¬ 17a2¬ a1 + c

d¬ a + c
?

Key: SSA Resolves Name Conflicts

SSA Resolves Name Conflicts

16

a¬ b + c

b¬ 17 d¬ b - c

e¬ b + c

a¬ b0 + c

b1¬ 17 d¬ b0 - c

b2 ¬f(b0,b1)
e¬ b2 + c

17

SSA (Single Static Assignment) Name Space

Two principles
� Each name is defined by exactly one operation
� Each operand refers to exactly one definition

To reconcile these principles with real code
� Insert f-functions at merge points to reconcile name space

x ¬ ... x ¬ ...

... ¬ x + ...

x0 ¬ ... x1 ¬ ...

x2 ¬f(x0,x1)
¬ x2 + ...

becomes

Another SSA Example

18

x ¬ ... x ¬ ...

... ¬ x + ...

x3 ¬ ... x4 ¬ ...

x5 ¬f(x3,x4)
¬ x5 + ...

becomes

x ¬ x + ...

x1 ¬f(x0,x5)

x2 ¬ x1 + ...

Detail: CT-2ndEd: Section 5.4.2;
CT-1stEd: Section 5.5.

19

This is in
SSA Form

Superlocal Value Numbering

m0 ¬ a + b
n0 ¬ a + b

A

p0 ¬ c + d
r0 ¬ c + d

B

r2 ¬ f(r0,r1)
y0 ¬ a + b
z0 ¬ c + d

G

q0 ¬ a + b
r1 ¬ c + d

C

e0 ¬ b + 18
s0 ¬ a + b
u0 ¬ e + f

D e1 ¬ a + 17
t0 ¬ c + d
u1 ¬ e + f

E

e3 ¬ f(e0,e1)
u2 ¬ f(u0,u1)
v0 ¬ a + b
w0 ¬ c + d
x0 ¬ e + f

F

1.Build SSA form

2.Find EBBs

3.Apply value numbering to
each path in each EBB
using scoped hash tables

20

This is in
SSA Form

Superlocal Value Numbering

m0 ¬ a + b
n0 ¬ a + b

A

p0 ¬ c + d
r0 ¬ c + d

B

r2 ¬ f(r0,r1)
y0 ¬ a + b
z0 ¬ c + d

G

q0 ¬ a + b
r1 ¬ c + d

C

e0 ¬ b + 18
s0 ¬ a + b
u0 ¬ e + f

D e1 ¬ a + 17
t0 ¬ c + d
u1 ¬ e + f

E

e3 ¬ f(e0,e1)
u2 ¬ f(u0,u1)
v0 ¬ a + b
w0 ¬ c + d
x0 ¬ e + f

F

With all the bells & whistles

• Find more redundancy

• Pay little additional cost

• Still does nothing for F & G

Dominator-Based Value Numbering

21

22

Regional (Dominator-based) Methods

� Dominators of b: all blocks that dominate b
� if every path from the entry of the graph to b goes through a,

then a is one of b’s dominator.
� The full set of dominators for b is denoted by DOM(b).

� Strict Dominators:
� If a dominators b and a ≠ b, then we say a strictly dominates b.

� Immediate Dominator:
� The immediate dominator of b is the strict dominator of b that

is closest to b. It is denoted IDOM(b).

Example
m ¬ a + b
n ¬ a + b

A

p ¬ c + d
r ¬ c + d

B

y ¬ a + b
z ¬ c + d

G

q ¬ a + b
r ¬ c + d

C

e ¬ b + 18
s ¬ a + b
u ¬ e + f

D e ¬ a + 17
t ¬ c + d
u ¬ e + f

E

v ¬ a + b
w ¬ c + d
x ¬ e + f

F

BLOCK A B C D E F G

DOM

IDOM

24

Dominator-Based Value Numbering
� Basic strategy: use table from IDom(x) to

start value numbering x
� Use C for F and A for G
� Imposes a Dom-based application

order

m0 ¬ a + b
n0 ¬ a + b

A

p0 ¬ c + d
r0 ¬ c + d

B

r2 ¬ f(r0,r1)
y0 ¬ a + b
z0 ¬ c + d

G

q0 ¬ a + b
r1 ¬ c + d

C

e0 ¬ b + 18
s0 ¬ a + b
u0 ¬ e + f

D e1 ¬ a + 17
t0 ¬ c + d
u1 ¬ e + f

E

e3 ¬ f(e0,e1)
u2 ¬ f(u0,u1)
v0 ¬ a + b
w0 ¬ c + d
x0 ¬ e + f

F

Summary

� Two methods in a scope beyond a basic block
� Superlocal value numbering (SVN)

� Value numbering across basic blocks
� Dominator-based value numbering (DVN)

� Uses dominance information to handle join points in CFG
� They can be used together

� First Build SSA
� Do SVN
� Do DVN with the value tables built in SVN reused

25

Build SSA form is the prerequisite for both!

Examples with redundancy can not be eliminated?

26

e = c + d; f = c + d;

g = c + d;

x = a + b;

c = a - b;

