CS293S GCSE and Data Flow Analysis

Yufei Ding

Review of Last Class

Scope of optimization for redundancy elimination
Basic block -> Local value numbering
Extended basic block -> Superlocal value numbering (SVN)
Dominator -> Dominator-based value numbering (DVN)

HWI was out, due on 22-Oct.
Paper Assignment out today. First review due in 3 weeks (3-Nov)

Examples with redundancy can not be eliminated?

Topics of This Class

Global Common Subexpression Elimination (GCSE)
More close to DAG-based methods
Work on lexical notation instead of expression values.
Our first data flow analysis
Other data flow analysis
The general framework
Live variable analysis
Reaching definition analysis

Global Common Subexpression Elimination (GCSE)

The first data-flow problem
A global method

Some Expression Sets

For each block b
Let Avail(b) be the set of expressions available on entry to b.
Let ExprKill(b) be the set of expressions killed in b.
i.e. one or more operands of the expression are redefined in b.
!!!! Must consider all expressions in the whole graph.
Let DEExpr(b) include the downward exposed expressions in b . i.e. expressions defined in b and not subsequently killed in b

Formula to Compute AVAIL

Now, Avail(b) can be defined as:

$$
\operatorname{AvAIL}(b)=\cap_{x \in \operatorname{pred}(b)}(\operatorname{DEEXPR}(x) \cup(\operatorname{AvAIL}(x) \cap \overline{\operatorname{EXPRKILL}(x))}))
$$

- preds(b) is the set of b's predecessors in the control-flow graph. (Again, a predecessor is an immediate parent, not including other ancestors.)

Computing Available Expressions

The Big Picture

1. Build a control-flow graph
2. Gather the initial data: $\operatorname{DEExpr}(b) \& \operatorname{ExprKilL}(b)$
3. Propagate information around the graph, evaluating the equation

Works for loops through an iterative algorithm: finding the fixedpoint.
All data-flow problems are solved, essentially, this way.

Making Theory Concrete

Computing Avail for the example

$$
\begin{aligned}
& \operatorname{AvAIL(A)}=\boldsymbol{\theta} \\
& \begin{aligned}
& \operatorname{AvAIL}(B)=\{a+b\} \cup(\varnothing \cap a l l) \\
&=\{a+b\} \\
& \text { AvAIL(C) }=\{a+b\} \\
& \text { AvAIL(D) }=\{a+b, c+d\} \cup(\{a+b\} \cap a l l) \\
&=\{a+b, c+d\} \\
& \text { AvAIL(E) }=\{a+b, c+d\} \\
& \text { AvAIL(F) }=[\{b+18, a+b, e+f\} \cup \\
&(\{a+b, c+d\} \cap\{a l l-e+f\})] \\
& \cap[\{a+17, c+d, e+f\} \cup \\
&(\{a+b, c+d\} \cap\{a l l-e+f\})] \\
&=\{a+b, c+d, e+f\} \\
& \text { AvAIL(G) }=[\{c+d\} \cup(\{a+b\} \cap a l l)] \\
& \cap[\{a+b, c+d, e+f\} \cup \\
&(\{a+b, c+d, e+f\} \cap a l l)] \\
&=\{a+b, c+d\}
\end{aligned}
\end{aligned}
$$

Computing Available Expressions

First step is to compute DEExpr \& ExprKill
assume a block b with operations $\mathrm{o}_{1}, \mathrm{o}_{2}, \ldots, \mathrm{o}_{\mathrm{k}}$
VARKILL $\leftarrow \varnothing$
$\operatorname{DEEXPR}(\mathrm{b}) \leftarrow \varnothing$
Backward through block

Many data-flow problems have initial information that costs less to compute
$\begin{aligned} \text { for } i & =\text { kto } 1 \\ & \text { assume } o_{i} \text { is " } x \leftarrow y+z "\end{aligned}$
add x to VARKILL
if ($y \notin$ VARKILL) and ($z \notin$ VARKILL) then
add " $y+z$ " to DEEXPR(b)

$O(k)$ steps

ExprKiLL $(\mathrm{b}) \leftarrow \boldsymbol{\varnothing}$
For each expression e for each variable $\mathbf{v} \in \mathbf{e}$ if $v \in \operatorname{VARKILL}(b)$ then $\operatorname{ExprKiLL}(b) \leftarrow \operatorname{ExPRKILL}(b) \cup\{e\}\}$

Computing Available Expressions

The worklist iterative algorithm
Worklist $\leftarrow\left\{\right.$ all blocks, $\left.b_{i}\right\}$
while (Worklist $=\varnothing$)
remove a block b from Worklist recompute Avail(b) as
$\operatorname{AvAIL}(b)=\cap_{x \in \operatorname{pred}(b)}(\operatorname{DEExPR}(x) \cup(\operatorname{AvAIL}(x) \cap \overline{\operatorname{ExPRKILL}(x)}))$
if ??? then
Worklist \leftarrow ???

Computing Available Expressions

The worklist iterative algorithm
Worklist $\leftarrow\left\{\right.$ all blocks, $\left.b_{i}\right\}$
while (Worklist $=\boldsymbol{\varnothing}$)
remove a block b from Worklist recompute Avail(b) as

```
    AvAIL(b) = \cap 
```

 if AVAIL(b) changed then
 Worklist \(\leftarrow\) Worklist \(\cup\) successors(b)
 - Finds fixed point solution to equation for Avail
- That solution is unique

Comparison

The VN methods are ordered

- LVN $\leq \mathrm{SVN} \leq \mathrm{DVN}$
- GCSE is different
o Based on names, not value
o But for this particular example: DVN \leq GCSE o Not always!!!!

Redundancy Elimination Wrap-up

Conclusions
Redundancy elimination has some depth \& subtlety
Various algorithms and optimization scopes

DVN is probably the method of choice
Results quite close to the global methods ($\pm 1 \%$)
Cost is low

Data-flow Analysis

Data-flow analysis is a collection of techniques for compile-time reasoning about run-time flow of values

Almost always involves building a graph
Problems are trivial on a basic block
Global problems -> control-flow graph (or derivative)
Whole program problems -> call graph (or derivative)
Usually formulated as a set of simultaneous equations

GCSE: Computing Available Expressions

The Big Picture
I. Gather the initial data: $\operatorname{DEExpr}(b) \& \operatorname{ExprKill}(b)$
2. Propagate information around the graph, evaluating the equation

```
AVAIL(b) = \cap }\mp@subsup{\cap}{x\in\operatorname{pred}(b)}{(DEEXPR(x)\cup(\operatorname{AVAIL}(x)\cap\overline{\operatorname{ExPRKILL}(x)}))
Entry point of block b
Exit point of block x
```

Works for loops through an iterative algorithm: finding the fixed-point.
All data-flow problems are solved, essentially, this way.

Other Data flow analysis

	Domain	Direction	Uses
AVAIL	Expressions	Forward	GCSE
LIVEOUT	Variables	Backward	Register alloc. Detect uninit. Construct SSA Useless-store Elim.
VERYBUSY	Expressions	Backward	Hoisting
CONSTANT	Pairs <v,c>	Forward	Constant folding
REACHES	Definition Points	Forward	Def-use chain for dead code elimination etc.

Live Variables

A variable v is live at a point p if there is a path from p to a use of v, and that path does not contain a redefinition of v

Example: I: $a<-b+c$
A statement/instruction I is a definition of a variable v if it may write to $\underline{v} . \operatorname{def}[I]=a$
A statement is a use of variable v if it may read from v. use $[I]=\{b, c\}$

Usage of Live Variables
Detect references to uninitialized variables
Detect defined but not used variables
Global register allocation
useless-store elimination
Improve SSA construction

Live Variables at Special Points

For an instruction I
LIVEIN[I]: live variables at program point before I
LIVEOUT[I]: live variables at program point after I

For a basic block B
LIVEIN[B]: live variables at the entry point of B
LIVEOUT[B]: live variables at the exit point of B

If $I=$ first instruction in B, then LIVEIN[B] = LIVEIN[I]
If $\mathrm{I}=$ last instruction in B , then LIVEOUT[B] = LIVEOUT[I]

How to Compute Liveness?

Question I: for each instruction I, what is the relation between LIVEIN[I] and LIVEOUT[I]?

Question I: for each block B, what is the relation between LIVEIN[B] and LIVEOUT[B]?

LIVEIN[B]
B
LIVEOUT[B]

Part 1: Analyze Instructions

Question: what is the relation between the sets of live variables before and after an instruction l?

LIVEIN[I]
LIVEOUT[I]

Examples:

$\operatorname{LIVEIN}[\mathrm{I}]=\{\mathrm{y}, \mathrm{z}\}$	$\operatorname{LIVEIN}[\mathrm{I}]=\{\mathrm{y}, \mathrm{z}, \mathrm{t}\}$	$\operatorname{LIVEIN}[\mathrm{I}]=\{\mathrm{x}, \mathrm{t}\}$
$\mathrm{x}=\mathrm{y}+\mathrm{z} ;$	$\mathrm{x}=\mathrm{y}+\mathrm{z} ;$	$\mathrm{x}=\mathrm{x}+1 ;$
$\operatorname{LIVEOUT}[\mathrm{I}]=\{\mathrm{z}\}$	$\operatorname{LIVEOUT}[\mathrm{I}]=\{\mathrm{x}, \mathrm{t}\}$	$\operatorname{LIVEOUT}[\mathrm{I}]=\{\mathrm{x}, \mathrm{t}\}$

... is there a general rule?

Analyze Instructions

Two Rules:

Each variable live after I is also live before I, unless I defines (writes) it.
Each variable that I uses (reads) is also live before instruction I

Mathematically:
LIVEIN[I] = (LIVEOUT[I] - def[I]) \cup use[I]
where: $\operatorname{def}[1]=$ variables defined (written) by instruction I use[I] = variables used (read) by instruction I

The information flows backward!

Analyze block
Example: block B with three instructions II, I2, I3:

$$
\begin{aligned}
& \text { Live I }=\text { LIVEIN[B] }=\text { LIVEIN[II] } \\
& \text { Live2 }=\text { LIVEOUT[II] }=\text { LIVEIN[I2] } \\
& \text { Live3 }=\text { LIVEOUT[I2] }=\text { LIVEIN[I3] } \\
& \text { Live4 }=\text { LIVEOUT[I3] }=\text { LIVEOUT[B] }
\end{aligned}
$$

Relation between Live sets:

$$
\begin{aligned}
\text { Live } & =(\operatorname{Live} 2-\{x\}) \cup\{y\} \\
\text { Live2 } & =(\operatorname{Live} 3-\{y\}) \cup\{x, z\} \\
\text { Live3 } & =(\operatorname{Live} 4-\{t\}) \cup\{d\}
\end{aligned}
$$

Livel $=($ Live4- $\{x, y, t\}) \cup\{d, z, y\}$

Analyze Block

Two Rules:

Each variable live after B is also live before B, unless B defines (writes) it.

Each variable v that B uses (reads) before any redefinition in B is also live before B

Mathematically:
LIVEIN[B] = (LIVEOUT[B] - VARKILL(B)) U UEVAR(B)
where:
$\operatorname{VARKILL}(B)=$ variables that are defined in B
$\operatorname{UEVAR}(B)$ variables that are used in B before any redefinition in B, i.e., upward-exposed variables

Analyze CFG

Question: for each basic block B with successor blocks BI, ..., Bn , what is the relation between LIVEIN[B] and LIVEIN[BI], ..., LIVEIN[Bn]?

Example:

General rule?

Analyze $C F G$

Rule: A variables is live at end of block B if it is live at the beginning of one (or more) successor blocks

Mathematically:

$$
\begin{aligned}
& \operatorname{LIVEOUT}[B]=\bigcup_{B^{\prime} \in \operatorname{succ}(B)} \operatorname{LIVEIN}\left[B^{\prime}\right] \\
= & \bigcup_{B^{\prime} \in \operatorname{succ}(B)}\left(\left(\operatorname{LIVEOUT}\left[B^{\prime}\right]-V A R K I L L\left(B^{\prime}\right)\right) \bigcup U E V A R\left(B^{\prime}\right)\right)
\end{aligned}
$$

Again, information flows backward: from successors B^{\prime} of B to basic block

Equations for Live Variables

LIVEOUT(B) contains the name of every variable that is live at the exit point of basic block B.
UEVAR(B) contains the upward-exposed variables in B, i.e. those that are used in n before any redefinition in B.
VARKILL(B) contains all the variables that are defined in B.

$$
\operatorname{LIVEOUT}[B]=\bigcup_{B^{\prime} \in \operatorname{succ}(B)}\left(\left(\operatorname{LIVEOUT}\left[B^{\prime}\right]-\operatorname{VARKILL}\left(B^{\prime}\right)\right) \bigcup U E V A R\left(B^{\prime}\right)\right)
$$

Note: $\quad \mathrm{A}-\mathrm{B}=\mathrm{A} \cap \bar{B}$

Three Steps in Data-Flow Analysis

Build a CFG
Gather the initial information for each block (i.e., (UEVAR and VARKILL))
Use an iterative fixed-point algorithm to propagate information around the CFG

Algorithm

// Get initial sets

for each block b
UEVAR(b) = Ø
$\operatorname{VARKILL}(\mathrm{b})=\varnothing$
for $\mathrm{i}=1$ to number of instr in b
(assuming inst I is " $\mathrm{x}=\mathrm{y}$ op z ")
if $\mathrm{y} \notin \operatorname{VARKILL}(\mathrm{b})$ then
$\operatorname{UEVAR}(b)=\operatorname{UEVAR}(b) \cup\{y\}$
if $\mathrm{z} \notin \mathrm{VARKILL}(\mathrm{b})$ then
$\operatorname{UEVAR}(\mathrm{b})=\operatorname{UEVAR}(\mathrm{b}) \cup\{\mathrm{z}\}$
$\operatorname{VARKILL}(\mathrm{b})=\operatorname{VARKILL}(\mathrm{b}) \cup\{\mathrm{x}\}$

// update LiveOut version 1

set LIVEOUT(b_{i}) to Ø for all blocks
Worklist \leftarrow \{ all blocks $\}$
while (Worklist $=\varnothing$)
remove a block b from Worklist recompute LIVEOUT(b) if LIVEOUT(b) changed then

Worklist \leftarrow Worklist U pred(b)

$$
L I V E O U T[B]=\bigcup_{B^{\prime} \in \operatorname{succ}(B)}\left(\left(L I V E O U T\left[B^{\prime}\right]-V A R K I L L\left(B^{\prime}\right)\right) \bigcup U E V A R\left(B^{\prime}\right)\right)
$$

Algorithm

// Get initial sets

for each block b
UEVAR(b) = Ø
$\operatorname{VARKILL}(\mathrm{b})=\varnothing$
for $\mathrm{i}=1$ to number of instr in b
(assuming inst I is " $\mathrm{x}=\mathrm{y}$ op z ")
if $\mathrm{y} \notin \mathrm{VARKILL}(\mathrm{b})$ then
$\operatorname{UEVAR}(b)=\operatorname{UEVAR}(b) \cup\{y\}$
if $\mathrm{z} \notin \mathrm{VARKILL}(\mathrm{b})$ then
$\operatorname{UEVAR}(\mathrm{b})=\operatorname{UEVAR}(\mathrm{b}) \cup\{\mathrm{z}\}$
$\operatorname{VARKILL}(\mathrm{b})=\operatorname{VARKILL}(\mathrm{b}) \cup\{\mathrm{x}\}$

// update LiveOut version2

set LIVEOUT(b_{i}) to \emptyset for all blocks
changed $=$ true
while (changed)
changed $=$ false
for $\mathrm{i}=1$ to N (number of blocks) recompute LIVEOUT(i)
if LIVEOUT(i) changed then changed $=$ true

$$
\operatorname{LIVEOUT}[B]=\bigcup_{B^{\prime} \in \operatorname{succ}(B)}\left(\left(L I V E O U T\left[B^{\prime}\right]-V A R K I L L\left(B^{\prime}\right)\right) \bigcup U E V A R\left(B^{\prime}\right)\right)
$$

Example

Example (cont.)

Can the algorithm converge in fewer iterations?
LiveOut (b)

iteration	B0	B1	B2	B3	B4	B5	B6	B7
0	\emptyset							
1	\emptyset	\emptyset	a,b,c,d,i	\emptyset	\emptyset	\emptyset	a,b,c,d,i	\emptyset
2	\emptyset	a,i	a,b,c,d,i	\emptyset	a,c,d,i	a,c, d, i	a,b,c,d,i	i
3	1	a,i	a,b,c,d,i	a,c,d,i	a,c,d,i	a,c, d, i	a,b,c,d,i	i
4	i	a,c,i	a,b,c,d,i	a,c,d,i	a,c,d,i	a,c, d, i	a,b,c,d,i	i
5	i	a,c,i	a,b,c,d,i	a,c,d,i	a,c,d,i	a,c, d, i	a,b,c,d,i	i

$$
\operatorname{LIVEOUT}[B]=\bigcup_{B^{\prime} \in \operatorname{succ}(B)}\left(\left(\operatorname{LIVEOUT}\left[B^{\prime}\right]-V A R K I L L\left(B^{\prime}\right)\right) \bigcup U E V A R\left(B^{\prime}\right)\right)
$$

$$
\operatorname{LIVEOUT}[B]=\bigcup_{B^{\prime} \in \operatorname{succ}(B)}\left(\left(\operatorname{LIVEOUT}\left[B^{\prime}\right]-V A R K I L L\left(B^{\prime}\right)\right) \bigcup U E V A R\left(B^{\prime}\right)\right)
$$

Preorder: parents first.
 w/o considering backedges.

$$
\operatorname{LIVEOUT}[B]=\bigcup_{B^{\prime} \in \operatorname{succ}(B)}\left(\left(\operatorname{LIVEOUT}\left[B^{\prime}\right]-V A R K I L L\left(B^{\prime}\right)\right) \bigcup U E V A R\left(B^{\prime}\right)\right)
$$

Postorder: children first.
 w/o
 considering backedges.

Algorithm

// Get initial sets

for each block b
UEVAR(b) = Ø
VARKILL(b) = Ø
for $\mathrm{i}=1$ to number of instr in b
(assuming inst I is " $x=y$ op z ")
if $y \notin \operatorname{VARKILL}(\mathrm{~b})$ then
$\operatorname{UEVAR}(b)=\operatorname{UEVAR}(\mathrm{b}) \cup\{\mathrm{y}\}$
if $\mathrm{z} \notin \mathrm{VARKILL}(\mathrm{b})$ then
$\operatorname{UEVAR}(\mathrm{b})=\operatorname{UEVAR}(\mathrm{b}) \cup\{\mathrm{z}\}$
$\operatorname{VARKILL}(\mathrm{b})=\operatorname{VARKILL}(\mathrm{b}) \cup\{\mathrm{x}\}$

// update LiveOut version2

set LIVEOUT(b_{i}) to Ø for all blocks
changed $=$ true
while (changed)
changed $=$ false
for $\mathrm{i}=1$ to N
// different orders could be used recompute LIVEOUT(i) if LIVEOUT(i) changed then changed $=$ true

$$
L I V E O U T[B]=\bigcup_{B^{\prime} \in \operatorname{succ}(B)}\left(\left(L I V E O U T\left[B^{\prime}\right]-V A R K I L L\left(B^{\prime}\right)\right) \bigcup U E V A R\left(B^{\prime}\right)\right)
$$

Postorder (5 iterations becomes 3)

iteration	B0	B1	B2	B3	B4	B5	$B 6$	B7
0	\emptyset							
1	i	a,c,i	a,b,c,d,i	a,c,d,i	a,c,d,i	a,c,d,i	a,b,c,d,i	Ø
2	i	a,c,i	a,b,c,d,i	a,c, d, i	a,c, d, i	a,c,d,i	a,b,c,d,i	i
3	i	a,c,i	a,b,c,d,i	a,c, d, i	a,c, d, i	a,c, d, i	a,b,c, d, i	i

Preorder: visit parents before children. also called reverse postorder
Postorder: visit children before parents.

Forward problem (e.g., AVAIL):
A node needs the info of its predecessors.
Preorder on CFG.
Backward problem (e.g., LIVEOUT):
A node needs the info of its successors.
Postorder on CFG.

Comparison with AVAIL

Common
Three steps
Fixed-point algorithm finds solution
Differences

AVAIL: domain is a set of expressions

Domain

LIVEOUT: domain is a set of variables
AVAIL: forward problem
LIVEOUT: backward problem
AVAIL: intersection of all paths (all path problem)
Also called Must Problem
May/Must

LIVEOUT: union of all paths (any path problem)
Also called May Problem

