CS293S GCSE and Data Flow Analysis

Yufei Ding

Review of Last Class

Scope of optimization for redundancy elimination Basic block -> Local value numbering Extended basic block -> Superlocal value numbering (SVN) Dominator -> Dominator-based value numbering (DVN)

HWI was out, due on 22-Oct.

Paper Assignment out today. First review due in 3 weeks (3-Nov)

Examples with redundancy can not be eliminated?

Topics of This Class

Global Common Subexpression Elimination (GCSE) More close to DAG-based methods Work on lexical notation instead of expression values. Our first data flow analysis Other data flow analysis The general framework Live variable analysis Reaching definition analysis

Global Common Subexpression Elimination (GCSE)

The first **data-flow problem** A global method

Some Expression Sets

For each block b

- Let **AVAIL(b)** be the set of expressions available on entry to b. Let **EXPRKILL(b)** be the set of expressions killed in b.
 - i.e. one or more operands of the expression are redefined in b.
 - !!!! Must consider all expressions in the whole graph.
- Let **DEExpr(b)** include the downward exposed expressions in b.
 - i.e. expressions defined in b and not subsequently killed in b

Formula to Compute AVAIL

Now, Avail(b) can be defined as:

 $Avail(b) = \bigcap_{x \in pred(b)} (DEExPR(x) \cup (Avail(x) \cap EXPRKILL(x)))$

preds(b) is the set of b's predecessors in the control-flow graph.
 (Again, a predecessor is an immediate parent, not including other ancestors.)

The Big Picture

- 1. Build a control-flow graph
- 2. Gather the initial data: DEExpr(b) & ExprKill(b)
- 3. Propagate information around the graph, evaluating the equation
- Works for loops through an iterative algorithm: finding the fixedpoint.
- All data-flow problems are solved, essentially, this way.

Making Theory Concrete

Computing AVAIL for the example

	A	В	С	D	E	F	G
DEEXPR	a+b	c+d	a+b,c+d	b+18,a+b,e+f	a+17,c+d,e+f	a+b,c+d,e+f	a+b,c+c
Expr K ill	{}	{}	{}	e+f	e+f	{}	{}

 $AVAIL(A) = \emptyset$ AVAIL(B) = $\{a+b\} \cup (\emptyset \cap all)$ **= {**a+b**}** $AVAIL(C) = \{a+b\}$ AVAIL(D) = $\{a+b, c+d\} \cup (\{a+b\} \cap all\}$ $= \{a+b, c+d\}$ $AVAIL(E) = \{a+b, c+d\}$ **AVAIL(F)** = [{b+18,a+b,e+f} ∪ $({a+b,c+d} \cap {all - e+f})]$ \cap [{a+17,c+d,e+f} \cup $({a+b,c+d} \cap {all - e+f})$ **=** {a+b,c+d,e+f} AVAIL(G) = [$\{c+d\} \cup (\{a+b\} \cap all\}$] \cap [{a+b,c+d,e+f} \cup $({a+b,c+d,e+f} \cap all)$ **=** {a+b,c+d}

First step is to compute DEEXPR & EXPRKILL

The worklist iterative algorithm

The worklist iterative algorithm

- Finds fixed point solution to equation for AVAIL
- That solution is unique

Comparison

The VN methods are ordered

- $LVN \leq SVN \leq DVN$
- GCSE is different
 - Based on names, not value
 - But for this particular

svn example: $DVN \leq GCSE$

• Not always!!!!

Redundancy Elimination Wrap-up

Conclusions

Redundancy elimination has some depth & subtlety Various algorithms and optimization scopes

DVN is probably the method of choice Results quite close to the global methods (± 1%) Cost is low

Data-flow Analysis

Data-flow analysis is a collection of techniques for compile-time reasoning about run-time flow of values

Almost always involves building a graph Problems are trivial on a basic block Global problems -> control-flow graph (or derivative) Whole program problems -> call graph (or derivative) Usually formulated as a set of simultaneous equations

The Big Picture

- I. Gather the initial data: DEEXPR(b) & EXPRKILL(b)
- 2. Propagate information around the graph, evaluating the equation

 $\frac{\text{AVAIL}(b)}{\text{Entry point of block b}} = \bigcap_{x \in \text{pred}(b)} \frac{(\text{DEEXPR}(x) \cup (\text{AVAIL}(x) \cap \text{EXPRKILL}(x)))}{\text{Exit point of block x}}$

Works for loops through an iterative algorithm: finding the fixed-point.

All data-flow problems are solved, essentially, this way.

Other Data flow analysis

	Domain	Direction	Uses
AVAIL	Expressions	Forward	GCSE
LIVEOUT	Variables	Backward	Register alloc. Detect uninit. Construct SSA Useless-store Elim.
VERYBUSY	Expressions	Backward	Hoisting
CONSTANT	Pairs <v,c></v,c>	Forward	Constant folding
REACHES	Definition Points	Forward	Def-use chain for dead code elimination etc.

Live Variables

A variable v is live at a point p if there is a path from p to a use of v, and that path does not contain a redefinition of v

Example: I: *a* <- *b* + *c*

A statement/instruction I is a definition of a variable v if it may write to \underline{v} . def[I] = a

A statement is a use of variable v if it may read from v. use[I] = $\{b, c\}$

Usage of Live Variables

Detect references to uninitialized variables Detect defined but not used variables Global register allocation useless-store elimination Improve SSA construction Live Variables at Special Points

For an instruction I

LIVEIN[I]: live variables at program point before I LIVEOUT[I]: live variables at program point after I

For a basic block B LIVEIN[B]: live variables at the entry point of B LIVEOUT[B]: live variables at the exit point of B

If I = first instruction in B, then LIVEIN[B] = LIVEIN[I] If I = last instruction in B, then LIVEOUT[B] = LIVEOUT[I]

How to Compute Liveness?

Question I: for each instruction I, what is the relation between LIVEIN[I] and LIVEOUT[I]?

Question I: for each block B, what is the relation between LIVEIN[B] and LIVEOUT[B]?

Question 2: for each basic block B with successor blocks BI, ..., Bn, what is the relation between LIVEOUT[B] and LIVEIN[BI], ..., LIVEIN[Bn]?

Part 1: Analyze Instructions

Question: what is the relation between the sets of live variables before and after an instruction I?

Examples:

2	$LIVEIN[I] = \{y,z\}$	$LIVEIN[I] = \{y,z,t\}$	$LIVEIN[I] = \{x,t\}$
	$\mathbf{x} = \mathbf{y} + \mathbf{z};$	x = y + z;	$\mathbf{x} = \mathbf{x} + 1;$
J	$LIVEOUT[I] = \{z\}$	$LIVEOUT[I] = {x,t}$	$LIVEOUT[I] = \{x,t\}$

... is there a general rule?

Analyze Instructions

Two Rules:

- Each variable live after I is also live before I, unless I defines (writes) it.
- Each variable that I uses (reads) is also live before instruction I

```
Mathematically:
LIVEIN[I] = ( LIVEOUT[I] – def[I] ) ∪ use[I]
where: def[I] = variables defined (written) by instruction I
use[I] = variables used (read) by instruction I
```

The information flows **backward!**

Analyze block

Example: block B with three instructions II, I2, I3:

Live I = LIVEIN[B] = LIVEIN[II] Live 2 = LIVEOUT[II] = LIVEIN[I2] Live 3 = LIVEOUT[I2] = LIVEIN[I3] Live 4 = LIVEOUT[I3] = LIVEOUT[B] Relation between Live sets: Live I = (Live 2-{x}) \cup {y} Live 2 = (Live 3-{y}) \cup {x, z}

Live3 = (Live4-{t}) \cup {d}

Block B II Live I x = y + ILive 2 y = x * zLive 3 13 t = dLive 4

Live1=(Live4-{x, y, t})
$$\cup$$
 {d, z, y}

Analyze Block

Two Rules:

Each variable live after B is also live before B, unless B defines (writes) it.

Each variable v that B uses (reads) before any redefinition in B is also live before B

Mathematically: LIVEIN[B] = (LIVEOUT[B] - VARKILL(B)) \cup UEVAR(B) where:

VARKILL(B) = variables that are defined in B UEVAR(B) variables that are used in B before any redefinition in B, i.e., <u>upward-exposed</u> <u>var</u>iables

Analyze CFG

Question: for each basic block B with successor blocks BI, ..., Bn, what is the relation between LIVEIN[B] and LIVEIN[BI], ..., LIVEIN[Bn]?

Analyze CFG

Rule: A variables is live at end of block B if it is live at the beginning of one (or more) successor blocks

Mathematically:

 $LIVEOUT[B] = \bigcup_{B' \in succ(B)} LIVEIN[B']$

 $= \bigcup_{B' \in succ(B)} ((LIVEOUT[B'] - VARKILL(B')) \bigcup UEVAR(B'))$

Again, information flows backward: from successors B' of B to basic block

Equations for Live Variables

LIVEOUT(B) contains the name of every variable that is live at the exit point of basic block B.

UEVAR(B) contains the upward-exposed variables in B, i.e. those that are used in n before any redefinition in B.

VARKILL(B) contains all the variables that are defined in B.

$$LIVEOUT[B] = \bigcup_{B' \in succ(B)} ((LIVEOUT[B'] - VARKILL(B')) \bigcup UEVAR(B'))$$

Note:
$$A-B = A \cap \overline{B}$$

Three Steps in Data-Flow Analysis

Build a CFG

Gather the initial information for each block (i.e., (UEVAR and VARKILL))

Use an iterative fixed-point algorithm to propagate information around the CFG

Algorithm

// Get initial sets

for each block b UEVAR(b) = Ø VARKILL(b) = Ø for i=1 to number of instr in b (assuming inst I is "x= y op z") if y \notin VARKILL(b) then UEVAR(b) = UEVAR(b) U {y} if z \notin VARKILL(b) then UEVAR(b) = UEVAR(b) U {z} VARKILL(b) = VARKILL(b) U {x}

// update LiveOut version 1

set LIVEOUT(bi) to Ø for all blocks Worklist ← { all blocks} while (Worklist ≠ Ø) remove a block b from Worklist recompute LIVEOUT(b) if LIVEOUT(b) changed then Worklist ← Worklist U pred(b)

$$LIVEOUT[B] = \bigcup_{B' \in succ(B)} ((LIVEOUT[B'] - VARKILL(B')) \bigcup UEVAR(B'))$$

Algorithm

// Get initial sets

for each block b UEVAR(b) = Ø VARKILL(b) = Ø for i=1 to number of instr in b (assuming inst I is "x= y op z") if y \notin VARKILL(b) then UEVAR(b) = UEVAR(b) U {y} if z \notin VARKILL(b) then UEVAR(b) = UEVAR(b) U {z} VARKILL(b) = VARKILL(b) U {x}

// update LiveOut version2

set LIVEOUT(bi) to Ø for all blocks
changed = true
while (changed)
 changed = false
 for i = 1 to N (number of blocks)
 recompute LIVEOUT(i)
 if LIVEOUT(i) changed then
 changed = true

$$LIVEOUT[B] = \bigcup_{B' \in succ(B)} ((LIVEOUT[B'] - VARKILL(B')) \bigcup UEVAR(B'))$$

			BL		-	20	20	
UEVar	Ø	Ø	Ø	Ø	Ø	Ø	Ø	a,b,c,d,i
VarKill		a, c	b, c, d	a, d	d	С	b	y, z, i

Example (cont.)

Can the algorithm converge in fewer iterations?

iteration	B0	B1	B2	B3	B4	B5	B 6	B7
0	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	a,b,c,d,i	Ø	Ø	Ø	a,b,c,d,i	Ø
2	Ø	a,i	a,b,c,d,i	Ø	a,c,d,i	a,c,d,i	a,b,c,d,i	i
3	i	a,i	a,b,c,d,i	a,c,d,i	a,c,d,i	a,c,d,i	a,b,c,d,i	i
4	i	a,c,i	a,b,c,d,i	a,c,d,i	a,c,d,i	a,c,d,i	a,b,c,d,i	i
5	i	a,c,i	a,b,c,d,i	a,c,d,i	a,c,d,i	a,c,d,i	a,b,c,d,i	i

LiveOut (b)

 $LIVEOUT[B] = \bigcup_{B' \in succ(B)} ((LIVEOUT[B'] - VARKILL(B')) \bigcup UEVAR(B'))$

 $LIVEOUT[B] = \bigcup_{B' \in succ(B)} ((LIVEOUT[B'] - VARKILL(B')) \bigcup UEVAR(B'))$

$$LIVEOUT[B] = \bigcup_{B' \in succ(B)} ((LIVEOUT[B'] - VARKILL(B')) \bigcup UEVAR(B'))$$

Algorithm

// Get initial sets

for each block b UEVAR(b) = Ø VARKILL(b) = Ø for i=1 to number of instr in b (assuming inst I is "x= y op z") if y \notin VARKILL(b) then UEVAR(b) = UEVAR(b) U {y} if z \notin VARKILL(b) then UEVAR(b) = UEVAR(b) U {z} VARKILL(b) = VARKILL(b) U {x}

// update LiveOut version2

set LIVEOUT(bi) to Ø for all blocks
changed = true
while (changed)
 changed = false
 for i = 1 to N
 // different orders could be used
 recompute LIVEOUT(i)
 if LIVEOUT(i) changed then
 changed = true

 $LIVEOUT[B] = \bigcup_{B' \in succ(B)} ((LIVEOUT[B'] - VARKILL(B')) \bigcup UEVAR(B'))$

Postorder (5 iterations becomes 3)

iteration	B0	B1	B2	B3	B4	B5	B 6	B7
0	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	i	a,c,i	a,b,c,d,i	a,c,d,i	a,c,d,i	a,c,d,i	a,b,c,d,i	Ø
2	i	a,c,i	a,b,c,d,i	a,c,d,i	a,c,d,i	a,c,d,i	a,b,c,d,i	i
3	i	a,c,i	a,b,c,d,i	a,c,d,i	a,c,d,i	a,c,d,i	a,b,c,d,i	i

Preorder: visit parents before children.

also called reverse postorder

Postorder: visit children before parents.

Forward problem (e.g., AVAIL):

A node needs the info of its predecessors. Preorder on CFG.

Backward problem (e.g., LIVEOUT):

A node needs the info of its successors.

Postorder on CFG.

Comparison with AVAIL

Common Three steps Fixed-point algorithm finds solution Differences AVAIL: domain is a set of expressions Domain LIVEOUT: domain is a set of variables AVAIL: forward problem Direction LIVEOUT: backward problem AVAIL: intersection of all paths (all path problem) May/Must Also called Must Problem LIVEOUT: union of all paths (any path problem) Also called May Problem