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Review of Last Class

� Scope of optimization for redundancy elimination
� Basic block -> Local value numbering
� Extended basic block -> Superlocal value numbering (SVN)
� Dominator -> Dominator-based value numbering (DVN)

� HW1 was out, due on 22-Oct.

� Paper Assignment out today. First review due in 3 weeks (3-Nov)



Examples with redundancy can not be eliminated?
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e = c + d; f = c + d;

g = c + d;

x = a + b;

c = a - b;
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Topics of This Class

� Global Common Subexpression Elimination (GCSE)
� More close to DAG-based methods
� Work on lexical notation instead of expression values.
� Our first data flow analysis

� Other data flow analysis
� The general framework
� Live variable analysis
� Reaching definition analysis



� The first data-flow problem
� A global method
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Global Common Subexpression Elimination 
(GCSE)
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Some Expression Sets

For each block b
Let AVAIL(b) be the set of expressions available on entry to b.
Let EXPRKILL(b) be the set of expressions killed in b.
i.e. one or more operands of the expression are redefined in b. 
!!!! Must consider all expressions in the whole graph.

Let DEEXPR(b) include the downward exposed expressions in b.
i.e. expressions defined in b and not subsequently killed in b 
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Formula to Compute AVAIL

� Now, AVAIL(b) can be defined as:

AVAIL(b)  =  ÇxÎpred(b) (DEEXPR(x) È (AVAIL(x) Ç EXPRKILL(x) ))

• preds(b) is the set of b’s predecessors in the control-flow graph. 
(Again, a predecessor is an immediate parent, not including other 
ancestors.)
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Computing Available Expressions

The Big Picture
1. Build a control-flow graph
2. Gather the initial data: DEEXPR(b) & EXPRKILL(b)
3. Propagate information around the graph, evaluating the equation

Works for loops through an iterative algorithm: finding the fixed-
point.

All data-flow problems are solved, essentially, this way.
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Making Theory Concrete

Computing AVAIL for the example
AVAIL(A) = Ø
AVAIL(B) = {a+b} È (Ø Ç all)

= {a+b}
AVAIL(C) = {a+b}
AVAIL(D) = {a+b,c+d} È ({a+b} Ç all)

= {a+b,c+d} 
AVAIL(E) = {a+b,c+d}
AVAIL(F) = [{b+18,a+b,e+f} È

({a+b,c+d} Ç {all - e+f})]
Ç [{a+17,c+d,e+f} È

({a+b,c+d} Ç {all - e+f})]
= {a+b,c+d,e+f}

AVAIL(G) = [ {c+d} È ({a+b} Ç all)]
Ç [{a+b,c+d,e+f} È

({a+b,c+d,e+f} Ç all)]
= {a+b,c+d}

m ¬ a + b
n ¬ a + b

A

p ¬ c + d
r ¬ c + d

B

y ¬ a + b
z ¬ c + d

G

q ¬ a + b
r ¬ c + d

C

e ¬ b + 18
s ¬ a + b
u ¬ e + f

D e ¬ a + 17
t ¬ c + d
u ¬ e + f

E

v ¬ a + b
w ¬ c + d
x ¬ e + f

F
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� First step is to compute DEEXPR & EXPRKILL

Computing Available Expressions

assume a block b with operations o1, o2, …, ok

VARKILL ¬ Ø
DEEXPR(b) ¬ Ø

for i = k to 1
assume oi is “x ¬ y + z”
add x to VARKILL

if (y Ï VARKILL) and (z Ï VARKILL) then
add “y + z” to DEEXPR(b)

EXPRKILL(b) ¬ Ø 

For each expression e
for each variable v Î e

if v Î VARKILL(b) then
EXPRKILL(b) ¬ EXPRKILL(b) È {e }

Many data-flow 
problems have 
initial information 
that costs less to 
compute

O(k) steps

O(N) steps
N is # operations

Backward through block
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Computing Available Expressions

The worklist iterative algorithm

Worklist ¬ { all blocks, bi }

while (Worklist ¹ Ø)
remove a block b from Worklist 
recompute AVAIL(b ) as

AVAIL(b)  =  ÇxÎpred(b) (DEEXPR(x) È (AVAIL(x) Ç EXPRKILL(x) ))
if ??? then

Worklist ¬ ???
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Computing Available Expressions

The worklist iterative algorithm

Worklist ¬ { all blocks, bi }

while (Worklist ¹ Ø)
remove a block b from Worklist 
recompute AVAIL(b ) as

AVAIL(b)  =  ÇxÎpred(b) (DEEXPR(x) È (AVAIL(x) Ç EXPRKILL(x) ))
if AVAIL(b ) changed then

Worklist ¬ Worklist È successors(b )

•Finds fixed point solution to equation for AVAIL

• That solution is unique
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Comparison

m ¬ a + b
n ¬ a + b

A

p ¬ c + d
r ¬ c + d

B

y ¬ a + b
z ¬ c + d

G

q ¬ a + b
r ¬ c + d

C

e ¬ b + 18
s ¬ a + b
u ¬ e + f

D e ¬ a + 17
t ¬ c + d
u ¬ e + f

E

v ¬ a + b
w ¬ c + d
x ¬ e + f

F

LVN

LVN

SVN

SVNSVN

DVN
DVN
GCSE

DVN

GCSE

The VN methods are ordered

• LVN ≤ SVN ≤ DVN

• GCSE is different
o Based on names, not value
o But for this particular 
example: DVN ≤ GCSE

o Not always!!!!
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Redundancy Elimination Wrap-up
Conclusions
� Redundancy elimination has some depth & subtlety
� Various algorithms and optimization scopes

DVN is probably the method of choice
� Results quite close to the global methods (± 1%)
� Cost is low
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Data-flow Analysis
� Data-flow analysis is a collection of techniques for

compile-time reasoning about run-time flow of values

� Almost always involves building a graph
� Problems are trivial on a basic block
� Global problems -> control-flow graph (or derivative)
� Whole program problems -> call graph (or derivative)

� Usually formulated as a set of simultaneous equations 
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GCSE: Computing Available Expressions

The Big Picture
1. Gather the initial data: DEEXPR(b) & EXPRKILL(b)
2. Propagate information around the graph, evaluating the 

equation

Works for loops through an iterative algorithm: finding the 
fixed-point.

All data-flow problems are solved, essentially, this way.

AVAIL(b)  =  ÇxÎpred(b) (DEEXPR(x) È (AVAIL(x) Ç EXPRKILL(x) ))

Entry point of block b Exit point of block x
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Other Data flow analysis

Domain Direction Uses

AVAIL Expressions Forward GCSE

LIVEOUT Variables Backward Register alloc.
Detect uninit.
Construct SSA
Useless-store Elim.

VERYBUSY Expressions Backward Hoisting

CONSTANT Pairs <v,c> Forward Constant folding
REACHES Definition 

Points
Forward Def-use chain for dead 

code elimination etc.



Live Variables
� A variable v is live at a point p if there is a path from p to a 

use of v, and that path does not contain a redefinition of v

� Example: I: a <- b + c

� A statement/instruction I is a definition of a variable v if it 
may write to v.  def[I] = a

�A statement is a use of variable v if it may read from v.
use[I] = {b, c}
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Usage of Live Variables

� Detect references to uninitialized variables
� Detect defined but not used variables

� Global register allocation
� useless-store elimination
� Improve SSA construction



Live Variables at Special Points 

� For an instruction I
� LIVEIN[I]: live variables at program point before I
� LIVEOUT[I]: live variables at program point after I

� For a basic block B

� LIVEIN[B]: live variables at the entry point of B
� LIVEOUT[B]: live variables at the exit point of B

� If I = first instruction in B, then LIVEIN[B] = LIVEIN[I]
� If I = last instruction in B, then LIVEOUT[B] = LIVEOUT[I]
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How to Compute Liveness?

� Question 1: for each instruction I, what 
is the relation between LIVEIN[I] and 
LIVEOUT[I]?

� Question 1: for each block B, what is 
the relation between LIVEIN[B] and 
LIVEOUT[B]?

� Question 2: for each basic block B with 
successor blocks B1, ..., Bn, what is the 
relation between LIVEOUT[B] and 
LIVEIN[B1], ..., LIVEIN[Bn]?
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LIVEIN[I]
I

LIVEOUT[I]

B
LIVEOUT[B]

LIVEIN[B]
B1

LIVEIN[B]
Bn

…

LIVEIN[B]
B

LIVEOUT[B]



Part 1: Analyze Instructions
� Question: what is the relation between the 

sets of live variables before and after an 
instruction I?

22

LIVEIN[I] = {y,z} 
x = y+z; 
LIVEOUT[I] = {z}

… is there a general rule?

Examples:

LIVEIN[I] = {y,z,t} 
x = y+z;  
LIVEOUT[I] = {x,t}

LIVEIN[I] = {x,t}  
x = x+1;  
LIVEOUT[I] = {x,t}

LIVEIN[I]
I

LIVEOUT[I]



Analyze Instructions

� Two Rules:

� Each variable live after I is also live before I, unless I defines 
(writes) it.

� Each variable that I uses (reads) is also live before 
instruction I

� Mathematically:
LIVEIN[I] = ( LIVEOUT[I] – def[I] ) ∪ use[I]
where: def[I] = variables defined (written) by instruction I

use[I] = variables used (read) by instruction I
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� The information flows backward!



Analyze block

� Example: block B with three instructions I1, I2, 
I3:

� Live1 = LIVEIN[B] = LIVEIN[I1]  
� Live2 = LIVEOUT[I1] = LIVEIN[I2]
� Live3 = LIVEOUT[I2] = LIVEIN[I3]  
� Live4 = LIVEOUT[I3] = LIVEOUT[B]

� Relation between Live sets:  
� Live1 = ( Live2-{x} ) ∪ {y}  
� Live2 = ( Live3-{y} ) ∪ {x, z}  

� Live3 = ( Live4-{t} ) ∪ {d}
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Live1
x = y + 1
Live 2
y = x * z
Live 3
t = d
Live 4

I1

I2 

I3

Block B

Live1=( Live4-{x, y, t} ) ∪ {d, z, y}



Analyze Block

� Two Rules:

� Each variable live after B is also live before B, unless B 
defines (writes) it.   

� Each variable v that B uses (reads) before any redefinition in 
B is also live before B 

� Mathematically:
LIVEIN[B] = ( LIVEOUT[B] – VARKILL(B)) ∪ UEVAR(B)
where:
� VARKILL(B) = variables that are defined in B 

�UEVAR(B) variables that are used in B before any 
redefinition in B, i.e., upward-exposed variables
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Analyze CFG
� Question: for each basic block B with successor blocks B1, ..., 

Bn, what is the relation between LIVEIN[B] and LIVEIN[B1], ..., 
LIVEIN[Bn]?

� Example:

� General rule? 26

B
LIVEOUT[B]

LIVEIN[B]
B1

LIVEIN[B]
Bn

…

3



Analyze CFG

� Rule: A variables is live at end of block B if it is live at the 
beginning of one (or more) successor blocks

� Mathematically:

� Again, information flows backward: from successors B’ of 
B to basic block

27
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Equations for Live Variables

� LIVEOUT(B) contains the name of every variable that is live at
the exit point of basic block B.

� UEVAR(B) contains the upward-exposed variables in B, i.e. 
those that are used in n before any redefinition in B.

� VARKILL(B) contains all the variables that are defined in B.

Note:   A-B = A ∩ "𝐵
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Three Steps in Data-Flow Analysis

� Build a CFG
� Gather the initial information for each block (i.e., (UEVAR and 

VARKILL))
� Use an iterative fixed-point algorithm to propagate information 

around the CFG
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for each block b
UEVAR(b) = Ø
VARKILL(b) = Ø
for i=1 to number of instr in b

(assuming inst I is “x= y op z”)
if y ∉VARKILL(b) then

UEVAR(b) = UEVAR(b) ∪ {y}
if z ∉VARKILL(b) then

UEVAR(b) = UEVAR(b) ∪ {z}
VARKILL(b) = VARKILL(b) ∪ {x}

set LIVEOUT(bi) to Ø for all blocks
Worklist ← { all blocks}
while (Worklist ≠ Ø)

remove a block b from Worklist 
recompute LIVEOUT(b)
if LIVEOUT(b) changed then

Worklist ← Worklist ∪ pred(b)

Algorithm

// update LiveOut version 1// Get initial sets
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set LIVEOUT(bi) to Ø for all blocks
changed = true
while (changed)

changed = false
for i = 1 to N (number of blocks)

recompute LIVEOUT(i)
if LIVEOUT(i) changed then

changed = true

Algorithm

// update LiveOut version2// Get initial sets
for each block b

UEVAR(b) = Ø
VARKILL(b) = Ø
for i=1 to number of instr in b

(assuming inst I is “x= y op z”)
if y ∉VARKILL(b) then

UEVAR(b) = UEVAR(b) ∪ {y}
if z ∉VARKILL(b) then

UEVAR(b) = UEVAR(b) ∪ {z}
VARKILL(b) = VARKILL(b) ∪ {x}
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<=Example

<=

B0 B1 B2 B3 B4 B5 B6 B7

UEVar Ø Ø Ø Ø Ø Ø Ø a,b,c,d,i

VarKill i a, c b, c, d a, d d c b y, z, i
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Example (cont.)

iteration B0 B1 B2 B3 B4 B5 B6 B7

0 Ø Ø Ø Ø Ø Ø Ø Ø

1 Ø Ø a,b,c,d,i Ø Ø Ø a,b,c,d,i Ø

2 Ø a,i a,b,c,d,i Ø a,c,d,i a,c,d,i a,b,c,d,i i

3 i a,i a,b,c,d,i a,c,d,i a,c,d,i a,c,d,i a,b,c,d,i i

4 i a,c,i a,b,c,d,i a,c,d,i a,c,d,i a,c,d,i a,b,c,d,i i

5 i a,c,i a,b,c,d,i a,c,d,i a,c,d,i a,c,d,i a,b,c,d,i i

LiveOut (b)

Can the algorithm converge in fewer iterations?
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<=

<=

Preorder: 
parents 
first.
w/o 
considering 
backedges.
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<=

<=

0

1

2

3 4

5

6

7
Postorder: 
children 
first.
w/o 
considering 
backedges.
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for each block b
UEVAR(b) = Ø
VARKILL(b) = Ø
for i=1 to number of instr in b

(assuming inst I is “x= y op z”)
if y ∉VARKILL(b) then

UEVAR(b) = UEVAR(b) ∪ {y}
if z ∉VARKILL(b) then

UEVAR(b) = UEVAR(b) ∪ {z}
VARKILL(b) = VARKILL(b) ∪ {x}

set LIVEOUT(bi) to Ø for all blocks
changed = true
while (changed)

changed = false
for i = 1 to N

// different orders could be used
recompute LIVEOUT(i)
if LIVEOUT(i) changed then

changed = true

Algorithm

// update LiveOut version2// Get initial sets
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Postorder  (5 iterations becomes 3)

iteration B0 B1 B2 B3 B4 B5 B6 B7

0 Ø Ø Ø Ø Ø Ø Ø Ø

1 i a,c,i a,b,c,d,i a,c,d,i a,c,d,i a,c,d,i a,b,c,d,i Ø

2 i a,c,i a,b,c,d,i a,c,d,i a,c,d,i a,c,d,i a,b,c,d,i i

3 i a,c,i a,b,c,d,i a,c,d,i a,c,d,i a,c,d,i a,b,c,d,i i
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Order

� Preorder: visit parents before children.
� also called reverse postorder

� Postorder: visit children before parents.

� Forward problem (e.g., AVAIL): 

�A node needs the info of its predecessors.
� Preorder on CFG.

� Backward problem (e.g., LIVEOUT): 
�A node needs the info of its successors.

� Postorder on CFG.

Parent relation does not consider backedges. 
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Comparison with AVAIL

� Common

� Three steps

� Fixed-point algorithm finds solution

� Differences

�AVAIL: domain is a set of expressions

LIVEOUT: domain is a set of variables

�AVAIL: forward problem

LIVEOUT: backward problem

�AVAIL: intersection of all paths (all path problem)
�Also called Must Problem

LIVEOUT: union of all paths (any path problem)

Also called May Problem

Domain

Direction

May/Must


