CS293S Data Flow Analysis

Yufei Ding

Questions from students

Office hour by appointments ©

Which one is Global method?
LVN, SVN, DVN, GCSE

SVN and DVN: build the SSA first

EXPRKILL and DEEXPR: check the pseudocodes in the
lecture slides.

When introducing GCSE, we focus on the program analysis
part, i.e., available expression elimination. How about the
program transformation part for redundancy elimination!?

Replacement step in GCSE

O Limit to textually identical expressions

(like DAG, unlike value numbering)

a<-b+c

d<-b

l AVAIL(B) ={b+c}

e<-d+c

Cannot find or remove the redundancy!

Replacement step in GCSE

O Limit to textually identical expressions

(like DAG, unlike value numbering)

B1

a<-b+c

f<-b+c

B2

\ AAIL(B) ={b+c}

B

e<-b+c

Should replace b+c with ?

GCSE (replacement step)

0 Compute a static mapping from expression to name
(1 After analysis & before transformation
[0 V block b, V expression e AVAIL(b), assign e a global name by hashing on e
[J During transformation step
[1 Evaluation of e = insert copy name(e) < e
[1(e is not available and needs to be evaluated)
(1 Reference to e = replace e with name(e)

[1(e is available and should be replaced)

Example

B1

N AN

m=a+b;

n=c+d;
c=17;
B2 q=C+d;

B3

p=Cc+d;

M(B@ £{c+d; a+b}

r=c+d;

B2

t1 = a+b;
m=t1;
B1

t2=c+d;
n=t2;
c=17;
t2=c+d;
g=t2;

name expression
t1 a+b
t2 c+d

I

r=t2;

t2=c+d;
p=t2;

B4

GCSE (replacement step)

0 The major problem with this approach

[Inserts extraneous copies

1 At all definitions and uses of any ecAVAIL(b), V b
[0 Not a big issue

[0 Those extra copies are dead and easy to remove

Review of Last Class

[0 Global Common Subexpression Elimination (GCSE)
[First data/control flow analysis

[Live Variable Analysis

How to Compute Liveness?

LIVEINTI]

1 Question |: for each instruction |, what |
is the relation between LIVEIN[I] and LIVEOUTII]
LIVEOUTTI]?

1 Question |: for each block B, what is LIVEIN[B]
the relation between LIVEIN[B] and B
LIVEOUTI[B]? LIVEOUTIB]

1 Question 2: for each basic block B with B
successor blocks Bl, ..., Bn, what is the LIVEOUTI[B]
relation between LIVEOUTI[B] and :
LIVEIN[BI], ..., LIVEIN[Bn]? ‘/ i

LIVEIN[B] LIVEIN[B]
Bl Bn

Analyze CFG

0 Mathematically:

LIVEOUT[B] = |J ((LIVEOUT[B'|-VARKILL(B'))| JUEVAR(B"))

B’ €succ(B)

1 The information flows backward: from successors B’ of B

to basic block

00 LIVEOUT(B) contains the name of every variable that is live at the
exit point of basic block B.

[0 UEVAR(B) contains the upward-exposed variables in B, i.e. those
that are used in n before any redefinition in B.

[0 VARKILL(B) contains all the variables that are defined in B.

10

Three Steps in Data-Flow Analysis

1 Build a CFG

[0 Gather the initial information for each block (i.e., (UEVAR and
VARKILL))

[0 Use an iterative fixed-point algorithm to propagate information
around the CFG

11

Algorithm

// Get 1nitial sets // update LiveOut version 1
for each block b set LIVEOUT(bi) to @ for all blocks
UEVAR(b) =0 Worklist «— {all blocks}
VARKILL(b) =0 while (Worklist # @)
remove a block b from Worklist

for 1i=1 to number of instr in b

(assuming inst I is “x= y op 2”) }*ecompute LIVEOUT(b)
if y VARKILL(b) then if LIVEOUT(b) changed then
UEVAR(b) — UEVAR(b) U {y} Worklist «— Worklist U pred(b)
if z VARKILL(b) then
UEVAR(b) = UEVAR(b) U {z}
VARKILL(b) = VARKILL(b) U {x}
LIVEOUT|B| = U (LIVEOUT|B'|-VARKILL(B")) U UEV AR(B"))

B’ €succ(B)

12

Algorithm

// Get 1nitial sets // update LiveOut version2

set LIVEOUT(bi) to @ for all blocks
changed = true
while (changed)
changed = false
fori=1to N (number of blocks)
recompute LIVEOUT()
if LIVEOUT() changed then
changed = true

for each block b
UEVAR(b) =0
VARKILL(b) =0
for i=1 to number of instrin b
(assuming inst [1s “x=y op z”)
if y VARKILL(b) then
UEVAR(b) = UEVAR(b) U {y}
if z VARKILL(b) then
UEVAR(b) = UEVAR(b) U {z}
VARKILL(b) = VARKILL(b) U {x}

LIVEOUT[B]= |J ((LIVEOUT|B'|-VARKILL(B')| JUEVAR(B'))
B’ €succ(B)

13

Example

i > 100

b «

C

d «
B,
B;

d «
d(_ BS C « -
N T
y «<a+b
Z «c+d 1<:100
1«1 +1
1>1ooj

14

Example (cont.)

UEVar

VarKill

a,b,c,d,i

b, c, d

15

Example (with update LiveOut version2)

Can the algorithm converge in fewer iterations?

LiveOut (b)
iteration BO
0 0 %) 0 %) %) 0 %)
%) %) ab,cdi| O) %) a,b,c,di | D
%) a.i abcdi| D acdi |acdi |abecdi]i
1 a,l abcdi|acdi a,c,d, a,c,d.i abcdi |1
1 a,c.,l abcdi|acdi a,c,d, a,c,d.i abcdi |1
1 a,c.,l abcdi|acdi a,c,d, a,c,d.i abcdi |1
LIVEOUT|B| = U (LIVEOUT|B'|-VARKILL(B")) U UEV AR(B"))
B’ €succ(B)

16

LIVEOUT[B]= |J ((LIVEOUT[B'|-VARKILL(B'))| JUEVAR(B'))

B’ €succ(B)
l i > 100
Preorder: B, i1
parents —
first. Y o
B,
w/o ¢
considering ce
backedges. / \
C & - d «
B(j |_ b — -
B; y «<a+b
Z «c+d i <100)

1«1 +1

1>100J

LIVEOUT[B]= |J ((LIVEOUT[B'|-VARKILL(B'))| JUEVAR(B'))

B’ €succ(B)
Postorder: l .
children 7 By 1 NGV
first. = ~
i 100
w/o 6 B, /
considering e
backedges. ce
BZ b e e 5 B3 ad & -
C ¢ - d «
334 d - 433 C & -
T~
B(j |_ b — -
O /
B; y «<a+b
Z «c+d i <100
1«1 +1 /

1>100J

Algorithm

// Get 1nitial sets // update LiveOut version2
for each block b set LIVEOUT(bi) to @ for all blocks
UEVAR(b) =0 changed = true
VARKILL(b) =0 while (changed)
for i=1 to number of instr in b changed = false
(assuming inst [is “x=y op z”) fori=1toN
if y #VARKILL(Db) then // different orders could be used
UEVAR(b) = UEVAR(b) U {y} recompute LIVEOUT(i)
if z #VARKILL(b) then if LIVEOUT(i) changed then
UEVAR(b) = UEVAR(b) U {z} changed = true

VARKILL(b) = VARKILL(b) U {x}

LIVEOUT[B]= |J ((LIVEOUT|B'|-VARKILL(B')| JUEVAR(B'))
B’ €succ(B)

19

Postorder (5 iterations becomes 3)

iteration BO

1 1 a,c,i ab,cd, |ac,d.i a,c,d.i a,c,d.i ab,cd,i |
p 1 a,c.,l abcdi|acdi a,c,d, a,c,d.1 abcdi |1
3 1 a,c.,l abcdi|acdi a,c,d, a,c,d.1 abcdi |1

20

Order Parent relation does not consider backedges.

0 Preorder: visit parents before children.
[J also called reverse postorder
0 Postorder: visit children before parents.

[J Forward problem (e.g., AVAIL):
[J A node needs the info of its predecessors.
[J Preorder on CFG.
] Backward problem (e.g., LIVEOUT):
[J A node needs the info of its successors.
[J Postorder on CFG.

21

Comparison with AVAIL

[1 Common
(1 Three steps
[1 Fixed-point algorithm finds solution
(1 Differences
[1 AVAIL: domain is a set of expressions
LIVEOUT: domain is a set of variables
(1 AVAIL: forward problem
LIVEOUT: backward problem

[1 AVAIL: intersection of all paths (all path problem)
[1Also called Must Problem May/Must

LIVEOUT: union of all paths (any path problem)

Domain

Direction

Also called May Problem

22

Popular data flow analysis

Domain Direction Uses

AVAIL Expressions Forward GCSE

LIVEOUT Variables Backward Register alloc.
Detect uninit.
Construct SSA
Useless-store Elim.

VERYBUSY Expressions Backward Hoisting

CONSTANT Pairs <v,c> Forward Constant folding

REACHES Definition Forward Def-use chain for dead

Points

code elimination etc.

23

Very Busy Expressions

[0 VERYBUSY(b) contains expressions that are very busy at end of b

[0 UEEXPR(b): up exposed expressions (i.e. expressions defined in b
and not subsequently killed in b)

[0 EXPRKILL(b): killed expressions

A backward flow problem, domain is the set of expressions

VERYBUSY(b) = Mg ¢ syceir) VEEXPR(S) U (VERYBUSY(S) M EXPRKILL(S))

VERYBuUSY(n¢) = @

24

Very Busy Expressions

[1 Def: e is a very busy expression at the exit of block b if
[] e is evaluated and used along every path that leaves b, and
[1 evaluating e at the end of b produces the same result

[1 useful for code hoisting

[1 saves code space

e=a+tb

t=a+b Xx=a+b

25

Constant Propagation

[J Def of a constant variable v at point p:
(1 Along every path to p, v has same known value
[J Specialize computation at p based on Vv’s value

a="7;

c=a*?2;
/\
- a; b=a;

Constant Propagation:

Domain is the set of pairs <v,,c;> where v; is a variable and ¢; € C

CONSTANTS(b) = Ap € predsp) fo(CONSTANTS(p))

[1 A performs a pairwise meet on two sets of pairs

O fy(x) is a block specific function that models the effects of block p on
the <v,,c;> pairs in x

A forward flow problem, domain is the set of pairs <v,c>.

1: non-constant or
unknown value

C: constants or .

27

CONSTANTS(D) = N, ¢ predsp) [CONSTANTS(D))

Meet operation <v, c; > A <v, ¢, >
1: non-constant or

0 <v,c;>ifc =cy else <y, 1>
unknown value

Define fp with examples:

[0 If p has one statement then

OX <y with CONSTANTS(p) = {...<x,l,>,...<y,l,>...}
then f,(CONSTANTS(p)) = {CONSTANTS(p) - <x,;>} U <x,l,>
% «— y op z with CONSTANTS(p) = {...<x,|,>,...<y,l,>... ,...<zl3>...}

then f,(CONSTANTS(p)) = {CONSTANTS(p) - <x,I;>} U <x,l, op I;>
(1 If p has n statements then
f,(CONSTANTS(p)) = f, (-1 (fo2(. .- f2(fi(CONSTANTS(p)))...)))

where f; is the function generated by the i statement in p

f, interprets p over CONSTANTS 28

Reaching Definitions

[0 A definition of variable v at program point d reaches program point u if
there exists a path of control flow edges from d to u that does not contain a

definition of v.

REACHES(n) = U 1, ¢ pred(ny DEDEF(m) U (REACHES(m) m DEFKILL(m))

0 REACHES(n): the set of variable definitions that reach the start of node n.
[0 DEDEF(n): the set of downward-exposed variable definitions in n.
[1i.e. their defined variables are not redefined before leaving n.
[0 DEFKILL(n): all definitions killed by a definition in n.
[0 A forward flow problem, domain is the definition point:

the variable name + where it is defined (code position)

29

Def-Use Chains

Example
«— 5
ba¢ 3
c b + 2
«— a - 2 d is dead
It has no use
e .« a + b e « 13
e>e + C
\e

Write £

30

Data-Flow Analysis Frameworks

[0 Generalizes and unifies data flow problem:s.
O Important components:

4 Direction D: forward or backward.

+ A Semilattice: a domain V and a meet operator A that captures
the effect of path confluence.

+ A transfer function F(m): compute the effect of passing
through a basic block and include function value at boundary
conditions.

A semilattice is an algebra S = (S, %) satisfying, for all z,y,z € S,
(1) zxz =z,
(2) zxy=yxuz,
B) zx(yx2)=(x*xy)* 2.

31

Examples

(O, V,F %)
LIVE

4+ D: backward
4+V: all variables

+Fmi UEVAR(m) U (LIVEOUT (m) N VARKILL(m)) ; LIVEOUT (n,)= ¢
+A U

AVAIL
+D: forward, V: all expressions
+Fm: DEEXPR(m) U(AVAIL(m) N EXPRKILL(m)) : AV AIL(no)=(‘)
+A N

32

Why to Study Data Flow Analysis

[J Data-flow analysis

1 A collection of techniques for compile-time reasoning
about the run-time flow of values.

1 Backbone of scalar optimizing compilers

33

Limitation of Data-Flow Analysis

[Imprecision from pointers, and procedure calls

[J Assume all paths will be taken

B
).(i) I x « f(17)
if (y < x) then (y < x)
Z X+ 3 s ’
X(—O J Bl Z(—X+3
B2 X 0 ~j

If v is always no less than x, x is not live before B2.
But data-flow analysis may not figure that out.

34

Summary

Domain Direction Uses

AVAIL Expressions Forward GCSE

LIVEOUT Variables Backward Register alloc.
Detect uninit.
Construct SSA
Useless-store Elim.

VERYBUSY Expressions Backward Hoisting

CONSTANT Pairs <v,c> Forward Constant folding

REACHES Definition Forward Def-use chain for dead

Points

code elimination etc.

35

