CS293S Data Flow Analysis

Yufei Ding

Questions from students

Office hour by appointments ©
Which one is Global method?
LVN, SVN, DVN, GCSE
SVN and DVN: build the SSA first
EXPRKILL and DEEXPR: check the pseudocodes in the lecture slides.

When introducing GCSE, we focus on the program analysis part, i.e., available expression elimination. How about the program transformation part for redundancy elimination?

Replacement step in GCSE

Limit to textually identical expressions (like DAG, unlike value numbering)

Cannot find or remove the redundancy!

Replacement step in GCSE

Limit to textually identical expressions (like DAG, unlike value numbering)

Should replace b+c with ?

GCSE (replacement step)

Compute a static mapping from expression to name
After analysis \& before transformation
\forall block b, \forall expression $\mathrm{e} \in$ AVAIL(b), assign e a global name by hashing on e
During transformation step
Evaluation of $\mathrm{e} \Rightarrow$ insert copy name $(\mathrm{e}) \leftarrow \mathrm{e}$
(e is not available and needs to be evaluated)
Reference to $\mathrm{e} \Rightarrow$ replace e with name(e)
(e is available and should be replaced)

Example

GCSE (replacement step)

The major problem with this approach
Inserts extraneous copies
At all definitions and uses of any $\mathrm{e} \in \operatorname{AVAIL}(\mathrm{b}), \forall \mathrm{b}$
Not a big issue
Those extra copies are dead and easy to remove

Review of Last Class

Global Common Subexpression Elimination (GCSE)
First data/control flow analysis
Live Variable Analysis

How to Compute Liveness?

Question I: for each instruction I, what is the relation between LIVEIN[I] and LIVEOUT[I]?

Question I: for each block B, what is the relation between LIVEIN[B] and LIVEOUT[B]?

LIVEIN[B]
B
LIVEOUT[B]

Analyze $C F G$

Mathematically:
$\operatorname{LIVEOUT}[B]=\bigcup_{B^{\prime} \in \operatorname{succ}(B)}\left(\left(\operatorname{LIVEOUT}\left[B^{\prime}\right]-\operatorname{VARKILL}\left(B^{\prime}\right)\right) \bigcup \operatorname{UEVAR}\left(B^{\prime}\right)\right)$

The information flows backward: from successors B^{\prime} of B to basic block

LIVEOUT(B) contains the name of every variable that is live at the exit point of basic block B.
UEVAR(B) contains the upward-exposed variables in B, i.e. those that are used in n before any redefinition in B.
VARKILL(B) contains all the variables that are defined in B.

Three Steps in Data-Flow Analysis

Build a CFG
Gather the initial information for each block (i.e., (UEVAR and VARKILL))
Use an iterative fixed-point algorithm to propagate information around the CFG

Algorithm

// Get initial sets

for each block b
UEVAR(b) = Ø
$\operatorname{VARKILL}(\mathrm{b})=\varnothing$
for $\mathrm{i}=1$ to number of instr in b
(assuming inst I is " $\mathrm{x}=\mathrm{y}$ op z ")
if $\mathrm{y} \notin \operatorname{VARKILL}(\mathrm{b})$ then
$\operatorname{UEVAR}(b)=\operatorname{UEVAR}(b) \cup\{y\}$
if $\mathrm{z} \notin \mathrm{VARKILL}(\mathrm{b})$ then
$\operatorname{UEVAR}(\mathrm{b})=\operatorname{UEVAR}(\mathrm{b}) \cup\{\mathrm{z}\}$
$\operatorname{VARKILL}(\mathrm{b})=\operatorname{VARKILL}(\mathrm{b}) \cup\{\mathrm{x}\}$

// update LiveOut version 1

set LIVEOUT(b_{i}) to \emptyset for all blocks
Worklist \leftarrow \{all blocks $\}$
while (Worklist $=\varnothing$)
remove a block b from Worklist recompute LIVEOUT(b)
if LIVEOUT(b) changed then
Worklist \leftarrow Worklist U pred(b)

$$
L I V E O U T[B]=\bigcup_{B^{\prime} \in \operatorname{succ}(B)}\left(\left(L I V E O U T\left[B^{\prime}\right]-V A R K I L L\left(B^{\prime}\right)\right) \bigcup U E V A R\left(B^{\prime}\right)\right)
$$

Algorithm

// Get initial sets

for each block b
UEVAR(b) = Ø
$\operatorname{VARKILL}(\mathrm{b})=\varnothing$
for $\mathrm{i}=1$ to number of instr in b
(assuming inst I is " $\mathrm{x}=\mathrm{y}$ op z ")
if $\mathrm{y} \notin \mathrm{VARKILL}(\mathrm{b})$ then
$\operatorname{UEVAR}(\mathrm{b})=\operatorname{UEVAR}(\mathrm{b}) \cup\{\mathrm{y}\}$
if $\mathrm{z} \notin \mathrm{VARKILL}(\mathrm{b})$ then
$\operatorname{UEVAR}(\mathrm{b})=\operatorname{UEVAR}(\mathrm{b}) \cup\{\mathrm{z}\}$
$\operatorname{VARKILL}(\mathrm{b})=\operatorname{VARKILL}(\mathrm{b}) \cup\{\mathrm{x}\}$

// update LiveOut version2

set LIVEOUT(b_{i}) to \emptyset for all blocks
changed $=$ true
while (changed)
changed $=$ false
for $\mathrm{i}=1$ to N (number of blocks) recompute LIVEOUT(i)
if LIVEOUT(i) changed then changed $=$ true

$$
\operatorname{LIVEOUT}[B]=\bigcup_{B^{\prime} \in \operatorname{succ}(B)}\left(\left(\operatorname{LIVEOUT}\left[B^{\prime}\right]-V A R K I L L\left(B^{\prime}\right)\right) \bigcup U E V A R\left(B^{\prime}\right)\right)
$$

Example

Example (cont.)

B0	$\mathbf{B 1}$	$\mathbf{B 2}$	$\mathbf{B 3}$	$\mathbf{B 4}$	$\mathbf{B 5}$	$\mathbf{B 6}$	$\mathbf{B 7}$	
UEVar	\varnothing	a, b, c, d, i						
VarKill	i	a, c	$\mathrm{b}, \mathrm{c}, \mathrm{d}$	a, d	d	c	b	$\mathrm{y}, \mathrm{z}, \mathrm{i}$

Example (with update LiveOut version2)

Can the algorithm converge in fewer iterations?
LiveOut (b)

iteration	B0	B1	B2	B3	B4	B5	B6	B7
0	\emptyset							
1	\emptyset	\emptyset	a,b,c,d,i	\emptyset	\emptyset	\emptyset	a,b,c,d,i	\emptyset
2	Ø	a,i	a,b,c,d,i	\emptyset	a,c, d, i	a,c,d,i	a,b,c,d,i	i
3	i	a,i	a,b,c,d,i	a,c, d, i	a,c,d,i	a,c,d,i	a,b,c, d, i	i
4	i	a,c,i	a,b,c,d,i	a,c, d, i	a,c, d, i	a,c, d, i	a,b,c, d, i	1
5	i	a,c,i	a,b,c,d,i	a,c,d,i	a,c,d,i	a,c,d,i	a,b,c,d,i	i

$\operatorname{LIVEOUT}[B]=\bigcup_{B^{\prime} \in \operatorname{succ}(B)}\left(\left(\operatorname{LIVEOUT}\left[B^{\prime}\right]-V A R K I L L\left(B^{\prime}\right)\right) \bigcup U E V A R\left(B^{\prime}\right)\right)$

$$
\operatorname{LIVEOUT}[B]=\bigcup_{B^{\prime} \in \operatorname{succ}(B)}\left(\left(\operatorname{LIVEOUT}\left[B^{\prime}\right]-V A R K I L L\left(B^{\prime}\right)\right) \bigcup U E V A R\left(B^{\prime}\right)\right)
$$

Preorder: parents first.
 w/o considering backedges.

$$
\operatorname{LIVEOUT}[B]=\bigcup_{B^{\prime} \in \operatorname{succ}(B)}\left(\left(\operatorname{LIVEOUT}\left[B^{\prime}\right]-V A R K I L L\left(B^{\prime}\right)\right) \bigcup U E V A R\left(B^{\prime}\right)\right)
$$

Postorder:
children
first.
w/o
considering
backedges.

Algorithm

// Get initial sets

for each block b
UEVAR(b) = Ø
VARKILL(b) = Ø
for $\mathrm{i}=1$ to number of instr in b
(assuming inst I is " $x=y$ op z ")
if $y \notin \operatorname{VARKILL}(\mathrm{~b})$ then
$\operatorname{UEVAR}(b)=\operatorname{UEVAR}(\mathrm{b}) \cup\{\mathrm{y}\}$
if $\mathrm{z} \notin \mathrm{VARKILL}(\mathrm{b})$ then
$\operatorname{UEVAR}(\mathrm{b})=\operatorname{UEVAR}(\mathrm{b}) \cup\{\mathrm{z}\}$
$\operatorname{VARKILL}(\mathrm{b})=\operatorname{VARKILL}(\mathrm{b}) \cup\{\mathrm{x}\}$

// update LiveOut version2

set LIVEOUT(b_{i}) to Ø for all blocks
changed $=$ true
while (changed)
changed $=$ false
for $\mathrm{i}=1$ to N
// different orders could be used recompute LIVEOUT(i) if LIVEOUT(i) changed then changed $=$ true

$$
L I V E O U T[B]=\bigcup_{B^{\prime} \in \operatorname{succ}(B)}\left(\left(L I V E O U T\left[B^{\prime}\right]-V A R K I L L\left(B^{\prime}\right)\right) \bigcup U E V A R\left(B^{\prime}\right)\right)
$$

Postorder (5 iterations becomes 3)

iteration	B0	B1	B2	B3	B4	B5	B6	B7
0	\emptyset							
1	i	a,c,i	a,b,c,d,i	a,c,d,i	a,c,d,i	a,c,d,i	a,b,c,d,i	\emptyset
2	i	a,c,i	a,b,c,d,i	a,c,d,i	a,c,d,i	a,c, d, i	a,b,c,d,i	i
3	i	a,c,i	a,b,c,d,i	a,c,d,i	a,c,d,i	a,c,d,i	a,b,c,d,i	i

Preorder: visit parents before children. also called reverse postorder
Postorder: visit children before parents.

Forward problem (e.g., AVAIL):
A node needs the info of its predecessors.
Preorder on CFG.
Backward problem (e.g., LIVEOUT):
A node needs the info of its successors.
Postorder on CFG.

Comparison with AVAIL

Common
Three steps
Fixed-point algorithm finds solution
Differences

AVAIL: domain is a set of expressions

Domain

LIVEOUT: domain is a set of variables
AVAIL: forward problem
LIVEOUT: backward problem
AVAIL: intersection of all paths (all path problem)
Also called Must Problem
May/Must

LIVEOUT: union of all paths (any path problem)
Also called May Problem

Popular data flow analysis

	Domain	Direction	Uses
AVAIL	Expressions	Forward	GCSE
LIVEOUT	Variables	Backward	Register alloc. Detect uninit. Construct SSA Useless-store Elim.
VERYBUSY	Expressions	Backward	Hoisting
CONSTANT	Pairs <v,c>	Forward	Constant folding
REACHES	Definition Points	Forward	Def-use chain for dead code elimination etc.

Very Busy Expressions

VERYBUSY(b) contains expressions that are very busy at end of b UEEXPR(b): up exposed expressions (i.e. expressions defined in b and not subsequently killed in b)
EXPRKILL(b): killed expressions
A backward flow problem, domain is the set of expressions

$$
\begin{gathered}
\operatorname{VERYBUSY}(b)=\cap_{s \in \operatorname{succ}(b)} \operatorname{UEEXPR}(s) \cup(\operatorname{VERYBUSY}(s) \cap \overline{\operatorname{EXPRKILL}(s)}) \\
\operatorname{VERYBUSY}\left(n_{f}\right)=\varnothing
\end{gathered}
$$

Very Busy Expressions

Def: e is a very busy expression at the exit of block b if e is evaluated and used along every path that leaves b, and evaluating e at the end of b produces the same result useful for code hoisting
saves code space

Constant Propagation

Def of a constant variable v at point p :
Along every path to p, v has same known value
Specialize computation at p based on v's value

Constant Propagation:

Domain is the set of pairs $\left\langle v_{i}, c_{i}\right\rangle$ where v_{i} is a variable and $c_{i} \in C$

$$
\text { CONSTANTS(b) }=\wedge_{\mathrm{p} \in \operatorname{preds}(\mathrm{~b})} \mathrm{f}_{\mathrm{p}}(\text { CONSTANTS(p)) }
$$

\wedge performs a pairwise meet on two sets of pairs
$f_{p}(x)$ is a block specific function that models the effects of block p on the $\left\langle\mathrm{v}_{\mathrm{i}}, \mathrm{c}_{\mathrm{i}}\right\rangle$ pairs in x

A forward flow problem, domain is the set of pairs <v,c>.

$$
\text { C: constants or } \perp . \begin{aligned}
& \perp \text { : non-constant or } \\
& \text { unknown value }
\end{aligned}
$$

$\operatorname{ConStants}(b)=\wedge_{p \in \operatorname{preds}(b)} \mathrm{f}_{\mathrm{p}}(\operatorname{CONSTANTS}(\mathrm{p}))$

Meet operation $<v, c_{1}>\wedge<v, c_{2}>$
$<v, c_{1}>$ if $c_{1}=c_{2}$, else $<v, \perp>$
\perp : non-constant or unknown value

Define $f p$ with examples:
If p has one statement then
$x \leftarrow y \quad$ with CONSTANTS $(p)=\left\{\ldots<x, l_{1}>, \ldots<y, l_{2}>\ldots\right\}$ then $f_{p}($ CONSTANTS $(p))=\left\{\right.$ CONSTANTS $\left.(p)-<x, l_{1}>\right\} \cup<x, l_{2}>$ $x \leftarrow y$ op z with CONSTANTS $(p)=\left\{\ldots<x, l_{\mid}>, \ldots<y, l_{2}>\ldots, \ldots<z, l_{3}>\ldots\right\}$ then $f_{p}($ CONSTANTS $(p))=\left\{\right.$ CONSTANTS $\left.(p)-<x, l_{1}>\right\} \cup<x, l_{2}$ op $l_{3}>$

If p has n statements then

$$
f_{p}(\operatorname{CONSTANTS}(p))=f_{n}\left(f_{n-1}\left(f_{n-2}\left(\ldots f_{2}\left(f_{l}(\operatorname{CONSTANTS}(p))\right) \ldots\right)\right)\right)
$$

where f_{i} is the function generated by the $i^{\text {th }}$ statement in P

Reaching Definitions

A definition of variable v at program point d reaches program point u if there exists a path of control flow edges from d to u that does not contain a definition of v.
$\operatorname{REACHES}(n)=\cup_{m \in \operatorname{pred}(n)}^{\operatorname{DEDEF}(m)} \cup(\operatorname{REACHES}(m) \cap \overline{\operatorname{DEFKILL}(m)})$
REACHES(n): the set of variable definitions that reach the start of node n.
$\operatorname{DEDEF}(\mathrm{n})$: the set of downward-exposed variable definitions in n .
i.e. their defined variables are not redefined before leaving n.
$\operatorname{DEFKILL}(\mathrm{n})$: all definitions killed by a definition in n.
A forward flow problem, domain is the definition point:
the variable name + where it is defined (code position)

Def-Use Chains

Example

Data-Flow Analysis Frameworks

Generalizes and unifies data flow problems.
Important components:
\rightarrow Direction D: forward or backward.
\checkmark A Semilattice: a domain \vee and a meet operator \wedge that captures the effect of path confluence.
\checkmark A transfer function $F(m)$: compute the effect of passing through a basic block and include function value at boundary conditions.

```
A semilattice is an algebra \(\mathcal{S}=(S, *)\) satisfying, for all \(x, y, z \in S\),
    (1) \(x * x=x\),
    (2) \(x * y=y * x\),
    (3) \(x *(y * z)=(x * y) * z\).
```


Examples

($\mathrm{D}, \mathrm{V}, \mathrm{F},{ }^{\wedge}$)
LIVE
-D: backward
\uparrow V: all variables
$\uparrow \mathrm{Fm}: \quad \operatorname{UEVAR}(m) \cup(\operatorname{LIVEOUT}(m) \cap \overline{\operatorname{VARKILL}(m)}) ; \quad \operatorname{LIVEOUT}\left(n_{f}\right)=\phi$
ャ^: U

AVAIL
$\rightarrow \mathrm{D}$: forward, V : all expressions
$\rightarrow \mathrm{Fm}: \operatorname{DEEXPR}(m) \cup(\operatorname{AVAIL}(m) \cap \overline{\operatorname{XPRKILL}(m)}) ; \quad \operatorname{AVAIL}\left(\mathrm{n}_{\mathrm{o}}\right)=\phi$
ャ^: \cap

Why to Study Data Flow Analysis

Data-flow analysis
A collection of techniques for compile-time reasoning about the run-time flow of values.
Backbone of scalar optimizing compilers

Limitation of Data-Flow Analysis

Imprecision from pointers, and procedure calls
Assume all paths will be taken

$$
\begin{aligned}
& x \leftarrow f(17) \\
& \text { if }(y<x) \text { then } \\
& \quad z \leftarrow x+3 \\
& x \leftarrow 0
\end{aligned}
$$

If y is always no less than x, x is not live before $B 2$. But data-flow analysis may not figure that out.

Summary

	Domain	Direction	Uses
AVAIL	Expressions	Forward	GCSE
LIVEOUT	Variables	Backward	Register alloc. Detect uninit. Construct SSA Useless-store Elim.
VERYBUSY	Expressions	Backward	Hoisting
CONSTANT	Pairs <v,c>	Forward	Constant folding
REACHES	Definition Points	Forward	Def-use chain for dead code elimination etc.

