
CS293S Data Flow Analysis

Yufei Ding

2

Questions from students

�Office hour by appointments J
�Which one is Global method?

LVN, SVN, DVN, GCSE
�SVN and DVN: build the SSA first
�EXPRKILL and DEEXPR: check the pseudocodes in the

lecture slides.

�When introducing GCSE, we focus on the program analysis
part, i.e., available expression elimination. How about the
program transformation part for redundancy elimination?

3

Replacement step in GCSE

� Limit to textually identical expressions
(like DAG, unlike value numbering)

AVAIL(B) ={b+c}
e <- d + c

a <- b + c

d <- b

Cannot find or remove the redundancy!

4

Replacement step in GCSE

� Limit to textually identical expressions
(like DAG, unlike value numbering)

e <- b + c

a <- b + c f <- b + c

AVAIL(B) ={b+c}

B2B1

B

Should replace b+c with ?

5

GCSE (replacement step)

� Compute a static mapping from expression to name

� After analysis & before transformation

� " block b, " expression eÎAVAIL(b), assign e a global name by hashing on e

� During transformation step

� Evaluation of e Þ insert copy name(e) ¬ e

�(e is not available and needs to be evaluated)

� Reference to e Þ replace e with name(e)

�(e is available and should be replaced)

Example

m=a+b;

n=c+d;
c = 17;
q=c+d;

p=c+d;

r=c+d;

name expression
t1 a+b
t2 c+d

B1

B2

B3

B4

t1 = a+b;
m=t1;

t2=c+d;
n=t2;
c = 17;
t2=c+d;
q=t2;

t2=c+d;
p=t2;

r=t2;

B1

B2

B3

B4

AVAIL(B4) ={c+d; a+b}

7

GCSE (replacement step)

� The major problem with this approach

� Inserts extraneous copies

� At all definitions and uses of any eÎAVAIL(b), " b

� Not a big issue

� Those extra copies are dead and easy to remove

8

Review of Last Class

� Global Common Subexpression Elimination (GCSE)

� First data/control flow analysis

� Live Variable Analysis

How to Compute Liveness?

� Question 1: for each instruction I, what
is the relation between LIVEIN[I] and
LIVEOUT[I]?

� Question 1: for each block B, what is
the relation between LIVEIN[B] and
LIVEOUT[B]?

� Question 2: for each basic block B with
successor blocks B1, ..., Bn, what is the
relation between LIVEOUT[B] and
LIVEIN[B1], ..., LIVEIN[Bn]?

9

LIVEIN[I]
I

LIVEOUT[I]

B
LIVEOUT[B]

LIVEIN[B]
B1

LIVEIN[B]
Bn

…

LIVEIN[B]
B

LIVEOUT[B]

Analyze CFG

� Mathematically:

� The information flows backward: from successors B’ of B
to basic block
� LIVEOUT(B) contains the name of every variable that is live at the

exit point of basic block B.

� UEVAR(B) contains the upward-exposed variables in B, i.e. those
that are used in n before any redefinition in B.

� VARKILL(B) contains all the variables that are defined in B.

10

11

Three Steps in Data-Flow Analysis

� Build a CFG
� Gather the initial information for each block (i.e., (UEVAR and

VARKILL))
� Use an iterative fixed-point algorithm to propagate information

around the CFG

12

for each block b
UEVAR(b) = Ø
VARKILL(b) = Ø
for i=1 to number of instr in b

(assuming inst I is “x= y op z”)
if y ∉VARKILL(b) then

UEVAR(b) = UEVAR(b) ∪ {y}
if z ∉VARKILL(b) then

UEVAR(b) = UEVAR(b) ∪ {z}
VARKILL(b) = VARKILL(b) ∪ {x}

set LIVEOUT(bi) to Ø for all blocks
Worklist ← {all blocks}
while (Worklist ≠ Ø)

remove a block b from Worklist
recompute LIVEOUT(b)
if LIVEOUT(b) changed then

Worklist ← Worklist ∪ pred(b)

Algorithm

// update LiveOut version 1// Get initial sets

13

for each block b
UEVAR(b) = Ø
VARKILL(b) = Ø
for i=1 to number of instr in b

(assuming inst I is “x= y op z”)
if y ∉VARKILL(b) then

UEVAR(b) = UEVAR(b) ∪ {y}
if z ∉VARKILL(b) then

UEVAR(b) = UEVAR(b) ∪ {z}
VARKILL(b) = VARKILL(b) ∪ {x}

set LIVEOUT(bi) to Ø for all blocks
changed = true
while (changed)

changed = false
for i = 1 to N (number of blocks)

recompute LIVEOUT(i)
if LIVEOUT(i) changed then

changed = true

Algorithm

// update LiveOut version2// Get initial sets

14

<=

Example

<=

15

Example (cont.)

B0 B1 B2 B3 B4 B5 B6 B7

UEVar Ø Ø Ø Ø Ø Ø Ø a,b,c,d,i

VarKill i a, c b, c, d a, d d c b y, z, i

16

Example (with update LiveOut version2)

iteration B0 B1 B2 B3 B4 B5 B6 B7

0 Ø Ø Ø Ø Ø Ø Ø Ø

1 Ø Ø a,b,c,d,i Ø Ø Ø a,b,c,d,i Ø

2 Ø a,i a,b,c,d,i Ø a,c,d,i a,c,d,i a,b,c,d,i i

3 i a,i a,b,c,d,i a,c,d,i a,c,d,i a,c,d,i a,b,c,d,i i

4 i a,c,i a,b,c,d,i a,c,d,i a,c,d,i a,c,d,i a,b,c,d,i i

5 i a,c,i a,b,c,d,i a,c,d,i a,c,d,i a,c,d,i a,b,c,d,i i

LiveOut (b)
Can the algorithm converge in fewer iterations?

17

<=

<=

Preorder:
parents
first.
w/o
considering
backedges.

18

<=

<=

0

1

2

3 4

5

6

7
Postorder:
children
first.
w/o
considering
backedges.

19

for each block b
UEVAR(b) = Ø
VARKILL(b) = Ø
for i=1 to number of instr in b

(assuming inst I is “x= y op z”)
if y ∉VARKILL(b) then

UEVAR(b) = UEVAR(b) ∪ {y}
if z ∉VARKILL(b) then

UEVAR(b) = UEVAR(b) ∪ {z}
VARKILL(b) = VARKILL(b) ∪ {x}

set LIVEOUT(bi) to Ø for all blocks
changed = true
while (changed)

changed = false
for i = 1 to N

// different orders could be used
recompute LIVEOUT(i)
if LIVEOUT(i) changed then

changed = true

Algorithm

// update LiveOut version2// Get initial sets

20

Postorder (5 iterations becomes 3)

iteration B0 B1 B2 B3 B4 B5 B6 B7

0 Ø Ø Ø Ø Ø Ø Ø Ø

1 i a,c,i a,b,c,d,i a,c,d,i a,c,d,i a,c,d,i a,b,c,d,i Ø

2 i a,c,i a,b,c,d,i a,c,d,i a,c,d,i a,c,d,i a,b,c,d,i i

3 i a,c,i a,b,c,d,i a,c,d,i a,c,d,i a,c,d,i a,b,c,d,i i

21

Order

� Preorder: visit parents before children.
� also called reverse postorder

� Postorder: visit children before parents.

� Forward problem (e.g., AVAIL):

� A node needs the info of its predecessors.
� Preorder on CFG.

� Backward problem (e.g., LIVEOUT):
� A node needs the info of its successors.

� Postorder on CFG.

Parent relation does not consider backedges.

22

Comparison with AVAIL

� Common

� Three steps

� Fixed-point algorithm finds solution

� Differences

�AVAIL: domain is a set of expressions

LIVEOUT: domain is a set of variables

�AVAIL: forward problem

LIVEOUT: backward problem

�AVAIL: intersection of all paths (all path problem)
�Also called Must Problem

LIVEOUT: union of all paths (any path problem)

Also called May Problem

Domain

Direction

May/Must

23

Popular data flow analysis
Domain Direction Uses

AVAIL Expressions Forward GCSE

LIVEOUT Variables Backward Register alloc.
Detect uninit.
Construct SSA
Useless-store Elim.

VERYBUSY Expressions Backward Hoisting

CONSTANT Pairs <v,c> Forward Constant folding
REACHES Definition

Points
Forward Def-use chain for dead

code elimination etc.

24

Very Busy Expressions

� VERYBUSY(b) contains expressions that are very busy at end of b

� UEEXPR(b): up exposed expressions (i.e. expressions defined in b
and not subsequently killed in b)

� EXPRKILL(b): killed expressions

A backward flow problem, domain is the set of expressions

VERYBUSY(b) = Çs Î succ(b) UEEXPR(s) È (VERYBUSY(s) Ç EXPRKILL(s))

VERYBUSY(nf) = Ø

25

Very Busy Expressions
�Def: e is a very busy expression at the exit of block b if

� e is evaluated and used along every path that leaves b, and

� evaluating e at the end of b produces the same result

� useful for code hoisting

� saves code space

…

t = a + b
…

x = a + b
…

…

…
e = a + b

… ……

Constant Propagation

� Def of a constant variable v at point p:
� Along every path to p, v has same known value

� Specialize computation at p based on v’s value

26

a = 7;
c = a * 2;

b = c - a;
a = 9;

b = a;

d = c - a;
e = c - b;

27

Constant Propagation:

Domain is the set of pairs <vi,ci> where vi is a variable and ci ∈ C

CONSTANTS(b) = ∧p ∈ preds(b) fp(CONSTANTS(p))

� ∧ performs a pairwise meet on two sets of pairs

� fp(x) is a block specific function that models the effects of block p on
the <vi,ci> pairs in x

A forward flow problem, domain is the set of pairs <v,c>.

C: constants or ⊥.
⊥: non-constant or
unknown value

28

CONSTANTS(b) = Ùp Î preds(b) fp(CONSTANTS(p))
Meet operation <v, c1 > ∧ <v, c2 >

� <v, c1> if c1 = c2, else <v, ⊥>

Define fp with examples:

� If p has one statement then
� x ← y with CONSTANTS(p) = {…<x,l1>,…<y,l2>…}

then fp(CONSTANTS(p)) = {CONSTANTS(p) - <x,l1>} ∪ <x,l2>
� x ← y op z with CONSTANTS(p) = {…<x,l1>,…<y,l2>… ,…<z,l3>…}

then fp(CONSTANTS(p)) = {CONSTANTS(p) - <x,l1>} ∪ <x,l2 op l3>

� If p has n statements then

fp(CONSTANTS(p)) = fn(fn-1(fn-2(…f2(f1(CONSTANTS(p)))…)))

where fi is the function generated by the ith statement in p

fp interprets p over CONSTANTS

⊥: non-constant or
unknown value

29

Reaching Definitions

� A definition of variable v at program point d reaches program point u if

there exists a path of control flow edges from d to u that does not contain a

definition of v.

� REACHES(n): the set of variable definitions that reach the start of node n.

� DEDEF(n): the set of downward-exposed variable definitions in n.

� i.e. their defined variables are not redefined before leaving n.

� DEFKILL(n): all definitions killed by a definition in n.

� A forward flow problem, domain is the definition point:

the variable name + where it is defined (code position)

REACHES(n) = È m Î pred(n) DEDEF(m) È (REACHES(m) Ç DEFKILL(m))

30

d is dead

It has no use

Def-Use Chains

Example
a ¬ 5
b ¬ 3
c ¬ b + 2
d ¬ a - 2

e ¬ a + b
e ¬ e + c

e ¬ 13

f ¬ 2 + e
Write f

Data-Flow Analysis Frameworks

� Generalizes and unifies data flow problems.
� Important components:

✦Direction D: forward or backward.
✦A Semilattice: a domain V and a meet operator ∧ that captures

the effect of path confluence.
✦A transfer function F(m): compute the effect of passing

through a basic block and include function value at boundary
conditions.

31

� (D, V, F, ^)

�LIVE
✦D: backward

✦V: all variables

✦Fm:

✦^ : ∪

�AVAIL
✦D: forward, V: all expressions

✦Fm: DEEXPR(m) ∪ (AVAIL(m) ∩ EXPRKILL(m))
✦^: ∩

Examples

32

;

AVAIL(no)=;

33

Why to Study Data Flow Analysis

� Data-flow analysis
� A collection of techniques for compile-time reasoning

about the run-time flow of values.
� Backbone of scalar optimizing compilers

34

Limitation of Data-Flow Analysis

� Imprecision from pointers, and procedure calls
� Assume all paths will be taken

x ¬ 0

If y is always no less than x, x is not live before B2.
But data-flow analysis may not figure that out.

35

Summary
Domain Direction Uses

AVAIL Expressions Forward GCSE

LIVEOUT Variables Backward Register alloc.
Detect uninit.
Construct SSA
Useless-store Elim.

VERYBUSY Expressions Backward Hoisting

CONSTANT Pairs <v,c> Forward Constant folding
REACHES Definition

Points
Forward Def-use chain for dead

code elimination etc.

