
CS293S
SSA & Dead Code Elimination

Yufei Ding

Review of Last Class

� Static Single Assignment(SSA)

�Maximal SSA (all variables in every joint block)

�Minimal SSA

� Dominance Frontier (DF)
� (a def in block n results in an insertion in each of its DF(n))

� Semi-pruned SSA
� (similar as minimal SSA, but on only global variable)

� Pruned SSA
� (similar as semi-pruned SSA, but dead are removed)

Focus of This Class

�Dead code elimination

� Techniques for Removing ϕ-functions

4

Dead Code Elimination

� Useful statements

� Output statements (e.g., printf)

� Statements that compute values used by useful statements

� Algorithm to eliminate dead code

� Start with absolutely useful statements

� Repeatedly adds statements that compute variables used in current
useful statements

� through def-use chains (reaching definitions)

5

Dead-code Elimination

d is dead

It has no use

a ¬ 5
b ¬ 3
c ¬ b + 2
d ¬ a - 2

e ¬ a + b
e ¬ e + c

e ¬ 13

f ¬ 2 + e
Write f

� Using def-use chain (review):

6

Def-use w/o SSA form

� Def-use edges grow very large

caused by
branches

x = x = x =

= x = x = x

7

Def-use with SSA Form

X1 = X2 = X3 =

= X4 = X4 = X4

X4 ¬ Ø(x1,x2 ,x3)

� Edges reduced from 9 to 6

Example

� The printf statement (I/O statement) is inherently live. You
also need to mark the “if (x>0)” live because the ‘print’
statement is control dependent on the ‘if’.

if (x > 0) {
printf(“greater than zero”);

}

Post-dominator Relation

� If X appears on every path from START to Y, then X
dominates Y.

� If X appears on every path from Y to END, then X
postdominates Y.

� Postdominator Tree
� END is the root

�Any node Y other than END has ipdom(Y) as its parent
� Parent, child, ancestor, descendant

Control Dependence

� There are two possible definitions.

� Node w is control dependent on edge (u→v) if
�w postdominates v

� If w ≠ u, w does not postdominate u

� Node w is control dependent on node u if there exists an edge
u→v
�w postdominates v
� If w ≠ u, w does not postdominate u

Example

S

a

b

c e

d E

Pdom Tree

E
Se

b

ad

c

Control Dep Relation
a b c d

S->a √ √

b->c √ √ √

Control Dependence V.S. Dominator Frontier

� Reverse control flow graph (RCFG)

� Let X and Y be nodes in CFG. X in DF(Y) in CFG iff Y is
control dependent on X in RCFG.

� DF(Y) in CFG = conds(Y) in RCFG, where conds(Y) is the set
of nodes that Y is control dependent on.

Control Dependence V.S. Dominator Frontier

� Forward direction:
�By definition of “dominator Frontier”, X in DF(Y) in CFG, if

Y dominates V (i.e., one of X’s parents in CFG), but Y does
not strictly dominates X in CFG.

� If there is an edge V → X in CFG and Y dominates V in CFG

� If there is an edge X → V in RCFG and Y postdominates V in
RCFG

� Y does not strictly dominate X in CFG

� If Y ≠ X, Y does not dominate X in CFG

� If Y ≠ X, Y does not postdominate X in RCFG

�If there is an edge X → V in RCFG, Y postdominates V in
RCFG, If Y ≠ X, Y does not postdominate X in RCFG

�By definition of “control dependent”, we could know that Y
is control dependent on X in RCFG.

Control Dependence V.S. Dominator Frontier
� Backward direction:

�By definition of “control dependent”, Y is control dependent
on X in RCFG, if there exists an edge X → V in RCFG, Y
postdominates V in RCFG, If Y ≠ X, Y does not postdominate
X in RCFG.

� If there is an edge V → X in CFG, i.e., V is X’s parent in CFG

� Y dominates V (i.e., X’s parent) in CFG

� If Y ≠ X, Y does not dominate X in CFG

� Y does not strictly dominate X in CFG

�Y dominates V (i.e., one of X’s parents in CFG), but Y does
not strictly dominates X in CFG

�By definition of DF, we could know that X is in DF(Y).

15

Dead Code Elimination

Mark
for each op i

clear i’s mark
if i is critical then

mark i
add i to WorkList

while (Worklist ≠ Ø)
remove i from WorkList

(i has form “x¬y op z”)
if def(y) is not marked then

mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b Î RDF(block(i))
mark the block-ending

branch in b
add it to WorkList

Sweep
for each op i

if i is not marked then

if i is a branch then
rewrite with a jump to

i’s nearest useful
post-dominator

if i is not a jump then
delete i

Notes:

• Eliminates some branches

• Reconnects dead branches to the
remaining live code

Removing ϕ-functions

• After the program has been turned into SSA form and the
various optimizations performed on that representation, it
must be transformed into executable form.

• This implies in particular that ϕ-functions must be
removed, as they cannot be implemented on standard
machines.

Removing ϕ-functions

30

x1=12
y1=15
if x1<a1

y2=x1
x2=x1+1 y3=x1+1

x3=ϕ(x2,x1)
y4=ϕ(y2,y3)
z=x3*y4

x1=12
y1=15
if x1<a1

y2=x1
x2=x1+1
x3=x2
y4=y2

y3=x1+1
x3=x1
y4=y3

z=x3*y4

ϕ-function
removal

Potential redundancy with critical edge

33

x1=12
y1=15
if x1<y1

y2=x1
x2=x1+1

x3=ϕ(x2,x1)
y3=ϕ(y2,y1)
z=x3*y3

ϕ-function
removal

x1=12
y1=15
x3=x1
y3=y1
if x1<y1

y2=x1
x2=x1+1
x3=x2
y3=y2

z=x3*y3

potentially
redundantcritical

edge

Critical edges

• CFG edges that go from a node with multiple successors to a
node with multiple predecessors are called critical edges.

• While removing ϕ-functions, the presence of a critical edge from
n1 to n2 leads to the insertion of redundant move instructions in n1,
corresponding to the ϕ-functions of n2.

• Ideally, they should be executed only if control reaches n2 later,
but this is not certain when n1 executes.

With edge splitting

x1=12
y1=15
if x1<y1

y2=x1
x2=x1+1

x3=ϕ(x2,x1)
y3=ϕ(y2,y1)
z=x3*y3

ϕ-function
removal

x1=12
y1=15
if x1<y1

y2=x1
x2=x1+1
x3=x2
y3=y2

x3=x1
y3=y1

z=x3*y3

21

Summary
Dead code elimination algorithm.

Important concepts of control dependence
� postdominator, reverse dominance frontier
� Relations between control dependence and dominance

relations

