
CS 293S Parallelism and Dependence Theory

Yufei Ding

Reference Book:
“Optimizing Compilers for Modern Architecture” 

by Allen & Kennedy

Slides adapted from Louis-Noël 
Pouche, Mary Hall



2

End of Moore's Law necessitate parallel computing

� End of Moore‘s law necessitate a means of increasing 
performance beyond simply producing more complex chips.

�One such method is to employ cheaper and less complex 
chips in parallel architectures
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Amdahl’s law

� if f is the fraction of the code parallelized, and if the parallelized 
version runs on a p-processor machine with no communication
or parallelization overhead, the speedup is

If f = 50%, than the maximum speedup would be ?

1
1 − 𝑓 + (𝑓/𝑝)



4

Data locality

� Temporal locality occurs when the same data is used several 
times within a short time period. 

� Spatial locality occurs when different data elements that are 
located near to each other are used within a short period of time.

� Better locality à less cache misses
� An important form of spatial locality occurs when all the elements 

that appear on one cache line are used together.

1. Parallelism and data locality are often correlated.
2. Same/Similar set of Techniques for exploring
parallelism and maximizing data locality.
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Data locality
� Kernels can often be written in many semantically equivalent ways 

but with widely varying data localities and performances

for (i=1; i<N; i++)
for (j=1; j<N; j++)

A[i, j] = 0;

for (j=1; j<N; j++)
for (i=1; i<N; i++)

A[i, j] = 0;

b = ceil (N/M)
for (i= b * p; i < min(n, b*(p+1)); i++)

for (j=1; j<N; j++)
A[i, j] = 0;

(a) Zeroing an array column-by-column (b) Zeroing an array row-by-row.

(c) Zeroing an array row-by-row in parallel.
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How to get efficient parallel programs? 

� Programmer: writing correct and efficient sequential programs 
is not easy; writing parallel programs that are correct and 
efficient is even harder. 
� data locality, data dependence

�Debugging is hard

� Compiler?
�Correctness V.S. Efficiency

� Simple assumption
�no pointers and pointer arithmetic
�Affine: Affine loop + affine array access + …
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Affine Array Accesses

� Common patterns of data accesses: (i, j, k are loop indexes) 
�A[i], A[j], A[i-1], A[0], A[i+j], A[2*i], A[2*i+1] , A[i,j], 

A[i-1, j+1] 
� Array indexes are affine expressions of surrounding loop 

indexes 
� Loop indexes: in, in-1, ... , i1 

� Integer constants: cn, cn-1, ... , c0

�Array index: cnin+ cn-1in-1+ ... + c1i1+ c0

� Affine expression: linear expression + a constant term (c0)
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Affine loop

� All loop bounds and contained control conditions have to 
be expressible as a linear affine expression in the containing 
loop index variables

� Affine array accesses

� No pointers + no possible aliasing (e.g., overlap of two 
arrays) between statically distinct base addresses.
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Loop/Array Parallelism

� The loop is parallelizable because each iteration accesses a 
different set of data. 

� We can execute the loop on a computer with N processors by 
giving each processor an unique ID p = 0 , 1 , . . . , M - 1 and 
having each processor execute the same code:

C[p] = A[p]+B[p];

for (i=1; i<N; i++)
C[i] = A[i]+B[i];
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Parallelism & Dependence

for (i=1; i<N; i++)
A[i] = A[i-1]+B[i];

A[1] = A[0]+B[1];
A[2] = A[1]+B[2];
A[3] = A[2]+B[3];
…
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Focus of the this lecture

� Data Dependence
� True, Anti-, Output dependence
� Source and Sink
�Distance vector, direction vector
� Relation between Reordering transformation and Direction 

vector
� Loop dependence

�loop-carried dependence 
�Loop-Independent Dependences

�Dependence graph
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Dependence Concepts
Assume statement S2 depends on statement S1.

1. True dependences (RAW hazard): read after write.
Denoted by S1 d S2

2. Antidependence (WAR hazard): write after read.
Denoted by S1 d-1 S2

3. Output dependence (WAW hazard): write after write.
Denoted by S1 d0 S2
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� Source and Sink
� Source: the statement (instance) executed earlier
� Sink: the statement (instance) executed later
� Graphically, a dependence is an edge from source to 
sink

Dependence Concepts

S1 PI = 3.14
S2 R = 5.0
S3 AREA = PI * R ** 2

S1 S2

S3

sources

sink

sources
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Dependence in Loops

� Let us look at two different loops:

DO I = 1, N
S1 A(I+1) = A(I) + B(I)

ENDDO

DO I = 1, N
S1 A(I+2) = A(I) + B(I)

ENDDO

• In both cases, statement S1 depends on itself

• However, there is a significant difference

• We need a formalism to describe and distinguish such dependences
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Data Dependence Analysis

Objective: compute the set of statement instances which are
dependent

Possible approaches:
q Distance vector: compute an indicator of the distance

between two dependent iteration
q Dependence polyhedron: compute list of sets of dependent 

instances, with a set of dependence polyhedra for each pair 
of statements
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Program Abstraction Level

� Statement

� Instance of statement

For (i = 1; i <=10; i++)
A[i] = A[i-1] + 1

A[4] = A[3] + 1
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Iteration Domain
� Iteration Vector

� A n-level loop nest can be represented as a n-entry vector, each 
component corresponding to each level loop iterator

For (x1=L1; x1<U1; x1++)
…
For (x2=L2; x2<U2; x2++)

…
For (xn=Ln; xn<Un; xn++)

<some statement S1>

The iteration vector (2, 1, …) denotes the instance of S1 executed during
the 2nd iteration of the X1 loop and the 1st iteration of the X2 loop
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Iteration Domain

� Dimension of Iteration Domain: Decided by loop nesting levels
� Bounds of Iteration Domain: Decided by loop bounds

�Using inequalities

For (i=1; i<=n; i++)
For (j=1; j<=n; j++)

if (i<=n+2-j)
b[j]=b[j]+a[i];
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Modeling Iteration Domains

� Representing iteration bounds by affine function:
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Loop Normalization

� Algorithm:
� Replace loop boundaries and steps:

for (i = L, i < U, i = i + S) à for (i = 1, i < (U-L+S)/S, i = i + 1)

� Replace each reference to original loop variable i with:
i * S - S + L
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Examples: Loop Normalization

For (i=4; i<=N; i+=6)
For (j=0; j<=N; j+=2)

A[i] = 0

For (ii=1; ii<=(N+2)/6; ii++)
For (jj=1; jj<=(N+2)/2; jj++)

i=ii*6-6+4
j=jj*2-2
A[i]=0
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Distance/Direction Vectors

� The distance vector is a vector d(sink, source) such that: 
� dk = sinkk - sourcek.

� i.e., the difference between their iteration vectors
� sink - source!!

� The direction vector is a vector D(i,j) such that: 
� Dk =  “<” if d(i,j)k > 0;   
� Dk = “>” if d(i,j)k < 0;   
� Dk = “=“ otherwise. 
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Example 1:
DO I = 1, N

S1 A(I+1) = A(I) + B(I)
ENDDO

q Dependence distance vector of the true dependence: 
source (write): A(I+1);             sink (read): A(I)

q Consider a memory location A(4)
iteration vector of source: (3)
iteration vector of sink: (4)

q Distance vector: (4) – (3) = (1)
q Direction vector: (<)
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Example 1:
DO I = 1, N

S1 A(I+1) = A(I) + B(I)
ENDDO

q Dependence distance vector of the true dependence: 
source (write): A(I+1);             sink (read): A(I)

q More general reasoning:
q Consider a memory location A(x)

iteration vector of source: (x-1)
iteration vector of sink: (x)

q Distance vector: (x) - (x-1) = (1)
q Direction vector: (<)
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Example 2:

DO I = 1, N
DO J = 1, M

DO K = 1, L
S1       A(I+1, J, K-1) = A(I, J, K) + 10

ENDDO
ENDDO

ENDDO

� What is the dependence distance vector of the true 
dependence?

� What is the dependence distance vector of the anti-
dependence?
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Example 2:
DO I = 1, N

DO J = 1, M
DO K = 1, L

S1       A(I+1, J, K-1) = A(I, J, K) + 10
ENDDO

ENDDO
ENDDO

sink happens before source: the assumed anti-dependence is invalid!

� For the true dependence:
Distance Vector:   (1, 0, -1)
Direction Vector: (<, =, >)

� For the anti-dependence:
Distance Vector:   (-1, 0, 1)
Direction Vector:  (>, =, <)
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Example 3:

� What is the dependence distance vector of the true 
dependence?

� What is the dependence distance vector of the anti-
dependence?

DO K = 1, L
DO J = 1, M

DO I = 1, N
S1       A(I+1, J, K-1) = A(I, J, K) + 10

ENDDO
ENDDO

ENDDO
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Example 3:

� For the true dependence:
Distance Vector:   (-1, 0, 1)
Direction Vector:  (>, =, <)

� For the anti-dependence:
Distance Vector:   (1, 0, -1)
Direction Vector: (<, =, >)

DO K = 1, L
DO J = 1, M

DO I = 1, N
S1       A(I+1, J, K-1) = A(I, J, K) + 10

ENDDO
ENDDO

ENDDO

The assumed true dependence is invalid!
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q True dependence turns into an anti-dependence. 
“Write then read” turns into “read then write”. 

q Reflected in direction vector of the true dependence: 
(<, =, >)   turns into (>, =, <)

DO I = 1, N
DO J = 1, M

DO K = 1, L
S1       A(I+1, J, K-1) = A(I, J, K) + 10

ENDDO
ENDDO

ENDDO

DO K = 1, L
DO J = 1, M

DO I = 1, N
S1       A(I+1, J, K-1) = A(I, J, K) + 10

ENDDO
ENDDO

ENDDO

Example 2 Example 3
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Example 4:

DO J = 1, M
DO I = 1, N

DO K = 1, L
S1       A(I+1, J, K-1) = A(I, J, K) + 10

ENDDO
ENDDO

ENDDO

� What is the dependence distance vector of the true 
dependence?

� What is the dependence distance vector of the anti-dependence?
� Is this program equivalent with Example 2?
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distance 
vectors

direction 
vectors

(1, 0, -1) (<, =, >)

Consider the true dependence

source sink

(0, 1, -1) (=, <, >)source sink

q True dependence stays as true dependence. 
“Write then read” stays as “Write then read”. 

q Reflected in direction vector of the true dependence: 
(<, =, >)   turns into (=, <, >)

write read

write read
So, it is still a true dependence.

DO I = 1, N
DO J = 1, M

DO K = 1, L
S1       A(I+1, J, K-1) = A(I, J, K) + 10

ENDDO
ENDDO

ENDDO

Example 2

DO J = 1, M
DO I = 1, N

DO K = 1, L
S1       A(I+1, J, K-1) = A(I, J, K) + 10

ENDDO
ENDDO

ENDDO

Example 4
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Reordering Transformations

� Definition:
�merely changes the order of execution of the code
� no adding or deleting

� A reordering transformation does not eliminate dependences

� However, it can change the execution order of original sink 
and source, causing incorrect behavior
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� “Any reordering transformation that preserves every 
dependence in a program preserves the meaning of that 
program.” 

---- Fundamental Theorem of Dependence
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Theorem of loop reordering
�Direction Vector Transformation

� Let T be a reordering transformation that is applied to a loop nest and 
that does not rearrange the statements in the body of the loop. 

� Then the transformation is valid if, after it is applied, none of the direction 
vectors for dependences with source and sink in the original nest has a 
leftmost non- “=” component that is “>”.

� Follows from Fundamental Theorem of Dependence:

�All dependences exist

�None of the dependences have been reversed
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Procedure to Check Validity of a Loop Reordering
1. List the direction vectors of all types of data dependences in the 

original program

2. According to the new order of loops, exchange the elements in the 
direction vectors to derive the new direction vectors.

3. If all the direction vectors have a “<“ as the first non-“=“ sign, the 
transformation is valid.

A all-“=“ vector will stay as all-“=“ vector; it won’t affect the correctness of 
loop reordering.



Example
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?

DO H = 1, 10
DO I = 1, 10

Do J = 1, 10
Do K = 1, 10

S A(H, I+1, J-2, K+3) = A(H, I, J, K) + B
ENDDO

ENDDO
ENDDO

ENDDO

DO H = 1, 10
DO J = 1, 10

Do I = 1, 10
Do K = 1, 10

S A(H, I+1, J-2, K+3) = A(H, I, J, K) + B
ENDDO

ENDDO
ENDDO

ENDDO


