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Review of last this lecture

� Data Dependence
� True, Anti-, Output dependence
� Source and Sink
� Distance vector, direction vector
� Relation between Reordering transformation and Direction 

vector



Review

� Loop dependence
�loop-carried dependence 
�Loop-Independent Dependences

� Dependence graph
� Dependence Tests

� Greatest common divisor (GCD)
� Controlling execution order

�determining the upper/lower bound through projection 
by Fourier-Motzkin elimination

�General algorithms to determine loop bounds
� inner to outer levels to generate
� outer to inner levels to refine
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Loop-Carried and Loop-Independent 
Dependences

� If in a loop statement S2 depends on S1, then there are two 
possible ways of this dependence occurring:

� Source and sink happen on different iterations
� This is called a loop-carried dependence.

� S1 and S2 execute on the same iteration
� This is called a loop-independent dependence
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Loop-Carried Dependence

Example:

DO I = 1, N
S1 A(I+1) = F(I)
S2 F(I+1) = A(I)
ENDDO
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Loop-Carried Dependence
� Dependence Level: 

Level of a loop-carried dependence is the index of the leftmost non-
“=” of D(i,j) for the dependence. 

For instance:

� Direction vector for S1 is (=, =, <)

� Level of the dependence is 3

� A level-k true dependence between S1 and S2 is denoted by 
S1 dk S2

DO I = 1, 10
DO J = 1, 10

DO K = 1, 10
S1      A(I, J, K+1) = A(I, J, K)

ENDDO
ENDDO

ENDDO

The iterations of a loop can be executed in parallel if the 
loop carries no dependences
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Loop-Independent Dependences
Example:

More complicated example:

DO I = 1, 10
S1     A(I) = ...
S2     ... = A(I)
ENDDO

DO I = 1, 9
S1      A(I) = ...
S2     ...  = A(10-I)
ENDDO
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Loop-Independent Dependences
� Theorem 2.5. If there is a loop-independent dependence from S1

to S2, any reordering transformation that does not move 
statement instances between iterations and preserves the 
relative order of S1 and S2 in the loop body preserves that 
dependence. 

� S2 depends on S1 with a loop independent true dependence is 
denoted by S1 d∞ S2

� The direction vector has entries that are all “=” for loop 
independent dependences
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Is the reordering legal?
DO I = 1,  100

DO J=1,  100
A(I+1, J) = A(I, 5) + B

ENDDO
ENDDO

DO J = 1,  100
DO I=1,  100

A(I+1, J) = A(I, 5) + B
ENDDO

ENDDO

(<, <)
(<, =)
(<, >)

(<, <)
(=, <)
(>, <)
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DO I = 1, 100
D(I) = A (5, I)
DO J=1, 100

A(J, I-1) = B(I) + C
ENDDO

ENDDO

S1

S2

Dependence Graph

� Nodes for statements
� Edges for data dependences

� Labels on edges for dependence levels and types

s1

s2

δ1-1

from S1 to S2: (<)
level-1 antidependence
S1 is the source, S2 is the sink

S2 S1

Important point: order of
vectors depends on order
of loops, not use in arrays

Only consider common loops!
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no dependence

DO I = 1, 100
D(I) = A (102, I)
DO J=1, 100

A(J, I-1) = B(I) + C
ENDDO

ENDDO

S1

S2
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DO I = 1, 100
S1 X(I) = Y(I) + 10

DO J = 1, 100
S2 B(J) = A(J,N)

DO K = 1, 100
S3 A(J+1,K)=B(J)+C(J,K)

ENDDO
S4 Y(I+J) = A(J+1, N)

ENDDO
ENDDO

Dependence Graph



13

DO I = 1, 100
S1 X(I) = Y(I) + 10

DO J = 1, 100
S2 B(J) = A(J,N)

DO K = 1, 100
S3 A(J+1,K)=B(J)+C(J,K)

ENDDO
S4 Y(I+J) = A(J+1, N)

ENDDO
ENDDO

1. True dependences denoted by Si d Sj
2. Antidependence denoted by Si d-1 Sj
3. Output dependence denoted by Si d0 Sj

d and δ are used interchangeably
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DO I = 1, 100
D(I) = A (5, I)
DO J=1, 100

A(J, I-1) = B(I) + C
ENDDO

ENDDO

S1

S2

Dependence Graph

� Nodes for statements
� Edges for data dependences

� Labels on edges for dependence levels and types

s1

s2

δ1-1

from S1 to S2: (<)
level-1 antidependence
S1 is the source, S2 is the sink

S2 S1

Important point: order of
vectors depends on order
of loops, not use in arrays
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DO I = 1, 100
S1 X(I) = Y(I) + 10

DO J = 1, 100
S2 B(J) = A(J,N)

DO K = 1, 100
S3 A(J+1,K)=B(J)+C(J,K)

ENDDO
S4 Y(I+J) = A(J+1, N)

ENDDO
ENDDO

1. True dependences denoted by Si d Sj
2. Antidependence denoted by Si d-1 Sj
3. Output dependence denoted by Si d0 Sj

d and δ are used interchangeably
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� Given the loop nest:

� A dependence exists if there exist an integer i and an i’ such
that: f(i) = g(i’)
� 0 <= i, i’ < N
� If i < i’, write happens before read (true dependence)
� If i > i’, write happens after read (anti dependence)

Data Dependence Tests

for (i = 0; i < N; i++)
a[f(i)] = ...

... = a[g(i)]
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� Does f(i) = g(i’) have a solution?
� assume f(i) = a*i + b g(i) = c*i + d
� f(i) = g(i’) ⇒ ai + b = ci’ + d ⇒ a1*i + a2*i’ = a3

� An equation a1*i + a2*i’ = a3 has a solution iff gcd(a1, a2)
evenly divides a3

Solution: GCD test
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� 2i = 2j + 1
� gcd(2, -2) = 2, and 2 does not 

divide 1 evenly. Thus, there is 
no solution.

Examples

for (i = 1; i < 10; i++) {
Z[2*i] = . . .;

}
for (j = 1; j < 10; j++){

Z[2*j+1] = . . .;
}

Other Examples:
15*i + 6*j - 9*k = 12 has a solution (gcd = 3)
2*i + 7*j = 3 has a solution (gcd = 1)
9*i + 6*j = 10 has no solution (gcd = 3)
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� Finding GCD with Euclid’s
algorithm

� Repeat (suppose a>b)
� a = a mod b
� swap a and b
� until b is 0 (resulting a is 

the gcd)

� Why? If g divides a and b, then 
g divides a mod b

Finding the GCD

gcd(27, 15): 
Iter1: a = 27, b = 15
a = 27 mod 15 = 12
Iter2: a = 15, b = 12
a = 15 mod 12 = 3
Iter3: a = 12, b = 3
a = 12 mod 3 = 0
Iter4: a = 3, b = 0
gcd = 3
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� If f(i) = g(i’) fails the GCD test, then there is no i, i’ that can
produce a dependence → loop has no dependences

� If f(i) = g(i’), there might be a dependence, but might not
� i and i’ that satisfy equation might fall outside bounds
� Loop may be parallelizable, but cannot tell

� Unfortunately, most loops have gcd(a, b) = 1, which divides
everything

� Other optimizations (loop interchange) can tolerate
dependences in certain situations

Downsides to GCD test

for (i = 1; i < 10; i++)
Z[i] = Z[i+10];
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� GCD test: doesn’t account for loop bounds, does not provide 
useful information in many cases

� Banerjee test (Utpal Banerjee): more accurate test, takes
directions and loop bounds into account

� Omega test (William Pugh): even more accurate test, precise 
but can be very slow

� Range test (Blume and Eigenmann): works for non-linear
subscripts

� Compilers tend to perform simple tests and only perform
more complex tests if they cannot prove non-existence of
dependence

Other dependence tests
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� The problem of how we choose an ordering that honors the 
data dependences and optimizes for data locality and 
parallelism is generally hard.

� Here we assume that a legal and desirable ordering is given, 
and show how to generate code that enforce the ordering.

Code generation by loop transformation

for (j=0; j<=7; j++)
for (i=0; i<=min(5, j); i++)

Z[j, i] = 0;

for (i=0; i<=5; i++)
for (j=i; j<=7; j++)

Z[j, i] = 0;
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� Analysis:
� Rectangular: all loop bounds are constants à Easy
� More complicated, but still quite realistic: the upper and/or 

lower bounds on one loop index can depend on the values 
of the indexes of the outer loops. à ??

� Goal:
� outermost loop bounds: constants
� inner loop bounds: linear combinations of outer loop index 

variables and constants.

Code generation by loop transformation



Example

To get the bounds for index j, we need 
to eliminate i from the loop constraints.
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for (i=0; i<=5; i++)
for (j=i; j<=7; j++)

Z[j, i] = 0; for (j=?; j<=?; j++)
for (i= 0; i<= min(5,j); i++)

Z[j, i] = 0;i>=0;
i<=5;
j>=i;
j<=7;

Loop constraints



Fourier-Motzkin elimination

� Input:  a polyhedron S defined 
by a set of linear constraints on 
x1, x2, ..., xn. A given variable xm
that is to be eliminated.

�Output: a polyhedron S’ defined 
by linear constraints on x1, x2, 
..., xm-1, xm+1, ..., xn that is a 
projection of S onto dimensions 
other than the xm
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for (i=0; i<=5; i++)
for (j=i; j<=7; j++)

Z[j, i] = 0;

Iteration space



Fourier-Motzkin Elimination
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Algorithm: 
�For every pair of a lower bound and an upper bound 

on xm, such as  L<= c1xm & c2xm <= U, create a new 
constraint  c2L  <= c1U.

�S’ is the set including all new constrains and those in S 
that do not contain xm.

�It is possible that S’ is an empty space.



Example
To Eliminate i.
� one lower bound:  0 <= i
� two upper bounds: i <= j and i <= 5. 
� This generates two constraints: 
� 0 <= j and 0 <= 5. 

�The latter is trivially true and can 
be ignored. 

�The former gives the lower bound 
on j, and the original upper bound j 
< 7 gives the upper bound.
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for (i=0; i<=5; i++)
for (j=i; j<=7; j++)

Z[j, i] = 0;

i>=0;
i<=5;
j>=i;
j<=7;

j>=0;
j<=7;

i>=0;
i<=min(5,j);

for (j=0; j<=7; j++)
for (i= 0; i<= min(5,j); i++)

Z[j, i] = 0;



Loop-Bounds Generation Algorithm

� Compute the loop bounds from the innermost to the outer 
loops.
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Sn = S; 
for (i=n; i>=1; i--){

Lvi = all the lower bounds on vi in Si;
Uvi = all the upper bounds on vi in Si;
Si-1 = Constraints by eliminating vi from Si;

}
/* remove redundancies */
S’=Φ;
for (i=1; i<=n; i++){

Remove any bounds in Lvi and Uvi implied by S’;
Add the remaining constraints of Lvi and Uvi on  

vi to S’;
}

for (i=0; i<=5; i++)
for (j=i; j<=7; j++)

Z[j, i] = 0;
i>=0;
i<=5;
j>=i;
j<=7;

Li: 0
Ui: 5,j
Lj: 0
Uj: 7

target order: j,i

bounds on i
is (0, min(5,j));
bounds on j
is (0, 7).



Loop-Bounds Generation
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Sn = S; 
for (i=n; i>=1; i--){

Lvi = all the lower bounds on vi in Si;
Uvi = all the upper bounds on vi in Si;
Si-1 = Constraints by eliminating vi from Si;

}
/* remove redundancies */
S’=Φ;
for (i=1; i<=n; i++){

Remove any bounds in Lvi and Uvi implied by S’;
Add the remaining constraints of Lvi and Uvi on  

vi to S’;
}

for (i=0; i<=8; i++)
for (j=i; j<=7; j++)

Z[j, i] = 0;
i>=0;
i<=8;
j>=i;
j<=7;

Li: 0
Ui: 8,j
Lj: 0
Uj: 7

target order: j,i

bounds on i
is (0, j);
bounds on j
is (0, 7).

� Compute the loop bounds from the innermost to the outer 
loops.
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for (i=0; i<=5; i++)
for (j=i; j<=7; j++)

Z[j, i] = 0;
i>=0;
i<=5;
j>=i;
j<=7;

Target: sweep through diagonally.

[0,0], [1,1],  [2,2], [3,3], [4,4], [5,5]
[0,1], [1,2], [2,3], [3,4], [4,5]
[0,2], [1,3], [2,4], [3,5]
...
[0,6], [1,7]
[0,7]

k=j-i, order: k, j.

j-k>=0;
j-k<=5;
j>=j-k;
j<=7.

Lj: k
Uj: 5+k, 7
Lk: 0
Uk: 7

for (k=0; k<=7; k++)
for (j=k; j<=min(5+k,7); j++)

Z[j, j-k] =0;



Loop Skewing and Permutation
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for (i=0; i<=6; i++)
for (j=0; j<=5; j++)

A(i,j) = A(i-1,j+1)+1

� Original Code:

� Distance vector: (1, -1) 
� Goal to find a new set of (i’, j’): 

� New distance vector: (0,1)


