
CS 293S Optimizing for Parallelism and Locality:
Affine Transformation

Yufei Ding

Reference Book:
“Optimizing Compilers for Modern Architecture” by

Allen & Kennedy

Slides adapted from Louis-Noël
Pouche, Mary Hall

2

Review of last this lecture

� Data Dependence
� True, Anti-, Output dependence
� Source and Sink
� Distance vector, direction vector
� Relation between Reordering transformation and Direction

vector

Review

� Loop dependence
�loop-carried dependence
�Loop-Independent Dependences

� Dependence graph
� Dependence Tests

� Greatest common divisor (GCD)
� Controlling execution order

�determining the upper/lower bound through projection
by Fourier-Motzkin elimination

�General algorithms to determine loop bounds
� inner to outer levels to generate
� outer to inner levels to refine

3

4

Loop-Carried and Loop-Independent
Dependences

� If in a loop statement S2 depends on S1, then there are two
possible ways of this dependence occurring:

� Source and sink happen on different iterations
� This is called a loop-carried dependence.

� S1 and S2 execute on the same iteration
� This is called a loop-independent dependence

5

Loop-Carried Dependence

Example:

DO I = 1, N
S1 A(I+1) = F(I)
S2 F(I+1) = A(I)
ENDDO

6

Loop-Carried Dependence
� Dependence Level:

Level of a loop-carried dependence is the index of the leftmost non-
“=” of D(i,j) for the dependence.

For instance:

� Direction vector for S1 is (=, =, <)

� Level of the dependence is 3

� A level-k true dependence between S1 and S2 is denoted by
S1 dk S2

DO I = 1, 10
DO J = 1, 10

DO K = 1, 10
S1 A(I, J, K+1) = A(I, J, K)

ENDDO
ENDDO

ENDDO

The iterations of a loop can be executed in parallel if the
loop carries no dependences

7

Loop-Independent Dependences
Example:

More complicated example:

DO I = 1, 10
S1 A(I) = ...
S2 ... = A(I)
ENDDO

DO I = 1, 9
S1 A(I) = ...
S2 ... = A(10-I)
ENDDO

8

Loop-Independent Dependences
� Theorem 2.5. If there is a loop-independent dependence from S1

to S2, any reordering transformation that does not move
statement instances between iterations and preserves the
relative order of S1 and S2 in the loop body preserves that
dependence.

� S2 depends on S1 with a loop independent true dependence is
denoted by S1 d∞ S2

� The direction vector has entries that are all “=” for loop
independent dependences

9

Is the reordering legal?
DO I = 1, 100

DO J=1, 100
A(I+1, J) = A(I, 5) + B

ENDDO
ENDDO

DO J = 1, 100
DO I=1, 100

A(I+1, J) = A(I, 5) + B
ENDDO

ENDDO

(<, <)
(<, =)
(<, >)

(<, <)
(=, <)
(>, <)

10

DO I = 1, 100
D(I) = A (5, I)
DO J=1, 100

A(J, I-1) = B(I) + C
ENDDO

ENDDO

S1

S2

Dependence Graph

� Nodes for statements
� Edges for data dependences

� Labels on edges for dependence levels and types

s1

s2

δ1-1

from S1 to S2: (<)
level-1 antidependence
S1 is the source, S2 is the sink

S2 S1

Important point: order of
vectors depends on order
of loops, not use in arrays

Only consider common loops!

11

no dependence

DO I = 1, 100
D(I) = A (102, I)
DO J=1, 100

A(J, I-1) = B(I) + C
ENDDO

ENDDO

S1

S2

12

DO I = 1, 100
S1 X(I) = Y(I) + 10

DO J = 1, 100
S2 B(J) = A(J,N)

DO K = 1, 100
S3 A(J+1,K)=B(J)+C(J,K)

ENDDO
S4 Y(I+J) = A(J+1, N)

ENDDO
ENDDO

Dependence Graph

13

DO I = 1, 100
S1 X(I) = Y(I) + 10

DO J = 1, 100
S2 B(J) = A(J,N)

DO K = 1, 100
S3 A(J+1,K)=B(J)+C(J,K)

ENDDO
S4 Y(I+J) = A(J+1, N)

ENDDO
ENDDO

1. True dependences denoted by Si d Sj
2. Antidependence denoted by Si d-1 Sj
3. Output dependence denoted by Si d0 Sj

d and δ are used interchangeably

14

DO I = 1, 100
D(I) = A (5, I)
DO J=1, 100

A(J, I-1) = B(I) + C
ENDDO

ENDDO

S1

S2

Dependence Graph

� Nodes for statements
� Edges for data dependences

� Labels on edges for dependence levels and types

s1

s2

δ1-1

from S1 to S2: (<)
level-1 antidependence
S1 is the source, S2 is the sink

S2 S1

Important point: order of
vectors depends on order
of loops, not use in arrays

15

DO I = 1, 100
S1 X(I) = Y(I) + 10

DO J = 1, 100
S2 B(J) = A(J,N)

DO K = 1, 100
S3 A(J+1,K)=B(J)+C(J,K)

ENDDO
S4 Y(I+J) = A(J+1, N)

ENDDO
ENDDO

1. True dependences denoted by Si d Sj
2. Antidependence denoted by Si d-1 Sj
3. Output dependence denoted by Si d0 Sj

d and δ are used interchangeably

16

� Given the loop nest:

� A dependence exists if there exist an integer i and an i’ such
that: f(i) = g(i’)
� 0 <= i, i’ < N
� If i < i’, write happens before read (true dependence)
� If i > i’, write happens after read (anti dependence)

Data Dependence Tests

for (i = 0; i < N; i++)
a[f(i)] = ...

... = a[g(i)]

17

� Does f(i) = g(i’) have a solution?
� assume f(i) = a*i + b g(i) = c*i + d
� f(i) = g(i’) ⇒ ai + b = ci’ + d ⇒ a1*i + a2*i’ = a3

� An equation a1*i + a2*i’ = a3 has a solution iff gcd(a1, a2)
evenly divides a3

Solution: GCD test

18

� 2i = 2j + 1
� gcd(2, -2) = 2, and 2 does not

divide 1 evenly. Thus, there is
no solution.

Examples

for (i = 1; i < 10; i++) {
Z[2*i] = . . .;

}
for (j = 1; j < 10; j++){

Z[2*j+1] = . . .;
}

Other Examples:
15*i + 6*j - 9*k = 12 has a solution (gcd = 3)
2*i + 7*j = 3 has a solution (gcd = 1)
9*i + 6*j = 10 has no solution (gcd = 3)

19

� Finding GCD with Euclid’s
algorithm

� Repeat (suppose a>b)
� a = a mod b
� swap a and b
� until b is 0 (resulting a is

the gcd)

� Why? If g divides a and b, then
g divides a mod b

Finding the GCD

gcd(27, 15):
Iter1: a = 27, b = 15
a = 27 mod 15 = 12
Iter2: a = 15, b = 12
a = 15 mod 12 = 3
Iter3: a = 12, b = 3
a = 12 mod 3 = 0
Iter4: a = 3, b = 0
gcd = 3

20

� If f(i) = g(i’) fails the GCD test, then there is no i, i’ that can
produce a dependence → loop has no dependences

� If f(i) = g(i’), there might be a dependence, but might not
� i and i’ that satisfy equation might fall outside bounds
� Loop may be parallelizable, but cannot tell

� Unfortunately, most loops have gcd(a, b) = 1, which divides
everything

� Other optimizations (loop interchange) can tolerate
dependences in certain situations

Downsides to GCD test

for (i = 1; i < 10; i++)
Z[i] = Z[i+10];

21

� GCD test: doesn’t account for loop bounds, does not provide
useful information in many cases

� Banerjee test (Utpal Banerjee): more accurate test, takes
directions and loop bounds into account

� Omega test (William Pugh): even more accurate test, precise
but can be very slow

� Range test (Blume and Eigenmann): works for non-linear
subscripts

� Compilers tend to perform simple tests and only perform
more complex tests if they cannot prove non-existence of
dependence

Other dependence tests

22

� The problem of how we choose an ordering that honors the
data dependences and optimizes for data locality and
parallelism is generally hard.

� Here we assume that a legal and desirable ordering is given,
and show how to generate code that enforce the ordering.

Code generation by loop transformation

for (j=0; j<=7; j++)
for (i=0; i<=min(5, j); i++)

Z[j, i] = 0;

for (i=0; i<=5; i++)
for (j=i; j<=7; j++)

Z[j, i] = 0;

23

� Analysis:
� Rectangular: all loop bounds are constants à Easy
� More complicated, but still quite realistic: the upper and/or

lower bounds on one loop index can depend on the values
of the indexes of the outer loops. à ??

� Goal:
� outermost loop bounds: constants
� inner loop bounds: linear combinations of outer loop index

variables and constants.

Code generation by loop transformation

Example

To get the bounds for index j, we need
to eliminate i from the loop constraints.

24

for (i=0; i<=5; i++)
for (j=i; j<=7; j++)

Z[j, i] = 0; for (j=?; j<=?; j++)
for (i= 0; i<= min(5,j); i++)

Z[j, i] = 0;i>=0;
i<=5;
j>=i;
j<=7;

Loop constraints

Fourier-Motzkin elimination

� Input: a polyhedron S defined
by a set of linear constraints on
x1, x2, ..., xn. A given variable xm
that is to be eliminated.

�Output: a polyhedron S’ defined
by linear constraints on x1, x2,
..., xm-1, xm+1, ..., xn that is a
projection of S onto dimensions
other than the xm

25

for (i=0; i<=5; i++)
for (j=i; j<=7; j++)

Z[j, i] = 0;

Iteration space

Fourier-Motzkin Elimination

26

Algorithm:
�For every pair of a lower bound and an upper bound

on xm, such as L<= c1xm & c2xm <= U, create a new
constraint c2L <= c1U.

�S’ is the set including all new constrains and those in S
that do not contain xm.

�It is possible that S’ is an empty space.

Example
To Eliminate i.
� one lower bound: 0 <= i
� two upper bounds: i <= j and i <= 5.
� This generates two constraints:
� 0 <= j and 0 <= 5.

�The latter is trivially true and can
be ignored.

�The former gives the lower bound
on j, and the original upper bound j
< 7 gives the upper bound.

27

for (i=0; i<=5; i++)
for (j=i; j<=7; j++)

Z[j, i] = 0;

i>=0;
i<=5;
j>=i;
j<=7;

j>=0;
j<=7;

i>=0;
i<=min(5,j);

for (j=0; j<=7; j++)
for (i= 0; i<= min(5,j); i++)

Z[j, i] = 0;

Loop-Bounds Generation Algorithm

� Compute the loop bounds from the innermost to the outer
loops.

28

Sn = S;
for (i=n; i>=1; i--){

Lvi = all the lower bounds on vi in Si;
Uvi = all the upper bounds on vi in Si;
Si-1 = Constraints by eliminating vi from Si;

}
/* remove redundancies */
S’=Φ;
for (i=1; i<=n; i++){

Remove any bounds in Lvi and Uvi implied by S’;
Add the remaining constraints of Lvi and Uvi on

vi to S’;
}

for (i=0; i<=5; i++)
for (j=i; j<=7; j++)

Z[j, i] = 0;
i>=0;
i<=5;
j>=i;
j<=7;

Li: 0
Ui: 5,j
Lj: 0
Uj: 7

target order: j,i

bounds on i
is (0, min(5,j));
bounds on j
is (0, 7).

Loop-Bounds Generation

29

Sn = S;
for (i=n; i>=1; i--){

Lvi = all the lower bounds on vi in Si;
Uvi = all the upper bounds on vi in Si;
Si-1 = Constraints by eliminating vi from Si;

}
/* remove redundancies */
S’=Φ;
for (i=1; i<=n; i++){

Remove any bounds in Lvi and Uvi implied by S’;
Add the remaining constraints of Lvi and Uvi on

vi to S’;
}

for (i=0; i<=8; i++)
for (j=i; j<=7; j++)

Z[j, i] = 0;
i>=0;
i<=8;
j>=i;
j<=7;

Li: 0
Ui: 8,j
Lj: 0
Uj: 7

target order: j,i

bounds on i
is (0, j);
bounds on j
is (0, 7).

� Compute the loop bounds from the innermost to the outer
loops.

30

for (i=0; i<=5; i++)
for (j=i; j<=7; j++)

Z[j, i] = 0;
i>=0;
i<=5;
j>=i;
j<=7;

Target: sweep through diagonally.

[0,0], [1,1], [2,2], [3,3], [4,4], [5,5]
[0,1], [1,2], [2,3], [3,4], [4,5]
[0,2], [1,3], [2,4], [3,5]
...
[0,6], [1,7]
[0,7]

k=j-i, order: k, j.

j-k>=0;
j-k<=5;
j>=j-k;
j<=7.

Lj: k
Uj: 5+k, 7
Lk: 0
Uk: 7

for (k=0; k<=7; k++)
for (j=k; j<=min(5+k,7); j++)

Z[j, j-k] =0;

Loop Skewing and Permutation

31

for (i=0; i<=6; i++)
for (j=0; j<=5; j++)

A(i,j) = A(i-1,j+1)+1

� Original Code:

� Distance vector: (1, -1)
� Goal to find a new set of (i’, j’):

� New distance vector: (0,1)

