Complex numbers are essential in quantum theory
(Subt Advionsion's blog) ?
Complex number . A complex number
$$\lambda \in C$$
 is defined by $\lambda = a+bi$, where
a. $b \in R$ and $i = JT$
Complex conjugate: For a complex number $\lambda = a+bi$, its complex conjugate
is $\pi^* = a-bi$.
For a vector V (e.g. a column vector IV) in quantum
(computes), its complex conjugate V^{+} is a row vector VV ,
where each entry is a complex conjugate of that in IV ?
(largen)
For a complex meetin A , its conjugate transpose A^{+} is
(largen)
For a complex meetin A , its conjugate transpose A^{+} is
(largen)
For a complex meetin A , its conjugate transpose A^{+} is
(largen)
For a complex meetin A , its conjugate transpose A^{+} is
(largen)
 $A = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \longrightarrow VI = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

Hilbert space: complexe vector space + inner product
The A quartum state for neubits can be described as a vector in
a 2ⁿ dimensional Hilbert space.
Mel us stat with a simple example.
His state of a qubit can be a superposition of "0" and "1"?
Normally, these "10" and "1" represents two basis states in C² space
10> = [0] 11> = [0]
$$\in E_{basis}$$

10> = 0) $+ B_{11>} = [B] = C^{2}_{12}$
(No can choose either basis states.
ers (H>) = $f_{2}(10+11>) = f_{2}(1)$
(10) = $\partial(1+) + B'(1-)$
Note is upper position is regarded to some basis states
 $\frac{10+112}{12}$ is a superposition of (1>) $\frac{10}{12}$ $\frac{10}{12}$
Note is upper position of (1>) $\frac{10}{12}$ $\frac{10}{12}$
Note inner product is
 $\frac{10+112}{12} = \frac{10}{12}$, $\frac{10}{12} = \frac{10}{12}$, $\frac{10}{12} = \frac{10}{12}$
Note inner product is
 $\frac{10+112}{12} = \frac{10}{12}$, $\frac{10}{12} = \frac{10}{12}$
Note inner product is
 $\frac{10+112}{12} = \frac{10}{12}$, $\frac{10}{12} = \frac{10}{12}$
This definition also generalize to C^{n} .

$$\int \frac{\partial v + \partial v + \partial u}{\partial u} = |u| = |u| = |u| = 0$$

$$\int \frac{\partial v + |u|}{\partial u} = \frac{\partial v + |u|}{\partial u} = \frac{\partial v}{\partial u} = \frac{\partial v}$$

$$|1|V>1| = \sqrt{3^{2}+\beta^{2}} = 1$$
It still holds if we measure in a different basis, e.s. H), 1-2.
$$|V>=\partial |0> + \beta |1> = \partial \frac{1+2+1-2}{1^{2}} + \beta \frac{1+2-1-2}{1^{2}}$$

$$= \frac{\partial +\beta}{5} |+> + \frac{\partial -\beta}{5} |->$$

$$= \frac{\partial +\beta}{5} |+> + \frac{\partial -\beta}{5} |->$$

$$= \frac{\partial +\beta}{2} + (\partial -\beta)^{2} posbability$$

$$= \frac{(\partial +\beta)^{2}}{2} + (\partial -\beta)^{2} = \partial^{2} \beta^{2} = 1$$

V Bloch Sphere of a qubit sec slides P

✓ product states US, entangled states. • The joint state of two seperated unientangled quantum system A and B, is the tensor product of 19A> and 19B> 19AB = 19A > 1019B $= \begin{bmatrix} 200\\ 01 \end{bmatrix} \otimes \begin{bmatrix} B_0\\ B_1 \end{bmatrix} = \begin{bmatrix} 200B_0\\ 00B_1\\ 01B_2 \end{bmatrix} = \begin{bmatrix} 100\\ 00B_1\\ 01B_2\\ 01B_2 \end{bmatrix} = \begin{bmatrix} 100\\ 01B_2\\ 0$

Quick check: 1 PAB> is a valid quentur stede 120B2 |2+12B1 |2+12, B27+121B1 = (122+12+12)(B1+1A) As a product state, there is some constraints of the coeffectents! · States that can not be written as product state are entangled states. · Example () = 100>+ = 110> = = = = (10>+ 11>) 10> B J= 100> + J= 111> = 142 0 14B) In fact, most states are entangled. Bell state, <u>EPR</u> pair Einstain, <u>Podolsky</u>, Rosen

$$\int G_{\text{eneralize}} + \sigma n - qubit state in 2^{n} - dimensional Hilbert space. |q> = Z di |j>, where dj \in C satisfying the normalization j \in \{\sigma_{i}\}^{n} \quad undition \quad Z = |dj|^{2} = |$$

Hermitian Matrix: For a compton matrix, if
$$A^+ = A$$
, then A
is a hermitian matrix.
A bacic full for a Hermitian models is that the extendedness are real and
eigenvaluetors of distinct eigenvalues are orthogonal.
Simple poort: $\bigcirc A \times = \lambda \times \Rightarrow \times^+ A \times = \lambda \Rightarrow \times^+ = (x^+Ax)^+ = \lambda$
 $\implies \lambda \text{ is real}.$
 $\bigcirc \text{suppose } X_1, X_2 \text{ are engenvectors for two different eignvalues } \lambda, \lambda_2$
 $(A \times_1)^+ X_2 = (x^+A)X_2 = \lambda_2 X_1^+ X_2$
 $(A \times_1)^+ X_2 = (x^+A)X_1 = (\lambda_1 \times x_2 \times_1)^+ = \lambda_1 \times_1^+ X_2 \Rightarrow \text{ or } X_1^+ \times_2 = 0$
Hermitian matrices $< > \text{ observables (measurents) in } quantum Mechanics, as all observables shall be 'yeal.$

Undarry Matrix: For a complex, invertible matrix, if
$$A^{+}=A^{-1}$$

(i.e., $A^{+}A = AA^{+}=I$), then A is a unitary matrix
property /norm presoning || $AI P > ||^{2} = = ||P|>||^{2}$
 $\Rightarrow A Valid quantum state with be mapped toanother valid quantum state V Invertible ("Reversible") $U^{-1} = U^{+}$
Unitary matrix $<$ quantum gates.$

Normal matrix: Matrix A is mormal
$$\iff A^{\dagger}A = AA^{\dagger}$$

A matrix and Hermittaan are special types of mornal
months of unitary $A^{\dagger}A = AA^{\dagger} = I$
Hermitian $A = AA^{\dagger} = J$
A path $A = AA^{\dagger} = J$
Spectral decomposition: A matrix A is now multiff there
exists a diagonal matrix A and
 $A = UAU^{\dagger}$, where the
a unitary matrix U such that
 $A = UAU^{\dagger}$, where the
aliogonal entries of A are the
eigenvalues of A , and the
columns of U are the annexponding
origen vectors of A .
Another common format for spectral decomposition is:
 $A = EA^{\dagger} U^{\dagger}U^{\dagger}$, where the
origen vectors of A .
Another common format for spectral decomposition is:
 $A = EA^{\dagger} U^{\dagger}U^{\dagger}$, and the
eigen vectors of A .
Another common format for spectral decomposition is:
 $A = EA^{\dagger} U^{\dagger}U^{\dagger}$.
where the collimn vectors $U^{\dagger}A$ are orthorogonal
eigenvectors of A and A and A are the corresponding
 $A^{3} = (EA) U^{\dagger}U^{\dagger}$.
 $A^{3} = (EA) U^{\dagger}U^{\dagger}$.
 $A^{2} = (EA) U^{\dagger}U^{\dagger}$.

$$\begin{array}{c} x \ E_{1}^{\circ} \ b \ \end{array} \\ x \ E_{1}^{\circ} \ b \ \end{array} \\ \begin{array}{c} x \ E_{1}^{\circ} \ b \ \end{array} \\ x \ E_{1}^{\circ} \ b \ \end{array} \\ \begin{array}{c} x \ E_{1}^{\circ} \ b \ \end{array} \\ x \ E_{1}^{\circ} \ b \ \end{array} \\ \begin{array}{c} x \ E_{1}^{\circ} \ \end{array} \\ \begin{array}{c} x \ E_{1}^{\circ} \ b \ \end{array} \\ \begin{array}{c} x \ E_{1}^{\circ} \ b \ \end{array} \\ \begin{array}{c} x \ E_{1}^{\circ} \$$

$$\begin{array}{l} \int H = \frac{1}{52} \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} = \frac{1}{52} (X + 2) \\ H = \frac{1}{52} \begin{bmatrix} 1 & +1 \\ 1 & -1 \end{bmatrix} = \frac{1}{52} \begin{bmatrix} 1 & +2 \\ 5 & -1 \end{bmatrix} = \begin{bmatrix} 1 & +2 \\ 5 & -1 \end{bmatrix} = \begin{bmatrix} 1 & +1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & +2 \\ 5 & -1 \end{bmatrix} = \begin{bmatrix} 1 & +1 \\ 5 & -1 \end{bmatrix} = \begin{bmatrix} 1 & +1 \\ 5 & -1 \end{bmatrix} = \begin{bmatrix} 1 & +1 \\ 5 & -1 \end{bmatrix} = \begin{bmatrix} 1 & +1 \\ 5 & -1 \end{bmatrix} = \begin{bmatrix} 1 & +1 \\ 5 & -1 \end{bmatrix} = \begin{bmatrix} 1 & +1 \\ 5 & -1 \end{bmatrix} = \begin{bmatrix} 1 & +1 \\ 5 & -1 \end{bmatrix} = \begin{bmatrix} 1 & +1 \\ 5 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 5 & -1 \end{bmatrix} = \begin{bmatrix}$$

$$Z \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = [10 \times 0] + [10 \times 1]$$

$$E^{10}Z = \begin{bmatrix} 10 \times 0 \end{bmatrix} + \begin{bmatrix} 10 \times 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} (10) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} (10) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ \leq 10 \end{bmatrix} = \begin{bmatrix} 10 \times 0 \\ 11 \end{bmatrix} = \begin{bmatrix} 11 & 0 \\ 11 \end{bmatrix} \begin{bmatrix} 10 \times 0 \end{bmatrix} = \begin{bmatrix} 10 \times 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 10 \times 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 10 \times 0 \\ 11 \end{bmatrix} = \begin{bmatrix} 11 & 0 \\ 11 \end{bmatrix} \begin{bmatrix} 10 \times 0 \\ 11 \end{bmatrix} = \begin{bmatrix} 10 \times 0 \\ 1$$

 $e^{-i\Theta^{2}} \doteq \left(\begin{array}{c} \overline{e}^{i\Theta} \\ e^{i\Theta} \end{array} \right) \qquad e^{0} = 1 \quad e^{i\frac{\pi}{2}} = i \quad e^{i\pi} = -1 \quad e^{i\frac{3\pi}{2}} = -1 \\ S = \left(\begin{array}{c} 1 \\ 0 \\ \tau \end{array} \right) = \left(\begin{array}{c} e^{i\Theta} \\ e^{i\frac{\pi}{2}} \end{array} \right) = e^{-\frac{\pi}{4}i} \left(\begin{array}{c} \overline{e^{i\pi}} \\ e^{i\frac{\pi}{2}} \end{array} \right) = \frac{\pi}{4} \quad e^{i\frac{\pi}{2}} \\ T = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right)^{\frac{\pi}{2}} \left(\begin{array}{c} e^{-i\frac{\pi}{2}} \\ e^{i\frac{\pi}{2}} \end{array} \right) - \frac{\pi}{8} \quad gate \qquad gate \qquad$