.

Swap gale 1923
$$1923$$
 1923
 1923 1923 1943
 1923 1943
 1923 1943
 1923 1943
 1923 1923
 1923 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023
 1023 1023 1023 1023
 1023 1023 1023 1023 1023 1023
 1023 1023

Measurement:

$$147 - 42$$

$$V \ge measurement = measure in 2-basis \neq 2 gut e$$

$$2 = 10 > col = 112 ci = p_0 - p_1 (both Po and P, are projective moduly
projective matrix $P^2 = P$

$$149 - 43 \begin{cases} 10> Probability = p_0 = \langle \Psi|P_0|\Psi \rangle = \langle 0|\Psi \rangle^2$$

$$149 - 43 \begin{cases} 10> Probability = p_0 = \langle \Psi|P_0|\Psi \rangle = \langle 0|\Psi \rangle^2$$

$$140 - 43 \begin{cases} 10> Probability = p_0 = \langle \Psi|P_0|\Psi \rangle = \langle 0|\Psi \rangle^2$$

$$140 - 43 \begin{cases} 10> Probability = p_0 = \langle \Psi|P_0|\Psi \rangle = \langle 0|\Psi \rangle^2$$

$$140 - 43 \begin{cases} 10> Probability = p_0 = \langle \Psi|P_0|\Psi \rangle = \langle 0|\Psi \rangle^2$$

$$140 - 43 \begin{cases} 10> Probability = p_0 = \langle \Psi|P_0|\Psi \rangle = \langle 0|\Psi \rangle^2$$

$$140 - 43 \begin{cases} 10> Probability = p_0 = \langle \Psi|P_0|\Psi \rangle = \langle 0|\Psi \rangle^2$$

$$140 - 43 \begin{cases} 10> Probability = p_0 = \langle \Psi|P_0|\Psi \rangle = \langle 1|\Psi \rangle^2$$

$$(above the expectation value of 2 neasurement?$$

$$(above the expectation of p = p_0 10> col + p_1 10<11$$

$$(bove the example dave the probability the expectation of p = p_0 10> col + p_1 10<11$$

$$(bove the example dave the expectation of p = p_0 - P_1$$

$$P_0 = P_1 = P_0 - P_1$$

$$(bove the example our hourdware clesign easien?$$

$$(bove the example our hourdware clesign testing (bove the example our hourdware clesign easien?$$

$$(bove the example our hourdware clesign testing (bove the example our hourd$$$$

Two-qubit composite measurement.

i vneasurement according to a set of basis states in the composite halbert space.

22 measurement: 4 eigenvoctors 100>, |0|>, |10>, |1> $P_1 = |00> < 00|$ $P_2 = |0|> < 0|$ $P_3 = |0> < 10|$ $P_4 = (|1> < 11)$ $|\Psi| = \partial_{1}^{2} |00\rangle \\ |H| = \partial_{1}^{2} |00\rangle \\ |H| = \partial_{2}^{2} |00\rangle \\ |H| = \partial_{2}^{2} |00\rangle \\ |H| = \partial_{2}^{2} |10\rangle \\ |H| = \partial_{2}^{2} |10\rangle$ 4 eisenvectors 1++>, 1+->, 1-+>, 1--> XX measuremt (中) 一日一少 -H-127 Bell state measurement 4 orthonormell 2-qubit states Hi> = 1/2 100> + 111> Q (an you use a circuit with H, X, Z, CNUT $\begin{cases} |\Psi_{2}\rangle = \frac{1}{\sqrt{2}} |90\rangle - |1\rangle \\ |\Psi_{3}\rangle = \frac{1}{\sqrt{2}} |0\rangle + |1\rangle \end{cases}$ to create these states from 22 states? $| \psi_{4} \rangle = \frac{1}{15} | 0 \rangle - | 10 \rangle$ A: Take 194> as an example. 194)

Partial measurement

How to measure entangled qubit? 14AB > = = (100>+111)) (annot be written as 19A) (0198> O what if B measure his qubt first in 2 basis ? Observable? $IOG_2 = (f)IO(100) + (-1)IO(100)$ $P_1 = P_2$ Prob (10>B) = < PAB | Po | PAB > = < PAB 1 1 100> -1 (By Linearly) $|\varphi_{AB}\rangle = \frac{P_1 \cdot |\varphi_{AB}\rangle}{\sqrt{Prob(10>_{R})}} = 100>$ (4A> = 10> Prob (11)B) = < PAB | PI | YAB> = < (AB) 吉川> = 12 $|P_{AB}\rangle = \frac{P_2 |P_{AB}\rangle}{\sqrt{P_{10b}(11>R)}} = |1|>$ $|\varphi_A\rangle = |1\rangle$

De what if we measure B in X basi's? Your answer here. A equivalent, but easier calculation for pontral measurement

for a composite system in state
$$|\varphi\rangle = \sum_{AB} a_{ij}(1,j)$$
, we only measure
part B in basis set of $|j\rangle$. What would be the result?
 $|P_{AB}\rangle = \sum_{ij} a_{ij}(1,j) = \sum_{i} (\frac{2}{i}d_{ij}(1,i)) \otimes |j\rangle$
Let $\beta_{ij} = \sum_{i} a_{ij}$, then we can be write the sum as
 $|\Psi_{AB}\rangle = \sum_{i} \beta_{ij} (\frac{1}{B_{ij}} = a_{ij}(1,i)) |j\rangle$
Jow, if we measure B in $|j\rangle$ basis set, we will see outcome $|j\rangle$
with probability $\beta_{ij} = \sum_{i} a_{ij}^{2}$
the state for A after seeing $|j\rangle$ is $\frac{1}{B_{ij}} = \frac{2}{i}a_{ij}(1,i)$

pther things about measurements
I measuring an operator
suppose we have an operator U with eigenvalues of ±1. So the U is
both Hermitian and unitary, So it can be reparded as both an
observable and godes.
Goal: we want to measure U, and leaving the post
measurement state is the converponding eigenvalue
neasurement state is the converponding eigenvalue
show the following citud satisfy the needs:
10> III (U) (U) (Poat)
proof: we can write
$$1P_{12} = 21P_{12} + B1P_{12}$$

where $U 1P_{11} > = 21P_{12} + B1P_{12}$
 $U (P_{12} = -1|P_{12})$
 $0 = \frac{1}{12} (10 + 11 >) (0 |P_{12} + P_{12}|P_{12})$
 $t = 10 (0 |P_{12} + P_{12}|P_{12})$
 $= \frac{1}{12} (10 + 11 >) 0 |P_{12} + F_{12}|P_{12})$
 $= \frac{1}{12} (10 + 11 >) 0 |P_{12} + F_{12}|P_{12} - F_{12}|P_{12$

Quarter Tele portation

Now we have finish all the basics for quantum computation
(e.g., quatum state.)-q and 1-q gates. measurement).
We can have a in-depth analysis of one of the most
important quantum circuit/program, quantum teleportation
whord diverty transmitting a quart that divedly encodes
the information
It also lets us to perform universiad fault-tolerent
computation. and measurement based quantum
lomputation. and measurement based quantum
lomputation.
$$(1000 + 110)$$

 $1000 + 11000 + 1100 + 11000 + 11000 + 11000 + 11000 + 11000 + 11000 +$

$$2_{22}2_{3} = +|(|000><000|+|01|><01|+...>) -|(|000><000|+|00><000|+|01>>$$

What about Ciw 2, I23 ? All applies, but now the parity check is only for qubit land qubit 3, Q: can you now verify the circuit implementation for exp(iw 14 23 22 21 20) Hint: 1. CNUT tree for panety check in 2 basis 9.09 $\bigcirc q_0 \oplus q_1 \oplus q_2$ 93 _____ 9.091092093 The root node of the CNOT tree will encude the pointy information 2. Mot cancel with each othe = [