CS293S Quantum Computing System

Lecture 6-8: Quantum Algorithms and Quantum Speedup

Yufei Ding

Assistant Professor Department of Computer Science University of California, Santa Barbara

UC SANTA BARBARA – PICASSO Lab

Quantum Promise

 Certain problems which are difficult classically, are easy on quantum computers, e.g., integer factoring

- Can't efficiently simulate a quantum computer on a classical computer
 - Expected to be hard due to complexity arguments

UC SANTA BARBARA - PICASSO Lab

Algorithmic Complexity

✤P: Efficiently solved by classical computer

BQP: Efficiently solved by quantum computer

♦
$$P = NP$$
?

Outline

- Reversible Logic and Oracles
 - Quantum circuits for classical computing.
- Quantum Speedup
 - Parallelism and Interference
- Quantum Algorithms

Reversible Logic and Oracles

Note4.pdf

UC SANTA BARBARA - PICASSO Lab

Quantum Algorithm

• Note5.pdf

UC SANTA BARBARA – PICASSO Lab

Quantum Fourier Transform

4 qubit case

More general discussion on the reference book P217

UC SANTA BARBARA - PICASSO Lab

7