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Abstract
This work aims to find out the full potential of compila-
tion scheduling for JIT-based runtime systems. Compila-
tion scheduling determines the order in which the compi-
lation units (e.g., functions) in a program are to be compiled
or recompiled. It decides when what versions of the units
are ready to run, and hence affects performance. But it has
been a largely overlooked direction in JIT-related research,
with some fundamental questions left open: How significant
compilation scheduling is for performance, how good the
scheduling schemes employed by existing runtime systems
are, and whether a great potential exists for improvement.
This study proves the strong NP-completeness of the prob-
lem, proposes a heuristic algorithm that yields near optimal
schedules, examines the potential of two current scheduling
schemes empirically, and explores the relations with JIT de-
signs. It provides the first principled understanding to the
complexity and potential of compilation scheduling, shed-
ding some insights for JIT-based runtime system improve-
ment.

Categories and Subject Descriptors D3.4 [Programming
Languages]: Processors

General Terms Performance

Keywords JIT, Compilation Scheduling, Compilation Or-
der, NP-completeness, Heuristic Algorithm, Runtime Sys-
tem
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1. Introduction
Just-In-Time (JIT) has been the major code translation
paradigm in Java runtime, binary translation, and other set-
tings. Enhancing the performance of programs compiled by
JIT has received steady attentions in the last decade. The at-
tentions have been reinforced recently as the runtime engines
of some popular web scripting languages (e.g., Javascript)
starts to embrace JIT as a replacement or complement of
interpreters for better performance.

Enhancing the performance of JIT-based runtime systems
is a multi-dimensional problem. So far, research efforts have
been largely focused on the various facets of the internal de-
sign of JIT [9, 10, 13, 16], and the determination of suitable
optimization levels for a function [5, 27, 32]. Few have been
devoted to the compilation scheduling of JIT. It has remained
preliminarily understood when a JIT should be invoked to
compile which function, or in other words, how compilation
order affects the performance of JIT-based runtime systems.

Formally, a compilation order refers to an order in which
the compilation units in a program (e.g., functions or traces)
are being compiled or recompiled1. Compilation order de-
termines what is the earliest time the executable of a func-
tion (or trace) becomes available, which in turn affects the
performance of the program. For instance, consider a call se-
quence “a b g g g g e g”. Let Ci(x) represent the compilation
of function x at level i—a higher level means deeper opti-
mizations and also larger compilation time overhead. A com-
pilation order, (C1(a), C1(b), C1(g), C1(e), C2(g)), dictates
that the better optimized version of function g is not avail-
able before C1(e) finishes. If we switch C1(e) with C2(g),
the better version of g can become available earlier, benefit
more invocations of g, and hence possibly produce better
performance. For mobile applications, better performance
translates to shorter response time and often higher energy
efficiency, which are key variables for user satisfaction in
handheld systems [25, 30].

1 It should not be confused with the order of the various optimization phases
in a compilation, which is related with internal design rather than usage of
a compiler.



Despite the natural connection between compilation or-
ders and JIT performance, there has been little work concen-
trated on it. Some fundamental questions have never been
systematically explored, such as how significant the connec-
tion is, how good the orders employed by existing runtime
systems are, whether there is a great potential for improve-
ment. Answers to these questions are directional. They will
indicate whether enhancing compilation orders is valuable
and promising, and guide research in this preliminarily un-
derstood direction.

This paper aims to answer those fundamental questions,
and provide a principled understanding to the problem of
compilation ordering in JIT-based runtime systems.

Specifically, we concentrate on two aspects. The first is on
optimal compilation orders: For a given execution, are opti-
mal orders feasible to compute? If so, how to compute them
efficiently? If not, how to approximate them effectively? An-
swers to these open questions are essential for revealing the
full impact of compilation orders on a runtime system.

Through a series of rigorous analysis, we provide a three-
fold answer to the questions (Sections 3 to 5.) First, we prove
that a simple, linear algorithm can give optimal compilation
orders when compilation and execution have to happen on
the same core. Second, through a reduction from PARTI-
TION and 3-SAT, we prove that in other settings, the prob-
lem becomes strongly NP-complete—that is, no polynomial
algorithms exist for computing optimal compilation orders
unless NP=P, even if the compilation and execution times of
the functions are all bounded to a polynomial in the length
of the call sequence. Prompted by the NP-completeness,
we develop the Init-Append-Replace (IAR) algorithm, a
polynomial-time approximation algorithm that is able to
produce near optimal compilation sequences efficiently in
general settings. These findings make the examination of the
full potential of compilation orders possible. More funda-
mentally, they add the first deep understanding to the com-
pilation ordering problem.

Based on the theoretical findings, the second part of this
work (Section 6) empirically evaluates the quality of the
compilation order given by existing JIT-based runtime sys-
tems, and measures the potential of better compilation orders
in enhancing the system performance. Specifically, we use a
modern Java Virtual Machine (JVM) named Jikes RVM [4]
as the basic framework, and strive to include some of the
most relevant factors into our measurement. These factors
include concurrency in a JIT, machine parallelism, the cost-
benefit models a JIT may use to determine the suitable com-
pilation levels for a function, and so on. We evaluate the
compilation scheduling scheme used in Jikes RVM, as well
as the one used in V8, the runtime Engine behind Google
Chrome. Experiments on call sequences collected on a set
of Dacapo benchmarks [6] conclude that a good compilation
order can lead to an average speedup of as much as a factor
of two over existing runtime systems, clearly demonstrating

the importance and potential of compilation ordering. Mean-
while, the results unveil some insights in the relations among
compilation order, machine concurrency, and parallel JIT,
and provide a discussion on enhancing compilation orders
in practice.

Overall, this work makes the following major contribu-
tions.

• It provides the first systematic exploration to the impact
of compilation ordering for the performance of JIT-based
runtime systems in various settings.

• It reveals that the compilation scheduling schemes used
by existing runtime systems are far from optimal, point-
ing out the importance of research efforts in enhancing
compilation schedules—a direction largely overlooked
by previous studies.

• It, for the first time, unveils the inherent complexity of
the compilation scheduling problem, proving the NP-
completeness of getting optimal compilation schedules in
a general setting. It further shows that intelligent search-
ing algorithms like A∗-search, although offering some al-
leviation, are not feasible in practice. The result is signif-
icant as it will help the community avoid wasting time in
finding algorithms to compute the optimal orders and in-
stead devote the efforts into the more promising direction
of designing effective approximation algorithms.

• It proves the optimality of a simple algorithm for com-
puting optimal compilation schedules for single-core set-
tings, and contributes an efficient approximation algo-
rithm, the IAR algorithm, for getting near optimal sched-
ules in general settings. These findings are crucial for as-
sessing the room left for improvement of practical run-
time systems, and meanwhile, shed insights for designing
better compilation scheduling modules in practice.

This work may benefit the JIT community in several
ways. (1) It points out an important research direction for
enhancing JIT-based runtime systems. (2) Its complexity
findings will help avoid efforts in searching for algorithms to
compute optimal JIT schedules. (3) It offers the first practical
way to assess the JIT scheduling of runtime systems, from
which, virtual machine developers can easily see the room
left for improvement and allocate their efforts appropriately.
(4) It provides an effective scheduling algorithm (IAR) that
is efficient for possible online uses (although some other
conditions are needed for its integration in an actual runtime
system.)

The rest of the paper is organized as follows. We start
with some background on JIT in Section 2, provide a defini-
tion of the optimal compilation scheduling problem in Sec-
tion 3, then present the algorithms and complexity analysis
in Sections 4 and 5, and finally report the experimental re-
sults, discuss related work, and conclude with a summary.



2. Background
This section takes Jikes RVM as an example to provide some
brief background on how JIT compilation is currently be-
ing used in many runtime systems. Jikes RVM [4] is an
open-source JVM originated from IBM. It uses method-level
JIT compilation2. Its employment of JIT is typical. A func-
tion can be compiled at four levels by the JIT; the higher
the level is, the deeper the optimizations are, and also the
larger compilation overhead it incurs. In an execution of a
program, Jikes RVM maintains a queue for compilation re-
quests. When it encounters a Java method for the first time,
it enqueues a request to compile the method at the lowest
level. During the execution of the program, it observes the
behaviors of the application through sampling, whereby, it
determines the importance of each Java method in the ap-
plication. When it realizes that a Java method is important
enough to deserve some deeper optimizations, it enqueues a
request to recompile the method at a higher level. The level
is determined by a cost-benefit model prebuilt inside Jikes
RVM, the information which draws on includes the hotness
of the method and its code size.

Jikes RVM has a number of threads, including a compi-
lation thread. The compilation thread dequeues the compila-
tion tasks and conducts the corresponding compilation work.
As a result, the order in which the compilation tasks are en-
queued and the time when they are enqueued determines the
compilation sequence of the program in that execution.

3. Problem Definition and Scope
This section provides a formal definition of the optimal com-
pilation scheduling problem, and then discusses the assump-
tions and scope of the problem.

Definition 1. Optimal Compilation Scheduling Problem
(OCSP)

Given: A sequence of function invocations, where, each
element (say mi) represents an invocation of a function
mi. A function can appear once or multiple times in the
invocation sequence. For each function, there are multiple
possible compilation levels. Let ci,j represent the length
of the time needed to compile function mi at level j, ei,j
represent the length of the corresponding execution time of
the produced code. Assuming all ci,j and ei,j are known and
independent of compilation orders, and ∀ i and j1 < j2, we
have ci,j1 ≤ ci,j2 , ei,j1 ≥ ei,j2 . A function cannot run unless
it has been compiled at least once (no matter at which level)
in an execution of the invocation sequence. A function can be
compiled once or multiple times in a run. The code produced
by the latest compilation is used for execution.

Goal: To find a sequence of compilation events that mini-
mizes the make-span of the program execution. Here, make-

2 In this paper, “function” and “method” are inter-changable terms.

span is the time spanning from the start of the first compila-
tion event to the end of the program execution.

The definition contains several assumptions. We explain
them as follows.

• Assumption 1: The compilation and execution time of a
function is all known. In actual runtime systems, such
as Jikes RVM [4], there are often some kind of cost-
benefit models. They estimate the compilation and exe-
cution time from function size and hotness (to determine
the suitable compilation levels for a function.) How to ac-
curately estimate the time is not the focus of this work;
we use measured time in our experiments. In addition,
in the definition of OCSP, both ci,j and ei,j through a
program execution are assumed to be constant for some
given i and j. In reality, the compilation time of a func-
tion ci,j is largely stable, but the execution time ei,j may
differ from one call of function mi to another, thanks to
the differences in calling parameters and contexts. The
variations however do not affect the major conclusions
our analysis produces, as Section 8 will discuss. In our
experiments, we set ei,j with the average length of all
calls to function mi that is compiled at level j.

• Assumption 2: A function can be compiled at multiple
levels. This assumption is consistent with most runtime
systems (e.g., V8, Jikes RVM, J9, Hotspot.) A higher
level usually means deeper optimizations, and hence a
longer compilation time and shorter execution time of the
function.

• Assumption 3: The sequence of function invocations is
known. This assumption is necessary for revealing the
full potential impact of compilation scheduling. In our
experiment, the sequence is collected through profiling.
How to estimate such a sequence in an actual deployment
of a runtime system is a problem relevant to the construc-
tion of a practical scheduler, but orthogonal to the inves-
tigation of optimal compilation scheduling problem.

In addition, besides function compilation, function inlin-
ing may also affect the overall performance. We discuss its
effects in Section 8.

4. Algorithms and Complexities for Finding
the Optimal

In this section, we investigate the feasibility in finding so-
lutions to the OCSP. The motivation for this investigation is
multifold. First, an optimal solution, if it is feasible to obtain,
exposes the limit of the scheduling benefit, which is essential
for examining the full potential of compilation scheduling.
Second, understanding the computational complexity of the
problem is important for guiding the direction of efforts: If
the problem is strongly NP-hard, efforts may be more worth-
while to be spent on finding effective heuristic algorithms



than designing optimal algorithms. We describe our findings
by classifying the scenarios into two categories.

4.1 Optimality in the Case of Single Core
When there is only one CPU core available, both compila-
tion and execution have to happen on that core. In this case,
determining the best compilation order is straightforward.
For each function (say mi), we find the most cost-effective
compilation level for that function, denoted as li, such that
∀k, ni∗ei,li +ci,li ≤ ni∗ei,k+ci,k, where, ni is the number
of invocations of function mi in the execution sequence. We
have the following theorem:

Theorem 1. An arbitrary compilation sequence of the meth-
ods, as long as every method appears once in it and is com-
piled at its most cost-effective compilation level, yields the
minimum make-span for the program.

The correctness of the theorem is easy to see. As there is
only one core, the machine is always running, doing either
the compilation or execution jobs. The make-span is hence
the sum of the compilation and execution times. The most
cost-effective level ensures that the total time taken by each
method is minimum. Hence the conclusion. The optimality
is subject to the assumptions listed in the previous section,
which will be discussed in Section 8.

The implication of this result is that on single-core ma-
chines, research efforts should be put on the prediction of
the most cost-effective compilation levels. The reason is that
if those levels are predicted accurately, using on-demand
compilation—that is, compiling a function when it gets in-
voked for the first time, as what most existing runtime sys-
tems are using—can already give us an optimal compila-
tion order. This insight has its practical values: Despite that
most machines are equipped with multicores, lots of times,
an application is using only one core when multiple appli-
cations are running. It is especially common on smartphone-
like portable devides that contain only several cores.

4.2 Complexity in the Case of Multiple Cores
In the case of multiple cores, the compilation and execution
can happen largely in parallel. The determination of a best
compilation order becomes complicated.

An Example To illustrate the complexity, consider the ex-
ample showing in Figure 1. The call sequence is simple, con-
taining just four calls to three functions. For simplicity, we
assume that compilation and execution happen on two dif-
ferent cores, and only one level of compilation is worthwhile
for functions f0 and f2 and two levels for function f1. Just
based on the execution times, it may be tempting to think that
the best way to compile the functions is to pick the highest
compilation levels for all the functions—as they provide the
shortest running times for the functions—and then schedule
the compilations in the order of the first-time appearance of
those functions. The middle bottom box in Figure 1 shows

fi: function i.
eij: the execution of fi optimized at level j.
cij: the compilation of fi at level j.

Execution time length: Compilation time length:

Invocation sequence:     f0   f1   f2   f1

Compilation schemes:
                   s1:    all compiled at level 0,
                   s2:    f1 compiled at level 1, others at level 0,
                   s3:    f1 compiled at level 0 first and then at level 1, others at level 0.
Executions with time length labeled:

using scheme s1

core-1 core-2

using scheme s2

core-1 core-2

using scheme s3

core-1 core-2
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Figure 1. An example illustrating the complexity of com-
pilation scheduling. Assuming execution happens on core-1
and compilation happens on core-2.

this schedule. It turns out to result in the longest make-span
among all the three schedules shown in Figure 1. The reason
is that the highest level of compilation of f1 causes delays
to the start of the second and third function calls—we call
such delays bubbles from now on. The best schedule of the
three is the third schedule, in which, function f1 is compiled
twice: The first time is at the lowest level to avoid causing
delays, and the second time is at the highest level to speedup
its second invocation. From this result, one may think that a
schedule that compiles all functions at the lowest level first
and then recompiles them would work well.

But a simple extension of the example can immediately
prove the hypothesis incorrect. As Figure 2 shows, we add
another call to function f2. It also shows that the compila-
tion of f2 at level 1 takes 5 time units and execution at that
level takes 1 time unit. The bottom three boxes in Figure 2
show how the three schedules in Figure 1 would perform in
this case when we consider the possibility of appending a re-
compilation of f2 at level 1 to the schedule. This appending
turns the previously best schedule (schedule 3) to the worst.
(The third box in Figure 2 does not have that recompilation
appended because appending it is apparently not beneficial.)
The first schedule with such an appending becomes the best
of the three. This schedule has function f2 but not others re-
compiled, despite that f2 takes the longest time to recompile.

These two examples are simple, involving only three
functions and five invocations. They reflect the high com-
plexity OCSP can have on real program executions. Which



Execution time length: Compilation time length:

Invocation sequence:     f0   f1   f2   f1   f2

Executions with time length labeled:
scheme s1 with an extension

core-1 core-2

scheme s2 with an extension

core-1 core-2

scheme s3 with an extension

core-1 core-2
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Figure 2. Continuing the example in Figure 1 with a call to
f2 appended to the invocation sequence.

functions need to be recompiled and when each (re)compilation
should happen depend on how frequently the functions are
each invoked, when they are invoked, how long the execu-
tion and compilation of each take, and so on.

Prompted by the observed complexities, we conduct a
theoretical analysis of the computational complexity of the
OCSP. Findings are shown next.

Strong NP-Completeness Our analysis produces the fol-
lowing conclusion:

Theorem 2. When compilation and execution can happen
in parallel, the OCSP problem is NP-complete.

We prove the NP-completeness through a reduction from
the classic NP-complete problem, PARTITION, to a simple
case of OCSP, where there are only two machines, both
compilation and execution are single threaded, and there are
only two optimization levels.

Proof. Suppose we are given a set of non-negative integers
S = s1, s2, · · · , sn. Let t = (1/2) ×

∑n
i=1 si. The goal of

the PARTITION problem is to find a subset X whose sum is
t. (By the definition of t, this ensures that S −X also sums
to t.)

For each si, we construct one function with ci1 = 1,
ci2 = si + 1, ei1 = si + 1, ei2 = 1. Pick an arbitrary
order to execute these functions. We then construct two
additional functions, which have the same compilation time
and execution time for both levels. One of these functions,
which we require to execute first, has compilation time 1 and
execution time t+n. The other function, which we require to
execute last, has compilation time t + n and execution time
1.

Suppose that we have a set X satisfying the PARTITION
constraints. Then we can construct the corresponding com-
pilation sequence by compiling all of the functions in the set
X at level 1, and compiling all other functions at level 2. The

long execution time of the initial function guarantees that we
have lots of time to compile all of the functions in the mid-
dle before we have to execute them. So if we let one machine
(named E) conduct only executions and the other (named C)
compilations, both machines can work constantly (with the
exception of the first time unit for Machine E and the last
time unit for Machine C).

Because the numbers in X sum to t, the total execution
time for functions in X is |X|+ t, and the total compilation
time for functions in X is |X|. Similarly, the total execution
time for functions not in X is n − |X|, while the total
compilation time for functions not in X is n − |X| + t.
Hence, the total compilation time for all but the first and last
functions is t + n. The execution time is also t + n. When
combined with the time for the first and last functions, as
well as the slack time, the total make-span is 2(1 + t+ n).

It is easy to see that 2(1 + t + n) must be the minimum
make-span. Machine E cannot work in the first timestep
(before anything is compiled) while Machine C can’t work
in the last timestep (while the last function is executing). So
with make-span less than 2 + 2t + 2n, the total processing
time that we get out of Machines C and E is less than
2 × (2 + 2t + 2n − 1) = 2(2t + 2n + 1). However, the
total amount of work to be done (execution and compilation
combined) is at least 2(2n+2t+1) regardless of which level
the functions are compiled at, so we cannot have make-span
less than 2 + 2t+ 2n.

We can also show the converse: that a schedule with that
make-span must imply the existence of a partition. The total
run time of all functions (execution plus compilation) is fixed
at (2n+2t)+2(n+t)+2 = 2(2n+2t+1). To finish that work
within time 2(1 + t+ n), Machine C has to work constantly
(aside from the last time-step, which is unavoidable), and
Machine E also has to work constantly (aside from the first
time-step, which is unavoidable). This means that the total
compilation time must sum to exactly t+n, and so the set of
functions compiled at level 2 must correspond to a set that
sums to exactly t.

We further prove that the 3-SAT problem can be also re-
duced to the OCSP problem in polynomial time and hence
prove that the OCSP is not only NP-complete, but also
strongly NP-complete. It means that even if the compila-
tion and execution times of the functions are all bounded to
a polynomial in the length of the call sequence (which could
be true in practice), the problem remains NP-complete. The
implication to practice is that the OCSP is unlikely to ad-
mit efficient solutions in practice. We put the proof into a
technical report [12].

5. Challenging the NP-Completeness
The strong NP-completeness proved in the previous section
has some significant implications. It enhances the fundamen-
tal understanding to the compilation scheduling problem of
JIT, suggesting that polynomial-time solutions are unlikely



to exist for OCSP as soon as the number of cores goes be-
yond one. This result entails difficult challenges for studying
the full potential of compilation scheduling for JIT as the
optimal schedules are probably infeasible to obtain for a real
program execution.

This section presents several options we have pursued
to overcome the NP-completeness to reveal the potential of
compilation scheduling. The first option explores heuristic
algorithms for approximating the optimal; the algorithms in-
clude a single-level scheme and a several-round algorithm.
The objective of this option is to obtain some schedules that
are both valid and close to the optimal in performance so
that they can provide a tight upper bound for the minimum
make-span. The second option computes the lower bound of
the make-span. Together, these two options lead to a range
covering the minimum make-span. The rationale is that if
that range is small, it would be sufficient to substitute the
optimal in the examination of the potential of compilation
scheduling. At the end of this section, we describe the third
option, which tries heuristic search to directly find the opti-
mal.

5.1 Approximating the Limit
The goal of this option is to obtain some legal schedule with
a performance close to the optimal.

Single-Level Approximation Following Occam’s razor,
before designing sophisticated algorithms, we start with a
simple way to do the approximation. It limits the compi-
lations of all methods to only one level. In this case, as
there are no recompilations, it is easy to prove that the best
schedule is just to order the compilations of all the functions
based on the order of their first-time appearance in the call
sequence. We call this simple approach single-level approx-
imation.

IAR Algorithm The single-level approximations are sim-
ple but ignores recompilation, an operation that can be ben-
eficial as Figure 1 illustrates. To better approximate the op-
timal schedules, we design an algorithm that consists of an
initialization step and several rounds of refinement with each
round enhancing the schedule produced by earlier rounds.
We call this algorithm the IAR algorithm in short for it cen-
ters around initialization, appending, and replacement oper-
ations.

Figure 3 outlines the algorithm. For simplicity of expla-
nation, the description of the algorithm assumes that there
is one execution thread and one compilation thread only and
they run on two cores respectively. Additionally, it assumes
that the JIT has only two levels of compilation. We will dis-
cuss the case with more than two levels at the end of this
section and the case with more threads in Section 6.2.3.

The first step of the IAR algorithm creates an initial com-
pilation schedule, which consists of the lowest-level compi-
lations of all functions in the program, arranged in the order
of the first-time appearances of the functions in the call se-

quence. Such a schedule tries to prevent bubbles (i.e. waiting
time) from occurring in the execution that the long compila-
tion time at the higher compilation level could cause.

It then classifies the functions into three categories:
A(ppend), R(place), O(ther). The categorization exam-
ines the benefits of doing a higher-level compilation for
each function. The examination employs the collected com-
pilation and execution time at all compilation levels. If a
higher-level compilation appears to be not beneficial for a
function (Formula 1 in Figure 3), it is put into O. Otherwise,
it should be compiled at the higher level either at its first-
time compilation (i.e., to replace its low-level compilation
in the initial compilation sequence with a high-level com-
pilation of it) or after the initial compilation stage is done
(i.e., to append its high-level compilation to the end of the
current compilation sequence.) These two cases correspond
to adding the function to R and A respectively. The Formula
2 in Figure 3 shows the criterion for classifying these two
cases. The rationale is that when the high-level compilation
overhead is much larger than the attainable benefits at the
beginning part of the run, putting the high-level compilation
into the initial schedule may cause bubbles into the execu-
tion, and it is hence better to be appended to the end of the
initial schedule. In our experiment, we tried different values
of “K” in Formula 2 and found that as long as it falls into a
range between 3 and 10, the results are quite similar (in our
reported results, K=5.)

Based on the classification, the second step of the IAR
algorithm simply replaces the low-level compilations of all
functions in R with high-level compilations in the initial
compilation sequence. To append functions in A to the se-
quence, however, we need to decide the order of appending.
The heuristics we use is the compilation overhead. The ratio-
nale is that putting a costly recompilation early would cause
large delays to the attainment of high-quality code for other
functions.

The third step is a fine adjustment to the compilation se-
quence. It tries to find the slacks in the initial part of the
schedule and exploit the slacks by replacing a low-level
compilation with a high-level compilation as long as the re-
placement does not add bubbles into the execution. A slack is
defined as the time between the finish of the first-time com-
pilation of a function and its first invocation in the execu-
tion. The selective replacement accelerates the execution of
the function without causing a negative effect. At a replace-
ment, the following high level compilation of that function
is deleted if there is one.

The final step is another fine adjustment. It tries to ap-
pend more high-level compilations as long as there is time
between the finish of all compilations and the finish of all
executions. This filling does not cause any negative effect
to the execution but could accelerate the execution of some
functions that are not yet compiled at the high level. We tried
various ways to prioritize these additional appending opera-



// Eseq: the call sequence;
// F: the set of functions;
// K: a constant (5 in our experiment);
// f.cl, f.ch: the compilation time of function f at low and high levels;
// f.el, f.eh: the execution time of function f at low and high levels;
// f.n: the number of calls to function f in Eseq;

Cseq = {};
// get the sequence of first-time calls of all the functions
Eseq1 = getSeq1stCalls (Eseq); 
Cseq = Eseq1;

// categorize functions into sets A(ppend), R(eplace), O(thers).
O={}; A={}; R={};
foreach f in F
   if (f.ch+f.n*f.eh > f.cl+f.n*f.el)
       O.append (f);  
   else {
        f.n1 = numbers of calls to f during the compilation of current Cseq;
        if (f.ch - f.cl > K * f.n1 * (f.el - f.eh))
            A.append (f);
        else
            R.append (f);
   }

// ascending sort on the compilation time at the high level
A = ascendingSortOnCh (A); 
Cseq.append (A); // append ch of members of A
Cseq = replace (Cseq, R); // replace cl with ch for members of R

Tc1 = computeTheEnd1stCompile (Cseq);
Te1 = computeTheStart1stCall (Eseq, Cseq);
slacks = findSlacks (Tc1, Te1);
// replace some cl with ch to fill slacks
Cseq = fillSlacksWithReplacement (Cseq, slacks); 

L   = functions that are compiled at low level only in Cseq;
M =  numbers of calls to functions in L in Eseq after Cseq finishes; 
L  = desendingSort (L, M);
Tgap = time between end of compilations and end of executions; 
Append as many ch of functions in L as possible until filling up Tgap.   

step1 (init):

step2 (append & replace):

step3 (fill slack through replacement):

step4 (append more to fill ending gap):

// Formula 1

// Formula 2

Figure 3. IAR algorithm.

tions by considering factors ranging from optimization over-
head, to benefits, and positions of the calls in the sequence.
But they do not outperform the simple heuristics Figure 3
shows. As Section 6 will show, the reason is that there is
only a marginal room left for improvement by this fine ad-
justment.

This IAR algorithm offers a more sophisticated way to
approximate the optimal schedules than the single-level ap-
proximation. It capitalizes on both the order of first-time ap-
pearances of the functions and their invocation frequencies,
considers both the compilation overhead and overall bene-
fits, and exploits each individual level of compilation and
their combinations. Section 6 will show that the design en-
ables a much better approximation than other methods do.

The time and space complexity of the IAR algorithm is
O(N+MlogM), where N is the length of the call sequence,
and M is the number of unique functions in the sequence.

Typically N >> M and the complexity is linear to N in
practice.

The description of the IAR algorithm has assumed that
the JIT has only two candidate compilation levels. That as-
sumption is only for explanation simplicity. The algorithm
itself works as long as a function has two levels of opti-
mizations to choose; the two levels can differ for different
functions. For a JIT with more than two levels, our design is
to take the most responsive level and the most cost-effective
level of a function as the two candidate levels for that func-
tion when applying the IAR algorithm. The most respon-
sive level is the one taking the least time to compile, usually
corresponding to the lowest level. The most cost-effective
level is the level at which the compilation time plus the to-
tal execution time of all invocations to the function is mini-
mum. The cost-effective level can be determined by the de-
fault cost-benefit model in most virtual machines. The cost-
benefit model takes the hotness of a function, its size, and
other information as inputs and estimates the most cost ef-
fective compilation level for that function [4]. An alternative
way is offline profiling that measures the performance at ev-
ery compilation level.

Our experiments in Section 6 will confirm that IAR on the
two levels is enough to get a schedule close to the optimal.

5.2 Bounding the Limit
The algorithms in the previous subsection produce schedules
that are attainable, the results of which may be regarded as
the upper bounds of the minimum make-span of the program
execution. Getting a lower bound of the minimum make-
span is relatively simple. It is clear that the make-span can-
not be smaller than the sum of the shortest execution time of
each function call in the call sequence. Therefore, the lower
bound is computed as

∑N
i=1 efi

K , where K is the highest
compilation level, eKfi is the execution time of the ith func-
tion call in the invocation sequence at level K. The upper
bound and lower bound reveal the limits of the value range
of the minimum make-span. If the range is tight, it may serve
as an alternative to minimum make-span for examining the
potential of compilation scheduling.

5.3 Searching for the Limit
In addition to approximation, another way to solve the OCSP
is to use some search algorithms to cleverly search through
the design space for an optimal schedule. These search algo-
rithms may substantially outperform naive search by avoid-
ing some subspaces that are impossible to contain the opti-
mal solution. However, they do not lower the computational
complexity of the problem and may still consume too much
time, space or both for large problems.

For completeness of the exploration, we examine the fea-
sibility by applying A*-search, an algorithm that is optimally
efficient for any given heuristic function—that is, for a given
heuristic function, no other search-tree–based optimal algo-
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Figure 4. An example for modeling the compilation
scheduling of three functions as a tree search problem. No-
tation: Cj

i for the compilation of method i at the jth level.
The two highlighted paths denote two complete compilation
sequences.

rithm is guaranteed to expand fewer nodes than A* search
does [31].

A*-Search For a tree search, where the goal is to find a
path from the root to an arbitrary leaf with the total cost
minimized, A* search defines a function f(v) to estimate the
lowest cost of all the paths passing through the node v. A*
search maintains a priority list, initially containing only the
root node. Each time, A* search removes the top element—
that is, the node with the highest priority—from the priority
list, and expands that node. After the expansion, it computes
the f(v) values of all the newly generated nodes, and puts
them into the priority list. The priority is proportional to
1/f(v). This expansion process continues until the top of the
list is a leaf node, indicating that no other nodes in the list
need to be expanded any more as their lowest cost exceeds
the cost of the path that is already discovered.

The definition of function f(v) is the key for the solu-
tion’s optimality and the algorithm’s efficiency. There are
two properties related to f(v):

• A* search is optimal if f(v) never overestimates the cost.
• The closer f(v) is from the real lowest cost, the more

effective A*-search is in pruning the search space.

Problem Modeling A typical way to apply A*-search is
to model the target problem as a tree-search problem. Fig-
ure 4 illustrates how we model the compilation scheduling
problem. The tree contains all possible schedules for com-
piling three functions at two compilation levels. Every path
from the root to a leaf represents one feasible compilation
sequence. Each node on the path represents the compilation
of a function at a level. The construction of the tree ensures
that a lower-level compilation of a function does not appear
after a higher-level compilation of the function in any path,
as it is impossible to be an optimal schedule under the as-
sumptions on execution times in Section 3. For instance, in
Figure 4, C0

2 never appears in a path below C1
2 .

To explain the search heuristic function f(v), we use
the following notations: s(v) for the compilation schedule
represented by the path segment from the root to node v, t(v)
for the time period from the start to the end of compilations
in s(v). In our exploration, the most effective definition of
f(v) we find is f(v) = b(v) + e(v), where, b(v) is the sum
of the lengths of all the execution bubbles in t(v) when s(v)
is used, and e(v) is the sum of the extra execution time in
t(v) because the functions are not compiled at the highest
level in s(v).

6. Experiments
We design our experiments to answer the following ques-
tions:

• Limit Estimation or Computation Can the algorithms
in Sections 5.1 and 5.2 provide a tight range for the min-
imum make-span? How effective and scalable is the A*-
search algorithm in searching for optimal compilation
schedules?

• Potential of Existing Systems Is there a substantial room
left for improving the compilation scheduling used in
modern runtime systems?

• Influence of Other Factors How do other factors, such
as the concurrency and cost-benefit model in a JIT, influ-
ence answers to the questions above?

6.1 Methodology
Experimental Framework To validate whether the pro-
posed algorithms can provide a good estimation of the opti-
mal compilation schedules, one just needs to apply the algo-
rithms to a set of data that include a call sequence of a num-
ber functions and the compilation and execution times of
those functions at various optimization levels. For collecting
some realistic data, we develop a data collection framework
for collecting the required data from real Java programs.

The collection framework is based on Jikes RVM [4]
v3.1.2. As an open-source JVM that has gone through many
years of enhancement by the community, Jikes RVM now
shows competitive performance with top commercial sys-
tems [1]. It contains a basic compiler and an optimizing com-
piler, both single-threaded. The optimizing compiler sup-
ports three compilation levels. So counting them together
means that a function can be compiled at any of the four lev-
els. Jikes RVM has a replay mode, in which, it takes some
advice files that indicate how each Java method should be
compiled, and runs the program with the JIT following those
instructions. By manipulating the advice files, we stimulate
the compilation of each function (i.e. Java method) at each of
the four levels in 20 repetitive runs, during which we collect
the execution times of every function at each level, the aver-
age of which is taken as the execution time of that function
at that level. By adding a timer into the JIT, we also collect



the compilation time of each function at every level 3. The
runs for measuring compilation time are separate from the
runs for measuring execution times to avoid possible pertur-
bations by each other.

Also through the Jikes RVM, we collect the call sequence
for every run of the programs. For a multithreaded appli-
cation, we still get a single sequence; the calls by different
threads are put into the sequence in order of the profiler’s
output. This order roughly corresponds to the invocation tim-
ing order by those threads. An alternative is to separate calls
by different threads into different call sequences. But given
that the threads typically share the same native code base
generated by the same JIT, we find it more reasonable to put
them together when considering compilation scheduling.

These collected data together form the data set we use for
assessing the quality of the various schedules. Examination
of the data shows that for most functions, the condition
in Definition 1 holds—that is, ∀ i and j1 < j2, we have
ci,j1 ≤ ci,j2 , ei,j1 ≥ ei,j2 .

The harness in the Dacapo suite, when running a bench-
mark, starts the JVM and runs the benchmark for a num-
ber of times (without restarting the JVM.) So in the late
runs, the program enters a steady-state without many com-
pilations happening. In the reported performance results, we
concentrate on the first-time run (or called warmup run), for
two reasons. First, compilation scheduling is mostly rele-
vant to warmup runs as that is when most compilations hap-
pen. Second, despite that steady-state performance is critical
for server applications, for most utility programs and smart-
phone applications, warmup run performance is often more
crucial. These programs usually do not have a long execution
time, but their response time is essential for user satisfaction.

In addition to data collection, the experimental frame-
work includes a component that, for a given compilation
schedule, computes the make-span of a call sequence based
on the compilation and execution times of the involved func-
tions, along with the number of cores used for compilation
and execution.

Comparing the make-spans reported by such a framework
provides a clear, direct evaluation of the scheduling algo-
rithms. An alternative method is to deploy the compilation
schedules in real executions of JVMs and measure the pro-
gram finish time. That method, unfortunately, cannot provide
a direct measurement of the quality of the scheduling algo-
rithms, as we will discuss in Section 8.

Benchmarks and Machines Our experiment uses the Da-
capo [6] 2006 benchmark suite (default input)4. Two pro-
grams are not used: chart fails to run on Jikes RVM (3.1.2),
and xalan cannot run in the replay mode of Jikes RVM. Ta-
ble 1 reports the basic information of the benchmarks. Two

3 To minimize measurement errors, we insert a loop into the JIT so that we
can time 100 compilations of a function and get the average time.
4 We didn’t use the latest version of Dacapo as it cannot fully work on Jikes
RVM [20].

Table 1. Benchmarks
Program parallelism #functions call seq default

length time(s)
antlr seq 1187 2403584 1.6
bloat seq 1581 9423445 5.0
eclipse seq 2194 467372 28.4
fop seq 1927 1323119 1.5
hsqldb parallel 1006 8022794 2.9
jython seq 2128 23655473 6.7
luindex seq 641 20582610 6.1
lusearch parallel 543 43573214 3.2
pmd seq 1876 12543579 3.5

of the programs, hsqldb and lusearch, are multithreading.
The lengths of the call sequences range from 467K calls
to 43M calls, and the numbers of unique functions in se-
quences range from 543 to 2128. All experiments happen on
a machine equipped with X5570 with totally 16 cores. It has
Linux 3.1.10 installed.

6.2 Results
We report the experimental results in three parts. The first
part examines the full potential of compilation scheduling
compared to the default scheduling scheme in Jikes RVM.
The second and third parts investigate how an oracle cost-
benefit model and concurrent JIT influence the observed po-
tential. Then we examine the potential when the scheduling
scheme in V8 is applied to those Java programs, the feasibil-
ity of finding optimal schedules through A*-search, and the
potential of the IAR algorithm for online usage.

6.2.1 Comparison with the Jikes RVM Scheme
In this part, we compare various schedules to reveal the po-
tential in enhancing the scheduling algorithm in the default
Jikes RVM. We first describe the default scheduling algo-
rithm briefly. At the first invocation of a function, it always
compiles the function at the lowest level. During the exe-
cution of a Java program, after every sampling period, the
runtime checks whether any function could benefit from a
recompilation. The cost of a compilation at level j is com-
puted as ej ∗ k + cj , where ej and cj are the execution
and compilation times of the function at level j, and k is
the number of times the sampler has seen the function on
the call stack since the start of the program. Let l be the
level of the last compilation of the function, and m be the
level with the minimal cost among all levels higher than l. If
em ∗k+cm < el ∗k, the JIT recompiles the function at level
m.

We implement the scheduling algorithm in our experi-
mental framework. Figure 5 shows the normalized make-
span (i.e., end-to-end running time) of the benchmarks under
the default scheduling scheme and other compilation sched-
ules. The IAR algorithm considers only two compilation
levels for a function: the lowest level, and the most cost-
effective level that is determined by the default cost-benefit



model in the Jikes RVM. These two levels are respectively
used for the two single-level compilation scheme. The base-
line used for the normalization is the lower bound computed
with the algorithm in Section 5.2. So the lower a bar is in the
figure, the better the corresponding schedule is.

The results lead to several observations. First, there is a
large gap between the make-span by the default schedule and
the lower bound. More than half of the programs show a gap
greater than 50%. The average gap is over 70%. However,
just from that gap, it is hard to tell whether there is a large
room for improvement as the minimum make-span may ex-
ist anywhere between the lower bound and the default. So
besides the lower bound, we still need a decent estimation of
the minimum make-span.

Following descriptions in Section 5.1, we experiment
with the single-level approximation, with the base level
(“base-level”) and the suitable highest compilation level
(“optimizing-level”) used respectively. Both of them show
even longer make-spans than the default on most programs.
The base-level scheme saves compilation time but results in
a longer execution time for less efficient code it generates.
The optimizing-level scheme, on the other hand, saves ex-
ecution time, but results in a longer compilation time and
execution bubbles. A more sophisticated approximation is
necessary.

The IAR algorithm meets the needs. Using the schedules
from IAR, none of the programs shows a gap wider than
17% from the lower bound. On average, the gap is only
8.5% wide. It indicates that to examine the full potential,
it is sufficient to compare to either the lower bound or the
make-span from the IAR algorithm, as the minimum make-
span is close to both of them. Compared to the IAR results,
the default compilation scheduling scheme in Jikes RVM is
largely behind in performance, with a gap from the lower
bound as wide as eight times of the IAR gap, suggesting
that significant potential exists in enhancing the performance
of Jikes RVM by optimizing its compilation scheduling.
It is worth mentioning that the time savings by the IAR
schedule is not only due to the reduction of compilation-
incurred bubbles on the critical path, but also to the reduction
of execution time as some highly optimized code become
available earlier than in the default run.

As a side note, the results also confirm that using only
two levels of optimizations for each function is enough for
the IAR algorithm to work sufficiently well, despite more
than two levels are supported by the JIT.

6.2.2 With an Oracle Cost-Benefit Model
In the study so far, we rely on the default cost-benefit model
in Jikes RVM to determine the suitable optimizing levels for
each method. This subsection examines whether the large
impact of the scheduling diminishes if the cost-benefit model
is improved. A positive answer would mean that enhancing
the cost-benefit model could be sufficient.
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Figure 5. Normalized running time based on the JIT in the
default Jikes RVM.

To answer the question, we repeat the experiments while
replacing the cost-benefit model in Jikes RVM with an oracle
model. The default cost-benefit model tries to estimate the
compilation time and execution time of a function at various
optimization levels, and pick the level that if it is used,
the sum of the estimated compilation time of that function
and the estimated execution time of all invocations to that
function is minimized. In our oracle cost-benefit model, we
simply replace the estimated time with the actual time. The
model is not necessarily the optimal model, but it is the best
the default cost-benefit model can do.

Figure 6 reports the result. Compared to the result in
Figure 5, there are several differences. First, the gap between
the IAR schedules and the lower-bound increases, but by
no more than 6% on average. The range of the make-span
defined by the IAR and lower-bound remains tight. Second,
the average gap between the default and the lower-bound
doubles in size. Using the optimizing level only results in
a similar gap. The reason for the gap expansion is two-
fold. The lower-bound becomes lower as the pure execution
of the program gets faster with a better optimizing level
determined, and meanwhile, the longer time in the higher-
level compilation causes more bubbles into the execution in
the default and optimizing-level only cases. Many of these
bubbles however can be avoided by a better compilation
schedule as the IAR results demonstrate.

Overall, the results suggest that the importance of com-
pilation scheduling actually increases as the cost-benefit
model gets enhanced, further reinforcing the importance of
the compilation scheduling dimension in improving modern
runtime systems.

6.2.3 With a Concurrent JIT
The JIT in the default Jikes RVM is single-threaded. There
are some JVMs (e.g., Hotspot) that support concurrent com-
pilation of multiple functions on a multicore system. The
concurrency offers an alternative way to reduce compilation
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Figure 6. Normalized running time when an oracle cost-
benefit model is used in the JIT.
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Figure 7. Speedups brought by concurrency JIT when the
IAR schedule is used. The legend shows the number of cores
used for compilation.

overhead and the delays to executions. We apply the idea to
the IAR schedules by allowing multiple compilation tasks
to be processed in parallel (the tasks are ordered in a queue
based on the IAR schedules.) The graph in Figure 7 reports
the speedups (in terms of make-span) brought by the con-
currency, when the default cost-benefit model is used. As the
number of cores increases, the speedup increases but slightly
and always remains quite minor. The largest speedup is 13%
when 16 cores and the oracle cost-benefit model are used.
The average speedups are no greater than 7% in all the cases.
Similar results are seen when the oracle cost-benefit model
is used.

The reason for the speedups being minor is that most
compilation time is already hided when the IAR schedules
are used. In another word, when a good compilation sched-
ule is used, there is a small room left for performance im-
provement by concurrent JIT. Given that concurrent JIT may
compete for computing resources with worker threads, the
results indicate that compilation scheduling is a more cost-
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Figure 8. Normalized make-span, compared with the re-
sults by the compilation scheduling scheme in Google V8.

effective way for enhancing modern runtime systems than
concurrent JIT5.

6.2.4 Comparison with the V8 Scheme
In addition to Jikes RVM, we also compare with the compi-
lation scheduling algorithm used in V8, the primary Javascript
runtime engine from Google, and also one of the most effi-
cient Javascript runtime engines on the market. We apply its
scheduling scheme to the Java programs we use. The pur-
pose is to examine the inherent quality of the scheduling
scheme, rather than the actual performance of the engine on
Javascript applications.

In V8, there are only two optimization levels: low and
high. By default, it compiles a function at the low level at
the first encounter of it and then recompiles it at the high
level at its second invocation.

We apply that algorithm to the call sequences we obtained
from the Jikes RVM on the Java benchmarks, with the lowest
two levels in Jikes RVM JIT as the low and high in this ex-
periment. Figure 8 shows the make-spans. The gap between
the IAR schedule and the lower bound remains small, only
4% on average. The schedule from the V8 scheme results
in a smaller gap from the lower bound than the Jikes RVM
results, 61% on average. The gaps between the two single-
level compilation schedules and the lower bound also be-
come smaller than in the Jikes RVM case. The main reason
is not that the V8 scheme is better than the Jikes RVM one,
but that as the highest optimizing level is lower than that in
the Jikes RVM, the lower bound in this V8 experiment is
higher than in the Jikes RVM experiment. But the high-level
observation is consistent: The IAR algorithm still produces
near optimal results while the default scheduling has a large
room for improvement.

5 Note that this point does not rule out the value of concurrent JIT. It could
be quite valuable when an inferior compilation scheduling is used.



Table 2. IAR Algorithm Time
Program IAR time percentage over whole

(sec) program time (%)
antlr 0.006 0.37
bloat 0.023 0.47
eclipse 0.001 0.004
fop 0.003 0.21
hsqldb 0.020 0.67
jython 0.059 0.87
luindex 0.051 0.84
lusearch 0.108 3.38
pmd 0.031 0.89

6.2.5 Effectiveness of Heuristic Search
For the nature of strongly NP-completeness, it is unlikely to
find a search algorithm that can produce the optimal com-
pilation schedule efficiently. Our experiments on the A*-
search algorithm offers a confirmation. For tiny problems,
the algorithm can find the optimal schedules by searching
through a fraction of all possible paths. For instance, for a
call sequence with six unique functions called for 50 times
in total and two levels of compilations, the A*-search al-
gorithm finds an optimal compilation schedule by search-
ing through 96 out of 4 billion (12!) paths. However, due
to the heuristics A*-search uses for space pruning, it stores
all incompletely examined paths in memory. As the search
tree grows exponentially with the problem size, the space
requirement increases rapidly. In our experiments, when the
number of unique methods is larger than 6, the A*-search
program (written in Java) aborts for out of memory (2GB is
used for the heap size.)

6.2.6 IAR Overhead
Table 2 reports the time overhead of the IAR algorithm. For
most programs, the overhead is less than 1% of the whole
program execution time. The low overhead makes it afford-
able for online usage. But to achieve a good scheduling re-
sult, many other factors have to be considered as Section 8
will discuss.

6.3 Summary of Results
Overall, the experiments show that the IAR algorithm is
effective for approximating the optimal compilation sched-
ules. It produces schedules efficiently with a near optimal
performance on most programs; its linear time and space
complexity grants it high efficiency and scalability. On
the other hand, the experiments show that neither simple
heuristic algorithms (e.g. the single-level approximation)
nor heuristic search (e.g., A*-search) can provide scalable,
satisfying results.

By comparing the scheduling used in Jikes RVM with the
IAR algorithm and lower bounds, we see that a better compi-
lation schedule can bring speedup by as much as 1.6X on av-
erage. And the potential increases to a factor of 2.3 when the

perfect cost-benefit model is used. These results suggest that
enhancing the compilation scheduling is an important direc-
tion to explore, and improvement in the cost-benefit model in
a JIT compiler only highlights its importance further. Mean-
while, it shows that concurrent JIT adds minor improvement
when a good compilation schedule is used.

7. Potential Impact
The primary goal of this work is to enhance understand-
ing of how compilation ordering affects the performance of
JIT-based runtime systems. This study produces some major
findings towards that goal: It reveals the inherent computa-
tional complexity of the scheduling problem, offers meth-
ods for effectively approximating the optimal schedules, and
shows the large room left for improvement in existing sys-
tems.

The potential impact of this work is multifold. It points
out that compilation scheduling is an important direction for
enhancing JIT-based runtime systems. Its complexity find-
ings will help avoid efforts in searching for algorithms to
compute optimal JIT schedules. It offers the first practical
way to assess the JIT scheduling of runtime systems, from
which, virtual machine developers can easily see the room
left for improvement and allocate their efforts appropriately.
In addition, the insights from this work may offer some im-
mediate guidance for enhancing current virtual machines.
For instance, it shows that the first-time compilation of a
method should generally get a higher priority than recom-
pilations of other methods.

8. Complexities from Actual Runtime
Systems

The findings in this work shed some insights into enhancing
compilation schedules in virtual machines, but producing a
ready-to-use virtual machine with much enhanced compila-
tion schedules is a goal beyond the scope of this paper. This
section discusses some complexities for achieving that goal
in an actual runtime system.

The first barrier is in getting or estimating the call se-
quence of a production run. It could be tackled through some
recently developed techniques, such as cross-run learning
and prediction. Some studies (e.g., [5, 33]) have shown the
feasibility to learn various types of behavior patterns of a
program (e.g., loop trip-counts, function call relations) by
accumulating the data transparently sampled across produc-
tion runs of the program. There have been a lot of studies
in small-scope program behavior prediction [8, 18, 28, 35,
36]. And recent years have seen some development towards
large-scope program behavior sequence prediction [34]. Ex-
tending these techniques into call sequence prediction could
help remove this barrier.

The second barrier is in obtaining the accurate compila-
tion and execution times of a function at various optimiza-
tion levels. In some virtual machines, there are already some



kind of models for estimating those times. In Jikes RVM, for
instance, the times are estimated through some simple lin-
ear functions of the size of the function. The parameters of
those functions are obtained through some offline training
during the installation of Jikes RVM on a machine. How-
ever, such static estimations are often quite rough. For exam-
ple, different invocations of a function, even if they use the
same executable, may have different running lengths due to
differences in their calling parameters and contexts. More-
over, function inlining that happens in a run may substan-
tially change the length and execution time of the caller func-
tion. Furthermore, the time when a compilation happens may
also affect the execution time of a function. A later compi-
lation in a run may produce better code as the online pro-
filer collects more information about the program execution.
All these factors suggest that existing static estimations of
the execution times of a function are unlikely to provide
an accurate estimation. Development of the aforementioned
cross-run learning methods may help enhance the estimation
quality. On the other hand, finding out the relations between
estimation errors and the quality of an advanced schedul-
ing algorithm will also help: If the scheduling can tolerate a
good degree of estimation errors, building up an estimation
model to meet the requirement may be still feasible.

It is worth mentioning that due to the variations in ex-
ecution times as mentioned in the previous paragraph, de-
sirable results often cannot get produced when one directly
applies the results of the IAR algorithm—obtained on offline
collected average times—to a real program execution. Some
ways to extend the IAR algorithm to accommodate the vari-
ations in execution times will help its practical usage.

Unlike Jikes RVM, some runtime environments have in-
terpreters as part of their code translators for quick code gen-
eration. In fact, the lowest level of compilation in Jikes RVM
is designed in that spirit for the same purpose. It does not
build an intermediate representation nor perform register al-
location. In another word, that lowest-level compilation can
be regarded as a method-level interpreter. Similar schemes
are taken in other runtimes (e.g., V8). If we treat interpre-
tation as the lowest level compilation in the optimal com-
pilation schedule problem, the analysis and algorithms dis-
cussed in this paper can still be applied. Some extra care
may be needed for the interpreters that operate at the level of
a single statement.

We note that although these complexities complicate the
enhancement of compilation scheduling in real systems, they
do not alter the major conclusions from this study. For in-
stance, recall that we have used the average value of ei,j ,
for each given i and j, when computing the lower bounds of
program execution times. Because the total time a function
takes in a run equals the sum of the time it takes in all its
invocations, using the average does not skew the computed
lower bound of the execution time of the whole program run.
For the same reason, the variation does not affect the opti-

mality of the scheduling algorithm in the single-core case in
Section 4.1.

9. Related Work
The ParcPlace Smalltalk VM [11] and the Self-93 VM [17]
pioneer adaptive optimization techniques employed in cur-
rent virtual machines. Recent years have seen increasing at-
tentions payed to enhancing the performance of JIT-based
runtime systems. These efforts can be largely classified into
two categories, based on the main target of their optimiza-
tions.

The first category focuses on the internal design of the
JIT in runtime systems. Examples include the work on us-
ing machine learning to help JIT better decide the opti-
mizations suitable for a Java method [10, 24]. Several re-
cent studies on Javascript JIT have explored static and dy-
namic inferences of dynamic types to enable better code
specialization [2, 16, 19, 23]. In addition, a number of re-
cent studies have tried to refine trace detection, manage-
ment, and optimizations in trace JIT for modern scripting
languages [9, 13]. As Section 6 shows, enhancing the design
of JIT does not replace but reinforce the need for compila-
tion scheduling by exposing an even higher potential benefit
of scheduling.

The second category concentrates on JIT compilation
policies, especially on the determination of the appropriate
optimization level to use for compiling a function (or trace).
Most adaptive virtual machines use selective compilation,
which tries to find hot functions and optimize them more
than other functions [3, 27]. They typically contain a cost-
benefit model that decides the suitable optimization level for
a function based on its hotness, size, and other information.
Predicting the hotness of a function is critical for these sys-
tems. Most of them have relied on online profiling with the
assumption that a hot method in the past will remain hot in
the future [4, 21]. Some studies try to predict hotness based
on loop trip-counts [26] or phases [14]. All these studies
use information within a run to make the predictions. The
scheduling of the compilation events in the those studies is
mostly on-demand, just as the default scheme in Jikes RVM:
When a function is loaded or is selected by the online pro-
filing to be recompiled, the compilation event is inserted
into a compilation queue and is processed in the order of
their arrival. Their general guideline is to use a low level to
compile a function when it is loaded to get a good startup
time and later recompile it at a higher level when it appears
to be hot. This current study shows that the intuition-based
scheme leads to schedules that are far from being optimal in
practice.

Several studies try to exploit cross-run observations [5,
32]. They make it possible to predict the suitable opti-
mizing levels for a set of methods as program starts run-
ning. Such predictions allow more flexibility in scheduling
(re)compilations beyond the on-demand scheduling. How-



ever, these studies did not exploit the flexibility and used
similar scheduling schemes as the default system uses.

All these studies on compilation policies have aimed at
answering the questions on what functions are hot and what
levels to compile them, rather than when to (re)compile them
or in what order to (re)compile them.

There have been explorations on using concurrent JIT to
enhance the performance of virtual machines [7, 15, 22].
They have not systematically explored the influence of
the order of compilation events. Concurrent JIT may give
some performance boost to the default JVM, but introduce
contentions for computing resources with the application
threads. As Section 6 shows, when a good compilation order
is used, the gain from concurrent JIT over sequential JIT be-
comes marginal. How to combine these two complementary
approaches in practice is a problem for the future.

Another body of related work is ahead-of-time (AOT)
compilation for Java and other managed code. The idea of
AOT is to compile a program into native machine code
before executions of the program. Another technique that
shares a similar spirit of reusing native code cross runs is
persistent code caching [29], which stores the native code
produced in a run into some persistent storage for reuses
by later runs. Both techniques have shown some benefits in
performance enhancement. However, in practice, they have
been used in just some limited settings. Most programs in
managed languages are still JIT compiled at runtime, plau-
sibly for the portability and seamless handling of dynamic
types by JIT, and the maturity of modern runtime environ-
ments.

10. Conclusion
This paper describes the first principled study on unveiling
the full potential of compilation scheduling for JIT-based
runtime systems. Through some rigorous analysis, it reveals
the inherent computational complexity of finding optimal
compilation orders, proving the strong NP-completeness of
the problem. It empirically demonstrates the difficulty in
searching for an optimal schedule with the A*-search algo-
rithm. Prompted by the challenges, it proposes a heuristic
algorithm named the IAR algorithm, which yields near opti-
mal schedules for a set of benchmarks. The results enable a
systematic examination of the full potential of compilation
scheduling in modern runtime systems. This paper reports
experiments on two scheduling schemes, respectively corre-
sponding to those used in Jikes RVM and V8, concluding
that significant potential (1.6X on average) exists in adjust-
ing compilation schedules. It further shows that the potential
is even larger as the JIT internal design gets better. It also re-
veals that concurrent JIT gives only marginal gain in perfor-
mance when the compilation order is near optimal, suggest-
ing that enhancing compilation orders may be a more cost-
effective option than concurrent JIT in enhancing the per-
formance of JIT-based runtime systems. Overall, this study

concludes that improving compilation scheduling in modern
runtime systems is an important direction (although being
largely overlooked so far) for future runtime system designs.
The theoretical results, the IAR algorithms, and multi-fold
insights produced in this work lay the foundation for this di-
rection of research.
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