
ProfMig: A Framework for Flexible Migration
of Program Profiles Across Software Versions

Mingzhou Zhou, Bo Wu, Yufei Ding, and Xipeng Shen
Computer Science Department

The College of William and Mary, Williamsburg, VA, USA
{mzhou,bwu,yding,xshen}@cs.wm.edu

Abstract
Offline program profiling is costly, especially when software
update is frequent. In this paper, we initiate a systematic ex-
ploration in cross-version program profile migration, which
tries to effectively reuse the valid part of the behavior pro-
files of an old version of a software for a new version. We
explore the effects imposed on profile reusability by the var-
ious factors in program behaviors, profile formats, and im-
pact analysis, and introduce ProfMig, a framework for flex-
ible migrations of various profiles. We demonstrate the ef-
fectiveness of the techniques on migrating loop trip-count
profiles and dynamic call graphs. The migration saves sig-
nificant (48-67% on average) profiling time with less than
10% accuracy compromised for most programs.

Categories and Subject Descriptors D3.4 [Programming
Languages]: Processorsoptimization,compilers

General Terms Languages, Performance

Keywords Profile-Driven Optimizations, Profile Migra-
tion, Software Update, Change Impact Analysis

1. Introduction
Offline program profiling is important for revealing program
dynamic behaviors and guiding program analysis, optimiza-
tion, and refactoring. It instruments a program with some
monitoring instructions so that when the program runs, it
produces some profiles to capture some dynamic behaviors
of the software. However, the profiling time overhead can
be as significant as a factor of hundreds of the original ex-
ecution time [17]. Moreover, for software with a variety of
inputs, the profiling has to run on many inputs to get a com-
prehensive view of the program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
CGO ’13 23-27 February 2013, Shenzhen China.
978-1-4673-5525-4/13/$31.00 c©2013 IEEE. . . $15.00

The problem worsens when software update is taken into
consideration. Till now the common practice has been to re-
profile from scratch upon a software update. Since modern
software gets update as frequently as once every one or two
weeks, the discarding-recollecting scheme results in either
the usage of a huge amount of computing power for reprofil-
ing or the difficulty for conducting profile-based analysis or
optimizations.

In this work, we introduce the concept of cross-version
program behavior profile migration to alleviate the problem.
The basic observation is that an update to a program may not
affect every part of the program. It is hence likely that some
part of the profile remains valid despite the software update.
The goal of profile migration is to build up the profiles of
the dynamic behaviors of a new version of a software by
effectively reusing part of the old version’s profiles and se-
lectively reprofiling the new version. We refer to the process
as profile migration for brevity.

Although the idea seems natural, the idea has been only
preliminarily explored1. In this work, we offers a system-
atic study in this important direction, and provide ProfMig,
a framework that supports the migration of a variety of pro-
gram profiles in a flexible, extensible manner.

Specifically, this study consists of five components. First,
we explore the relations between profile migration and
change impact analysis. Change impact analysis refers to
software analysis techniques that try to identify the potential
consequences of a code change to a program. It has been
widely used in program testing [13–15], but not for profile
migration. In this study, we explore its role in this new task,
examine the applicability of various change impact analysis
techniques for the migration of a variety of profiles, and in-
vestigate the benefits of a hybrid change impact analysis that
adapts to given migration problems.

Second, we analyze the effects of various factors of pro-
gram behaviors and profile formats on the design of a pro-
file migration system. We reveal the multi-fold complexi-

1 There is some software on the market claiming to do profile migration,
but the data they migrate are user settings rather than program dynamic
behaviors.

ties caused by the granularity of the behavior units, the order
and nesting properties of the behavior. We show that being
oblivious to profile migrations, the default formats of many
program profiles are not amenable for migration for either
having a high level of abstraction or missing some important
meta data.

Third, after analyzing the various complexities, we pro-
pose a simple norm of identity and a hierarchical organiza-
tion of the identities to enable a uniform treatment to a vari-
ety of profiles. They provide a representation that unifies the
multiple profile migration steps into a cohesive process, sim-
plifying the coordination of the different steps, and enabling
easy adjustment of migration granularity.

Fourth, we develop ProfMig, a three-stage framework for
automatic profile migration with the flexibility for users’
customization. It supports migration of a variety of program
profiles. By integrating together the techniques developed in
this study, ProfMig features flexible adjustment of migration
granularity, automatic selection of change impact analysis
techniques, and an open design that allows the incorporation
of various profiles and profiling systems.

Finally, we introduce a set of metrics, and assess the
profile migration system on two types of behaviors, loop
trip-counts and dynamic call graphs. ProfMig saves 48-67%
average (up to 100%) profiling time with less than 10%
accuracy compromised for most programs, demonstrating
the effectiveness of the proposed techniques for enabling the
migration of different types of profiles.

As a seminal study in program profile migration frame-
works, this work opens up some new opportunities for low-
ering the barriers for applying profiling for program analy-
sis and optimizations, and also points out some future direc-
tions.

We organize the rest of the paper as follows. Section 2 of-
fers a formal definition of program profile migration and the
scope of this study, Section 3 analyzes the complexities for
enabling profile migration, Section 4 presents the solutions,
including a description of the ProfMig framework, Section 5
explains five metrics useful for assessing profile migration,
Section 6 reports experimental results, Section 8 discusses
the related work, and Section 9 concludes the paper.

2. Concept and Scope
As a problem that has not been systematically investigated,
cross-version profile migration deserves a formal definition.
Our definition is as follows:

DEFINITION 1. Cross-version program behavior profile mi-
gration is a process that builds up a collection of profiles for
a new version of a program by capitalizing profiles of its old
versions and selectively profiling its new version.

In this particular work, we assume that there are no
changes in the underlying platforms. Complexities brought
by platform changes are orthogonal to software update-

caused profile migration: Even when there is no software
update, the changes in underlying platforms may also trig-
ger changes in the program behaviors and hence the need for
profile update. This paper concentrates on the issues related
with version update.

Among the various behaviors of a program, some are
closely related with hardware such that whether an entry in
their profiles is affected by a code change depends on not
only the program code but also the hardware. An example is
cache miss. For a load instruction, even if it has no data or
control dependences on any changed code, its cache misses
can still be affected by the version update. For instance, if af-
ter the software update, the instructions right before it bring
much more new data into cache than in the earlier version,
a cache hit at that instruction may turn into a cache miss in
the new version’s execution. Certain hardware modeling is
necessary to fully capture the effects of a code change on the
profiles of this kind of behaviors. In this study, we concen-
trate on program-level behaviors that do not have such strong
hardware dependence so that we can focus on the core issues
in profile migration.

3. Complexities
Before designing a migration system, it is necessary to un-
derstand the various factors affecting profile migration and
the complexities they create. The main sources of complex-
ity are the large variety of program behaviors, their pro-
file formats, and the analysis for finding the scope of code
changes.

3.1 Complexities from Program Behaviors
Among the many properties of a program, the following two
are closely related with profile migration.

Behavior Unit Behavior unit refers to the level of program
constructs at which the profile is collected. This property
determines the smallest granularity for profile migration.
For instance, in a profile of function returning values, each
behavior corresponds to a function, and the unit of migration
can only be a function or some constructs beyond. As the
units may differ across program behaviors, it is important
to equip a migration system with the capability to adapt to
migration granularity at a range of levels.

Order and Nesting For some profiles, the collected behav-
iors form a sequence, and the order of the behaviors in the
sequence is critical. An example is a function call sequence.
It records the trace of function invocations in a run, useful for
identifying hot streams of function calls and dynamic opti-
mizations. The order of two function calls in the sequence
is important for that purpose. We call such profiles order-
sensitive profiles and others order-oblivious profiles.

Order-sensitive profiles can be further classified into iso-
lated or nested ones depending on whether the behavior se-
quence of one construct may be nested in the behavior se-
quence of another construct. A function call sequence is a

main (){
 foo ();
 fee ();
}

foo (){
 for (i=0; i<3; i++){
 fi();
 }
}

fee (){
 fj();
}

main (){
 fee ();
 foo ();
}

foo (){
 for (i=0; i<3; i++){
 fi();
 }
}

fee (){
 fj();
}

Original version New version

Figure 1. Two versions of an example program.

type of nested profile. Consider the original program in Fig-
ure 1. The call sequence of the original program is “main foo
fi fi fi fee fj”, where the call sequences within foo and fee
are embedded in the call sequence in main.

Order and nesting have some important implications to
profile migration. Without treating them correctly, migration
may fall into some pitfalls. For the example in Figure 1,
assume there is no data or control flow dependences between
foo and fee and the only code change of the new version is
the switch of the two underlined function calls. A migration
that is oblivious to the order and nesting of the profile may
recollect only the invocation order of foo and fee and use
that to replace the two corresponding items in the old profile,
producing an erroneous profile “main fee fi fi fi foo fj”.

3.2 Complexities from Profile Formats
In addition to the behavior properties, the format of the
profiling output is also important for profile migration, in
mainly two aspects.

Level of Abstraction The first is the level of abstraction of
the profiling results. Some profilers process the collected be-
haviors before outputting the extracted high-level informa-
tion to the file. This kind of profile is difficult to migrate due
to the interplays among program elements that the abstrac-
tion process exploits. An example is a hot function profiler
that collects the calling frequencies of all functions but only
outputs the K most frequently called functions: Whether a
function should be output to a profile depends on the calling
frequencies of both that function and all other functions. So
even if a function does not have dependences on any func-
tions that are modified, its appearance in the profile may still
be affected by the version update.

Meta Data The second aspect of profile format is the pres-
ence of meta data in the profile for matching the profile
content with program constructs. Most profilers, when out-
putting the collected data, also output the identities of the

corresponding constructs. But being migration-oblivious,
the output meta data may not suite the needs of profile mi-
gration well. A loop trip-count profile, for instance, usually
contains the trip-counts as well as the IDs of the correspond-
ing loops. The ID of a loop may be a global serial number
the compiler assigns to all the loops in the program. In that
case, profile migration may be applicable at loop level but
not easy to apply at function level as without extra com-
piler support, it is hard to map the loops to their enclosing
functions just from the profiles. If the ID uses the concate-
nation of the names of the function and file containing that
loops, along with the line number of the loop, the profile
migration at function level would become much easier than
before. Migration at a level higher than the unit level some-
times provides some practical advantages: The profile at a
low level may be difficult for migration due to strong in-
terplays among profile entries or limitations of the change
impact analysis. In general, what meta data profilers out-
put determines the applicability and flexibility of the profile
migration.

3.3 Complexities from Impact Analysis
An important step in profile migration is to find out the
impact of code changes in the new version of software. The
basic technique for this purpose is called change impact
analysis [1]. There have been lots of studies in it, but mainly
for software testing. For profile migration, the meaning of
getting affected by a code change is slightly different from
that in testing. We say that the impact of a code change
covers a program construct if the change alters the behavior
of the construct such that the profile of the construct shows
disparity from its profile in the old version (assuming same
inputs and running environment are used.)

Effectively applying impact analysis for this new purpose
faces some complexities. The first complexity is that for pro-
file migration, the answer to whether a code change covers a
piece of code is not absolute. It depends on both the type of
the profile and the program context. In the example shown
in Figure 1, the switch of the two underlined statements does
not affect the calling frequencies of the two functions, but
apparently affects the function invocation sequence. How-
ever, for the same example but in a different context, the
statement switch may affect the calling frequency of the two
functions as well. For instance, if the upper bound of the
loop in “foo()” is not 3 but a variable “N” that is modified
in “fj()”, the frequencies of “fi()” would be affected by the
statement switching. So to find out impact scopes precisely,
the design of a migration system must consider both the con-
text and the type of the profile.

The second complexity comes from the various granular-
ity, cost, and applicability of existing impact analysis tech-
niques. Existing techniques show a large variety. Some op-
erate at a function level by working on static or dynamic
call graphs [1, 15], some at a statement level through static
or dynamic program slicing [18], some explore object rela-

discrimination regeneration merging

new
version

old profiles

new profiles

old
version

reusable
profiles

to-profile
constructs

newly
added

profiles

Figure 2. Three steps of profile migration.

tion diagrams [9], some use whole path profiling [13], and
some combine different techniques [14]. As they are usu-
ally designed for a particular use other than profile migra-
tion, none of them consistently excels all others (as con-
firmed by empirical studies shown in Section 6.) Which one
to use depends on the type of profiles, the significance of
code changes, and the desirable level of cost and accuracy.
The design of a migration system must handle such differ-
ences in an adaptive manner.

4. Solutions to the Complexities
Among the complexities listed earlier, some need just a rea-
sonable design consideration, while others—including those
in impact analysis and those caused by the variety in be-
havior units and profile formats—require some systematic
support. In this section, we first describe our solutions to the
latter category by presenting a norm of identity and ProfMig,
a general framework for profile migrations. We then describe
how the design of ProfMig addresses the other complexities,
with some insights and guidelines highlighted.

4.1 Overview of ProfMig
We first give a high-level overview of ProfMig. ProfMig is a
three-stage framework for profile migration, as illustrated in
Figure 2. The first stage, discrimination, separates the part
of old profiles that are still valid for the new version from
the others. The second stage, regeneration, collects the parts
of the profiles that need an update. The third stage, merging,
combines the valid part of the old profiles with the newly
collected part to form the new profiles for the new version.

4.2 Norm of Identity and Hierarchy
Before describing the modules that implement each of the
stages, we first present a norm of identity and its hierarchical
organization we use as the underlying representation of the
target program2 for all the modules. As the last section men-
tions, the variety of program behaviors and profile formats
demands adaptivity from a migration system. The proposed
norm of identity and organization are simple, but meet such
a need.

In this norm, for a given program, every construct is iden-
tified by a three-element tuple, (level, file ID, line number).

2 This paper focuses on the cases when the source or byte code of the target
program is available.

“file_f1”

1: main (){
2: ...
3: foo();
4: for (i=...)
5: fee();
6: }
7:
8: foo (){
9: ...}

“file_f2”

1: fee (){
2: for (j=...){
3: ...
4: }
5: for (j=...){
6: ...
7: }
8: }

ID: (prog, *, *)
Ending: *

ID: (fun, file_f1, 1)
Ending: 6

ID: (fun, file_f1, 8)
Ending: 9

ID: (fun, file_f2, 1)
Ending: 8

ID: (loop, file_f1, 4)
Ending: 5

ID: (loop, file_f2, 2)
Ending: 4

ID: (loop, file_f2, 5)
Ending: 7

Figure 3. An example construct hierarchy with universal
IDs used (for clarity, the IDs are written as strings; they are
actually integers obtained through hashing.)

The level element indicates the level of the corresponding
construct. The current framework supports five levels: state-
ment, loop, function, class, program. New levels can be
added through an interface. The second element in the tu-
ple is the ID of the file containing the construct. We use an
integer for the ID by hashing file paths and names. The third
element is the line number of the first line of the definition
of the construct. We call this norm universal ID. It provides
a uniform, simple way to identify all levels of constructs. It
can be further hashed into an integer for conciseness.

With the identity norm, ProfMig builds up a construct hi-
erarchy for a target program. The root node stands for the
whole program. Every node in the hierarchy corresponds to
one construct entity in the program. The fields of a node
record the construct entity’s universal ID, ending line num-
ber (i.e., the final line of the definition of the construct in the
file), and a list of pointers pointing to its children nodes. The
children nodes correspond to the constructs the parent node’s
corresponding construct contains. Statement-level nodes are
not explicitly shown in the hierarchy: As the universal ID of
the statement contains its line number and the starting and
ending line numbers are recorded in each node, its parent
node can be easily determined. Figure 3 shows an example
of the hierarchy. The nodes at the second level from the top
correspond to the three functions defined in the two files; the
nodes at the third level correspond to the loops these func-
tions contain.

The hierarchy makes it simple to adjust migration gran-
ularity. For instance, if we have a profile with each entry
corresponding to a load statement, using the hierarchy, we
can easily find out the entries corresponding to all the loads
in a loop or a function and migrate the profile at these larger

Atomic changes
identification

new
version

old profiles

old
version

Change impact
analysis

Discrimination Mapping

Profile merging

atomic changes

new profiles

matching map

affected constructs

exempted
constructs*

exempted constructs

added profiles

reusable
profiles*

reusable
profiles

Selective
profiling

type of
behavior or
granularity

Figure 4. A profile migration framework.

granularities. It is especially useful for nesting behaviors as
we will show later.

For the norm of identity to take effect in profile migration,
the default profiler needs to be changed so that the entries
in the output have the universal IDs of their corresponding
constructs labeled. The change usually involves just simple
ID replacements.

The universal ID and construct hierarchy provide a rep-
resentation that unifies the multiple profile migration steps
into a coherent process, simplifying the coordination among
them and enabling easy adjustment of migration granularity.
We next describe each of the modules in ProfMig.

4.3 Modules in ProfMig
ProfMig separates concerns into six modules, as the grey
boxes in Figure 4 represent. These modules work in a mod-
ular but coherent way. Upon the norm of identity, they ma-
terialize the functions of the three stages outlined earlier in
Figure 2, offering a uniform, extensible framework for mi-
grating a variety of profiles. This section presents each of the
six modules by following the structure shown in Figure 4.

4.3.1 Identifying Atomic Changes
The first component detects atomic changes between the
two versions of the target program. Atomic changes refer to
code modifications at the semantic level that is amenable to
analysis [15]. Changes—such as, a local reordering of the
definitions of two functions—that affect no semantics of the
program are not considered.

Identifying atomic changes is a classic program analy-
sis problem. A representative approach is to use dynamic
programming to compare the syntactic parsing trees of two
programs [6]. Similar techniques have been implemented in
some modern tools (e.g., compare++, SmartDifferencer.) An
example is the exploitation of Eclipse project management to

derive atomic changes for Java programs [15]. Overall, even
though identifying the precise set of atomic changes may be
still difficult due to language complexities, mature tools exist
for deriving a reasonable approximation set.

Besides identifying atomic changes, this module also out-
puts a map between the two versions. With universal IDs, the
map indicates the IDs of the statements in the new version
that each unchanged statement in the old version matches.
This map is useful for profile reuses in the merging module,
as Section 4.3.4 shows.

4.3.2 Change Impact Analysis
The second module is to find out the impact of the atomic
changes identified by the first module. As a well studied
topic, change impact analysis has been used for selecting test
cases in software testing and guiding software development.
In this work, we introduce change impact analysis into pro-
file migration by addressing the two complexities mentioned
in Section 3.3, namely the dependence of change impact on
the type of profiles and program contexts, and the various
applicabilities of different impact analysis techniques.

For the first complexity, because of the difficulty in ad-
dressing the two kinds of dependences at the same time, we
separate the concerns to circumvent the difficulty. By leav-
ing the influence of profile types to a separate module to
consider, the design allows a profile-oblivious impact anal-
ysis module to be used. The module only tries to report all
the constructs whose behaviors (no matter of what types) are
potentially affected by the version update. A follow-up mod-
ule (the discrimination module in the next subsection) trans-
lates the report to profile-specific conclusions. This design
has multi-fold benefits. First, many existing impact analysis
tools can be easily plugged into the system without much
change required. Second, enhancement of impact analysis
becomes more focused because the main factor to consider
is just context. Finally, it gives the migration system good
extensibility. Making the system work for a different type of
profile needs no change to the impact analysis but several
invocations of the interface functions of the discrimination
module, which will be explained in the next subsection.

For the second complexity, from some empirical studies,
we derive a simple adaptive scheme to select the change im-
pact analysis suitable for a given migration task. In our em-
pirical studies, we exclude dynamic impact analysis tech-
niques as they typically incur substantial overhead. We con-
centrate on the following three techniques, which are repre-
sentatives of static impact analysis with a spectrum of ag-
gressiveness.

• BA: This refers to the classic method by Bohner and
Arnold [1]. It marks all functions downstream from (i.e.,
invoked after) a changed function as affected. It is an
intuitive design. But when the main function of a pro-
gram is changed, the method will mark all functions as
affected, giving the most conservative result.

• AG: This is an aggressive method. Like the BA method,
it also works at the level of functions, but only marks
functions containing atomic changes as affected.

• SL: This method works through static program slic-
ing. We use CodeSurfer3 for it. The analysis does inter-
procedure data and control flow dependence analysis to
identify all the statements affected by a change. Its re-
sult is always sound—that is, all statements affected by
a change will be marked. It is more precise than the first
two types of impact analysis. However, due to code am-
biguities caused by aliases and pointers, its result is often
more conservative than necessary.

As Section 6 will show, experimental results on the three
techniques suggest that when versions differ substantially,
SL is preferable; otherwise, AG is more desirable. We inte-
grate this rule into ProfMig to derive a simple hybrid impact
analysis.

• Hybrid: It uses the fraction of atomic changes over the
entire program (in terms of the number of statements)
as the metric of significance of changes. If that ratio
is higher than a threshold (10% in our setting), it uses
SL for impact analysis. Otherwise, it uses AG. This se-
lection policy is simple. It is possible to design some
more sophisticated policies, by for instance, giving dif-
ferent weights to different types of statements and dif-
ferent kinds of changes. In this study, we find that the
simple policy works fine and use it for our experiments.
But for extensibility, some interfaces are provided for re-
configuring the policy by adding weights to the types of
statements and changes.

In addition, ProfMig provides some standard interface for
users to add other impact analysis methods. Some simple
changes may be needed to make to the method so that it
works with universal IDs.

4.3.3 Discrimination
This module tries to identify the reusable entries in the old
profiles and indicate the constructs that need to be repro-
filed. The discrimination employs the output from the im-
pact analysis module. A user indicates either the type of be-
haviors in the profile or the level of granularity the user de-
sires for profile migration. In the former case, the discrimi-
nation module automatically infers the appropriate granular-
ity by checking the behavior against its built-in knowledge
base. The knowledge base is derived manually, containing
a list of typical behaviors—currently including loop trip-
counts, function calling frequencies, call graphs, load/store
strides [3, 20], statement-level data reuse distances [5]—
and their corresponding, finest migration granularities that
are appropriate. The knowledge base can be easily extended
through some interface. When the specified behavior is not

3 http://www.grammatech.com/products/codesurfer

in the knowledge base, the module asks the user to indicate
the granularity directly. The indication is in form of an inte-
ger, equaling the level in the construct hierarchy (described
in Section 4.2) that the granularity corresponds to.

The granularity decided by the knowledge base or users’
indication (denoted as GB) may differ from the granularity
(denoted as GI) used in the report from the impact analysis
module due to the particular implementation of the impact
analysis. The discrimination always uses the larger of them
(e.g., the one at the higher level of the hierarchy described
in Section 4.2.) This is because when GB < GI , no impact
information exist at the level of GB for profile migration,
while when GB > GI , migration at the GI level either
violates the restrictions given in the knowledge base (and
hence unsafe) or the preference of the user. When GB > GI ,
an impact report at the level GB is derived from the report
produced by the impact analysis module. The derivation is
simple: A construct at GB level is affected by a change if
any GI construct it contains is affected. The norm of identity
and hierarchy makes the derivation possible.

The discrimination module contains an iterator, which
goes through the entries in the profile construct by construct
(at the granularity of max(GI , GA)), and labels an entry
as reusable when the construct does not belong to the af-
fected construct set. Those entries form the reusable pro-
files*. Meanwhile, it puts the IDs of those constructs into an
exempted set (the exempted constructs* in Figure 4) so that
they will be exempted from reprofiling in the later modules.

The iterator is implemented based on the construct hier-
archy such that it can traverse all constructs at an arbitrary
level higher than the granularity level in the profile. It builds
on a base-level iterator, which can parse the output file of
the profiler of interest and enumerate its entries. The base-
level iterator is an interface to be instantiated by users be-
cause of the various possible formats of a profile. It also
carries a boolean property “order”, indicating whether the
entries in the profile is order-sensitive, and a boolean prop-
erty “nesting”, indicating whether the entries have nesting
relation. When both are true, every item enumerated by the
iterator carries the scope of its corresponding construct (e.g.,
the function execution span in Figure 5.) If a profile has no
scope labeled, the scope fields of the iterated entries are null,
and the discrimination uses the entire profile of a run as the
migration granularity.

4.3.4 Mapping, Selective Profiling, and Merging
The Mapping module translates the construct IDs in the
reusable profiles* and exempted constructs* to the IDs of
corresponding constructs in the new version of the program,
outputting reusable profiles and the exempted constructs set.
It does that by using the matching map produced by the
module of atomic changes identification.

The follow-up module, Selective Profiling, recollects the
profiles for the new version of the program without profiling
the constructs in the exempted constructs set. It reuses the

main foo fi fi fi fee fj

Figure 5. A function call sequence with function execution
span labeled by line segments. The labels expose the nesting
relation among the call subsequences.

default profiler. Because the default profiler can be in vari-
ous form and written in various languages, users’ changes to
the profiler is needed to add such a selective profiling feature.
The change usually involves simple modifications to the pro-
gram instrumentor so that it only instruments the constructs
in the non-exempted construct list.

The final module, Profile Merging, combines the recol-
lected profile data with the reusable profiles to form the pro-
files for the new version of the software. For ordered profiles,
it needs to find the appropriate positions of the recollected
data in a new profile (when the granularity is lower than the
level of a program) by checking the scopes labeled in the old
profiles.

4.4 Treatment to Other Complexities
In this part, we describe how ProfMig treats the other com-
plexities.

Order and Nesting As the previous section points out, for
an order-sensitive profile, the correctness of migration re-
sults can be seriously compromised if the order and nesting
are not carefully handled. One solution is to treat the entire
sequence in such a profile as a single unit for migration. It
avoids the safety issue, but any change in the sequence will
result in a recollection of the entire profile. A second option
is to employ the nesting information for a finer-grained mi-
gration. Recall the example in Figure 1. A migration oblivi-
ous to the order of function call sequences may end up pro-
ducing wrong call sequences. If we can have some labels
in the profile marking the span of a function execution as
illustrated in Figure 5, we will know the nesting relation be-
tween the subsequences “fi fi fi” and “foo”, and between “fj”
and “fee”. After recollecting the order of foo and fee in the
changed main function, we can determine the correct po-
sitions of the two subsequences in the new profile, getting
the correct profile “main fee fj foo fi fi fi”. Notice that the
two subsequences “fi fi fi” and “fj” are repositioned but not
recollected because their caller functions foo and fee are
not affected by the code change. As Section 4.3.3 mentions,
ProfMig adopts the second option, addressing the problem
by associating the profile iterator in the discrimination mod-
ule with two properties “order” and “nesting” and making
every item enumerated by the iterator carry the scope of its
corresponding construct.

Level of Abstraction Section 3.2 mentions that a profile
with a higher level of abstraction causes difficulty for migra-
tion, due to the interplays among program elements incurred
by the abstraction. The solution is to lower the abstraction

level by changing the profilers. The change is usually sim-
ple as the profilers often collect the lower level behaviors
already in order to derive the higher-level behaviors. For in-
stance, for the hottest methods profiling, the profiler can be
easily modified such that it outputs the calling frequencies of
all functions and uses a separate script to identify the K most
frequently invoked functions. In some cases, the change may
result in too much space usage; compression may help. A
general rule is that abstractions that combine the behaviors
of multiple units usually introduce dependences and hence
obstacles for profile migration. Such abstractions should be
avoided if possible to make the profile amenable for migra-
tion.

5. Evaluation Metrics
Being a preliminarily understood topic, profile migration
lacks studies in what metrics suit its evaluation. A simple
examination of the accuracy of the produced profile is insuf-
ficient because it cannot reflect the detailed effects (e.g., the
quality of the profile discrimination.)

In this work, we introduce a set of metrics to achieve a
comprehensive assessment. For clarity, we use the following
example for explanation.

A Loop Example: A profile migration system tries to mi-
grate loop trip-count profiles of a program from version V1
to V2. An old profile Fo contains 100 entries corresponding
to 100 loops in the program. The migration system identi-
fies 80 of the entries as reusable (denoted as set U) and the
other 20 as not (denoted as set Ū .) A manual examination
confirms that only 75 of the entries (denoted as set TP for
true positive) in U are truly reusable, and only 10 of the en-
tries (denoted as set TN for true negative) in Ū are truly not
reusable. The 5 mistakes in U are false positive cases, and
the 10 mistakes in Ū are false negative cases, denoted as set
FP and FN respectively. Based on its discrimination result,
the system reprofiles the loops in Ū and merges with the old
data of the loops in U to produce a merged profile for V2,
denoted as Fm. Let Fc represent the correct profile of V2.

We find five metrics useful, one for the accuracy of the
merged profiles, three for profile discrimination, and one for
time saved by profile migration.

(1) Acc. This metric is for accuracy, computed as the ratio
between the number of the entries in the generated profile
that are correct and the total number of entries in the real
profile. Here, each entry refers to one unit in the profiles.
For the loop example, an entry is the trip-count of a loop.
The Acc of the above loop example is (75+20)/100=95%
because only loops in TP and Ū have correct trip-counts in
Fm. (Loops in Ū are reprofiled.)

(2) Precision, Recall, F-measure. These three met-
rics are borrowed from information retrieval. They mea-
sure the quality of the profile discrimination. Precision is
defined as |TP |/|U |, showing the fraction of the claimed
reusable entries that are truly reusable. Recall is defined as

|TP |/(|TP | + |FN |), showing the fraction of the reusable
entries that are successfully identified. F-measure com-
bines precision and recall together to give an overall mea-
sure of the effectiveness of the discrimination, computed as
(2·precision·recall)/(precision+recall). For all these metrics,
the higher the better; the upper bounds are all 1.

(3) TS. This metric is the fraction of the time saved by
the profile migration. It equals the total reduction of pro-
filing time of all runs (with the profile migration overhead
counted) divided by the total profiling time of the new ver-
sion when migration is not used.

6. Experiments
In this section, we examine the effectiveness of the tech-
niques in helping migrate two types of profiles. The first is
loop trip-counts, each entry of which reports the number of
total iterations of a loop in an execution. The second is dy-
namic call graphs, each entry of which reports the caller of a
function and the number of times that caller calls that func-
tion. Even though both profiles are important for feedback-
driven program optimizations, they differ significantly in
granularity and structure: The former is in a linear structure
with loops organized in a list, and has loop as its finest mi-
gration granularity, while the latter is in a graphic structure
with strong connections between callers and callees, and has
function as its finest granularity. Moreover, their profilers are
implemented on two different infrastructures: LLVM [12]
for the former, and Gprof for the latter. These differences
help test the flexibility of the migration system.

6.1 Methodology
When finding benchmarks, we focus on the real-world soft-
ware that is the source for SPEC CPU benchmarks. They
cover a variety of domains. Among all the programs we
have examined, five are still actively maintained so that we
can find two versions of each of them that run successfully
on our platform (Suse Linux 2.6.37.6, Intel Xeon X5570,
2.93GHz.) Table 1 lists the characteristics of the programs.
All these programs are written in C/C++. They range from
utility programs to quantum computing, circuit routing, and
games.

Because typically software version update goes through
an incremental process, profile migration usually applies
to two close-by versions. However, even between the two
versions differing only in minor version numbers, some of
the programs (vpr and crafty) still show large differences
as shown by the two rightmost columns of Table 1. The
similarity in the table is defined as the fraction of the entries
in the actual profiles of the higher version that also appear
in the profiles of the lower version. We have experimented
with five difference inputs for each of the programs. The
similarities of these runs may differ; the table shows the
average.

For the time measurement, we count in all migration
overhead. We conduct five repetitive runs to get the average
as the final reported number.

6.2 Results
Overview Overall, the experiments show that for most of
the programs, ProfMig can save a substantial fraction of
profiling time with high profile accuracy preserved. For loop
trip-counts, it cuts profiling time by more than 90% for three
programs, 0–15% for the other two programs. The migration
results have accuracies all higher than 88%. More than 90%
of the profile entries that ProfMig marks as reusable are
indeed reusable. The amount of time savings in call graphs
migration is relative less (48% versus 61% on average) than
in the loop case because of the strong connections between
callers and callees in the profiles. But the overall results
still consistently show the promise of ProfMig in enabling
effective migrations of different types of profiles.

The results also indicate some opportunities for future
improvement. The most prominent is that ProfMig misses
some, sometimes a large number of, reusable profile entries.
The main reason resides in the conservativeness of the static
impact analysis. The consequence is most obvious for pro-
grams that contains lots of aliases and pointers and a good
volume of code changes from their old versions (exemplified
by the benchmark vpr.) It suggests the need for better impact
analysis techniques to be developed in the future.

Detailed Analysis Table 2 reports the detailed experimen-
tal results. It shows the comparison when ProfMig uses four
kinds of impact analysis (listed in Section 4.3.2.) The met-
rics used in the table are described in Section 5.

For loop trip-counts, the migration based on BA gives al-
most perfect accuracy for most programs; confirmed by the
high precision rates. An exception is libquantum. Libquan-
tum is a program containing some indeterminism for the
use of random numbers. The randomness causes some pro-
file entries to differ even though their corresponding code
is not affected by the version update. The BA-based mi-
gration saves some profiling time on libquantum but not on
other programs. The zero recall rates on the other four pro-
grams reflect the reason for no time savings on them: The
main function in all these four programs are changed in
the version update. Although most of the changes are not
critical for many loops’ trip-counts, the BA-based impact
analysis conservatively mark all the functions of those pro-
grams as affected by the changes. No reusable profile en-
tries are left. The F-measure for all the four programs is 0.
The code changes in libquantum happens in some functions
that are at the lower levels of the call chain, and is hence
more amenable for BA-based profile migration. For the 0.9
recall rate on libquantum, the migration saves over 99% pro-
filing time because the reused loops have higher trip-counts
and hence would require more reprofiling time than the other

Table 1. Characteristics of Benchmarks
Software Description Versions Numbers* of Changed Similarity

code lines loops functions functions loops call graphs
bzip2 data compressor 1.01; 1.03 7388; 7662 260; 253 123; 133 31 98.73% 100%
crafty computer chess program 23.1; 23.2 34907; 35056 542; 538 181; 182 19 78.40% 43.54%
libquantum computer quantum simulator 1.0; 1.1 4883; 4938 134; 135 144; 146 5 88.46% 81.33%
parser english parsing tool 4.0; 4.1b 18609; 18923 765; 765 642; 642 3 93.68% 90.77%
vpr circuit placement and routing 4.22; 4.30 22990; 25399 575; 645 419; 430 21 61.35% 54.87%

*: The numbers are of the two versions of the software with the number of the higher version following that of the lower version.

loops. Overall, BA-based migration offers high accuracy but
low time savings.

The migration based on SL gives accuracies compara-
ble to those from BA-based migrations. It saves much more
profiling time than the BA-based migration on crafty. How-
ever, its recall rates still remain below 30% for most pro-
grams. Manual analysis confirms the reason: The slicing
method, for producing sound results, reports much larger
impact scopes than the actual for an atomic change for the
aliases and pointers in the program. Given the considerable
number of changes between two versions as shown in Ta-
ble 1, the method results in a large number of false negatives
(i.e., an unaffected construct is labeled as affected.) Its F-
measures vary from 0.06 to 0.85.

The migration based on AG gives the highest time savings
for its aggressiveness in profile reuses. It recalls over 95% of
the entries that are truly reusable on programs libquantum,
parser, and vpr, 78% for crafty, and 35% for bzip2. The
relatively lower recall rate on bzip2 is because many code
changes in that program do not affect the loop trip-counts,
but AG-impact analysis conservatively assume the profiles
of all loops in a changed function are not reusable. The time
savings by this method ranges from 72% to nearly 100%,
with an average 93%. It is not as precise as the other two
methods, with precision ranging from 0.7 to 1. The accuracy
of the produced profiles is above 88% for three programs.
For the two programs with lower cross-version similarities,
crafty and vpr, the accuracy is 79% and 67%.

The bottom section of Table 2 reports the results of the
migration based on the hybrid impact analysis. By applying
a suitable impact analysis to each program, the approach
gains the best of both worlds, producing accurate profiles
with accuracy from 89% to 100% with an average 97%. It
meanwhile brings large time savings, with an average 61%.

The results on the call graphs show similar patterns as the
loop trip-counts do with slightly smaller time savings. Its
larger granularity and the coupling relations between callers
and callees result in relatively a lower fraction of reusable
profile entries. It is worth noting that no changes are made
to ProfMig to support the two different types of profiles; it
adapts to the profiles automatically.

The aggressive method is not as sound as the slicing
method, and may produce some false positives. In software
testing, which is the traditional chief usage of impact anal-

ysis, a false positive may prevent some affected construct
from being retested and hence cause threat to the software
reliability. But in the context of profile migration that mainly
assists program optimizations, the consequence is much less
serious. It may result in some errors in the produced profiles,
which may then mislead the optimizer somehow and ulti-
mately affect the quality of the produced code, but not the
reliability or correctness of the software. Moreover, many
optimizations tend to be resilient to a certain degree of pro-
file errors. So generally, false positives in impact analysis
are less harmful for optimization-oriented profile migration
than for software testing. We note that unlike the local ef-
fects by the false positives in impact analysis, the pitfalls
mentioned in previous sections of this paper are at the funda-
mental level. Incorrect treatment may result in whole-profile
errors. For instance, if order is not observed in the migra-
tion of function call sequences, the produced profile may be
entirely wrong.

Overall, the experiments demonstrate that profile migra-
tion is feasible in practice. The migration framework pro-
posed in this paper is promising to work for different kinds of
profiles. Assisted with adaptive impact analysis, the frame-
work can produce accurate profiles with large time savings.

7. Discussions
Profile migration may produce profiles with some errors.
Our experience on feedback-driven optimizations shows that
the real usage of a profile often has a certain degree of error
tolerance: Some amount of errors in the profile do not affect
optimization results much.

In the comparisons, we have focused on measuring the
direct quality of the profiles themselves. We did not use
the usage of the profiles for comparison mainly because
that metric largely depends on how sensitive the particular
usage is to profile accuracy. Since the sensitivity differs on
different usages, the errors in a generated profile may show a
minor effect on one usage but a large effect on another usage.
With that said, adding the results on some usages may still
help to show the ultimate influence of the profile errors. It is
part of our future work.

In this study, we have used sequential programs for eval-
uation. The profile migration techniques and framework can
be applied to parallel programs as well. A necessary exten-
sion is that the impact analyzer should be equipped with the

Table 2. Profile Migration Performance Results
Impact Software Loop trip-counts Call graphs
analysis Acc TS Precision Recall F-measure Acc TS Precision Recall F-measure
BA* bzip2 100% 0% 1.0 0.0 0.0 100% 0% 1.0 0.0 0.0

crafty 100% 0% 1.0 0.0 0.0 100% 0% 1.0 0.0 0.0
libquantum 88.8% 99.1% 0.9 0.9 0.9 81.1% 64.2% 0.8 1.0 0.9
parser 100% 0% 1.0 0.0 0.0 100% 0% 1.0 0.0 0.0
vpr 100% 0% 1.0 0.0 0.0 100% 0% 1.0 0.0 0.0
Average 97.8% 19.8% 1.0 0.2 0.2 96.9% 12.8% 1.0 0.2 0.2

SL* bzip2 100% 0% 1.0 0.04 0.08 100% 0.0 1.0 0.0 0.0
crafty 100% 15.1% 1.0 0.3 0.4 100% 0.0 1.0 0.1 0.2
libquantum 89.1% 100% 0.9 0.8 0.9 81.1% 64.2% 0.9 1.0 0.9
parser 98.1% 0% 0.9 0.2 0.3 100% 0.0 1.0 0.02 0.04
vpr 100% 0% 1.0 0.03 0.06 100% 0.0 1.0 0.0 0.0
Average 97.4% 23.0% 1.0 0.3 0.4 96.2% 12.8% 1.0 0.2 0.2

AG* bzip2 99.8% 91.2% 1.0 0.4 0.5 100% 91.3% 1.0 0.4 0.5
crafty 79.4% 72.5% 0.7 0.8 0.8 64.7% 0.1% 0.5 0.6 0.5
libquantum 88.8% 100% 0.9 1.0 0.9 81.1% 64.2% 0.8 1.0 0.9
parser 93.7% 100% 0.9 1.0 1.0 95.4% 85.8% 1.0 0.9 1.0
vpr 67.4% 100% 0.7 1.0 0.8 61.5% 0.001% 0.5 0.8 0.7
Average 85.8% 92.7% 0.9 0.8 0.8 80.5% 42.3% 0.8 0.7 0.7

Hybrid bzip2 99.8% 91.2% 1.0 0.4 0.5 100% 91.3% 1.0 0.4 0.5
crafty 100% 15.1% 1.0 0.3 0.4 100% 0.0 1.0 0.1 0.2
libquantum 88.8% 100% 0.9 1.0 0.9 81.1% 64.2% 0.8 1.0 0.9
parser 93.7% 100% 0.9 1.0 1.0 95.4% 85.8% 1.0 0.9 1.0
vpr 100% 0% 1.0 0.03 0.06 100% 0.0 1.0 0.0 0.0
Average 96.5% 61.3% 1.0 0.5 0.6 95.3% 48.3% 1.0 0.5 0.5

∗ BA: a classic method by Bohner and Arnold [1]. ∗ SL: forward slicing by Codesurfer. ∗ AG: aggressive function-level analysis.

semantics of some parallel constructs (e.g., locks). A de-
tailed study is our future work.

8. Related Work
There are several studies closely related with this work.
Wang and others present a binary matching tool, named
BMAT, which tries to reuse stale profiles through binary
matching [19]. It differs from our study in three main as-
pects. First, a main feature of our study is the general, modu-
lar design—including the norm of identity and the hierarchy
and the whole system design—which is essential for han-
dling various profiles with different impact change analysis
techniques used. The BMAT work only focuses on a specific
type of profile. Second, the BMAT work relies on binary ba-
sic block matching rather than change impact analysis. The
profile of a code region that is not changed is regarded as
reusable in BMAT, but not necessarily so in our method,
depending on whether it is affected by the code changes to
other regions. Third, BMAT works on binary code while our
method works on source code. The different levels entail dif-
ferent complexities (e.g., the needs for the norm of identity
and the hierarchy to allow flexible granularity adjustment in
our work; BMAT has a fixed granularity, basic blocks.)

Zhang and Gupta have studied the matching of the exe-
cution histories of program versions [21]. They design some
matching algorithms that match the entries in the histories by
examining these histories (rather than code) directly. It does

not generate profiles, nor does it do impact change analysis.
The Symdiff work by Lahiri and others offers a language-
agnostic tool for identify behavioral differences between two
versions of a program [10]. It can serve as a component in
our framework by, for example, replacing the Chianti for
atomic change analysis. Being language-agnostic, it may
help expand the applicability of our framework.

Some techniques used in our profile migration are derived
from some other domains. Atomic change identification has
been studied since 1980s. An example is the work by Hor-
witz in 1989, which uses dynamic programming to compare
the syntactic parsing trees of two programs [6]. The goal
of the analysis is to identify the code changes between two
versions that are relevant to the semantic of the program. An
unchanged construct, even though its execution may become
different due to the impact of the changes in some other con-
structs, is not identified in such analysis.

Change impact analysis extends atomic change identifi-
cation to find all constructs whose executions are potentially
affected by code changes in the program. Previous tech-
niques fall into three categories. The first relies completely
on static information. Examples include the usage of static
call graph described by Bohner and Arnold [1] and the ex-
ploitation of various sorts of relationships between classes
in an object relation diagram by Kung and others [9]. The
second category employs only dynamic information. Exam-
ples include the usage of whole-path profiling [11] in the

PathImpact by Law and Rothermel [13]. The third category
combines both types of information. Examples include the
CoverageImpact by Orso and others [14], and the Chianti by
Ren and others [15]. Change impact analysis is an important
component in profile migration. However, by itself, it is not
sufficient for identifying the reusable entries in a profile. As
we have shown, even if a construct’s execution is not affected
by code changes, its entry in the profile may not be directly
reusable (reprofiling or repositioning would be needed as the
call sequence example in Section 3 shows.) The reusability
depends on the order, nesting, and other properties of the
profiled behaviors that have been discussed in this paper.

An orthogonal way to reduce profiling cost is through
sampling. Examples include the sampling techniques for
program optimizations (e.g. [4, 7, 16]) and debugging (e.g., [2,
8]). Sampling trades accuracy for efficiency. It is comple-
mentary to profile migration. They can be used synergisti-
cally to achieve a better accuracy and efficiency.

9. Conclusion
In this paper, we have described a systematic study on pro-
gram behavior profile migration across software versions.
We explore the various factors related with profile migra-
tion, revealing the effects imposed on profile reusability and
migration granularity by the properties of the profiled behav-
iors, profile formats, and impact analysis. The exploration
leads to some fundamental understanding to the profile mi-
gration problem, yields some general guidelines for profile
migration, and points out some potential pitfalls. We propose
a six-module framework for profile migration. It uses a norm
of identity and hierarchy for representation to unify the mul-
tiple profile migration steps into a coherent process. It iso-
lates concerns and allows easy customization and extension.
Its applications to loop trip-count profiling and dynamic call
graph profiling demonstrate the feasibility and promising po-
tential of profile migration. This work is expected to open
many new opportunities for removing the barriers for the
application of profiling in software development and opti-
mizations.

Acknowledgment
We thank Ben Zorn for his suggestions to this work and great
help in enhancing the final version of this paper. We owe the
anonymous reviewers our gratitude for their helpful com-
ments to the paper. This material is based upon work sup-
ported by the National Science Foundation under Grant No.
0811791 and CAREER Award, DOE Early Career Award,
and IBM CAS Fellowship. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the National Science Foundation, DOE, or IBM.

References
[1] S. A. Bohner and R. S. Arnold. An introduction to software

change impact analysis. In Software Change Impact Analysis,

pages 1–26. IEEE Computer Society Press, 1996.

[2] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer:
Proportional detection of data races. In Proceedings of ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2010.

[3] B. Calder, P. Feller, and A. Eustance. Value profiling. In Pro-
ceedings of International Symposium on Microarchitecture,
1997.

[4] W. Chen, S. Bhansali, T. M. Chilimbi, X. Gao, and
W. Chuang. Profile-guided proactive garbage collection for
locality optimization. In Proceedings of PLDI, pages 332–
340, 2006.

[5] C. Ding and Y. Zhong. Predicting whole-program locality
with reuse distance analysis. In Proceedings of ACM SIG-
PLAN Conference on Programming Language Design and Im-
plementation, pages 245–257, San Diego, CA, June 2003.

[6] S. Horwitz. Identifying the semantic and textual differences
between two versions of a program. Technical Report 895,
University of Wisconsin-Madison, 1989.

[7] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. Moss,
Z. Wang, and P. Cheng. The garbage collection advantage:
improving program locality. In the Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions, 2004.

[8] G. Jin, A. V. Thakur, B. Liblit, and S. Lu. Instrumenta-
tion and sampling strategies for cooperative concurrency bug
isolation. In Proceedings of ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Ap-
plications, 2010.

[9] D. C. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and
C. Chen. Change impact identification in object oriented
software maintenance. In Proc. of the International Conf. on
Software Maintenance, 1994.

[10] S. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebelo.
Symdiff: A language-agnostic semantic diff tool for impera-
tive programs. In Proc. of the Computer Aided Verification
(CAV ’12), 2012.

[11] J. R. Larus. Whole program paths. In Proceedings of ACM
SIGPLAN Conference on Programming Language Design and
Implementation, Atlanta, Georgia, May 1999.

[12] C. Lattner. LLVM: An Infrastructure for Multi-Stage Opti-
mization. PhD thesis, Computer Science Dept., Univ. of Illi-
nois at Urbana-Champaign, 2002.

[13] J. Law and G. Rothermel. Whole program path-based dy-
namic impact analysis. In Proc. of the International Conf. on
Software Engineering, 2003.

[14] A. Orso, T. Apiwattanapong, and J. Harrold. Leveraging
field data for impact analysis and regression testing. In
Proc. of European Software Engineering Conf. and ACM SIG-
SOFT Symp. on the Foundations of Software Engineering
(ESEC/FSE03), 2003.

[15] X. Ren, S. Fenil, T. Frank, R. G. Ryder, and C. Ophelia.
Chianti: A tool for change impact analysis of java programs.
In the Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2004.

[16] D. Schuff, M. Kulkarni, and V. Pai. Accelerating multicore
reuse distance analysis with sampling and parallelization. In
Proceedings of International Conference on Parallel Architec-
tures and Compilation Techniques, pages 53–64, 2010.

[17] X. Shen, J. Shaw, B. Meeker, and C. Ding. Locality approxi-
mation using time. In Proceedings of the ACM SIGPLAN Con-
ference on Principles of Programming Languages (POPL),
pages 55–62, 2007.

[18] F. Tip. A survey of program slicing techniques. J. of Program-
ming Languages, 3(3), 1995.

[19] Z. Wang, K. Piece, and S. McFarling. BMAT – a bi-
nary matching tool for stale profile propagation. Journal of
Instruction-level Parallelism, 1(6), 2000.

[20] Y. Wu. Efficient discovery of regular stride patterns in irreg-
ular programs. In Proceedings of ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
Berlin, Germany, June 2002.

[21] X. Zhang and R. Gupta. Matching execution histories of pro-
gram versions. In Proc. of European Software Engineering
Conf. and ACM SIGSOFT Symp. on the Foundations of Soft-
ware Engineering (ESEC/FSE05), 2005.

