
Sweet KNN: An Efficient KNN on GPU through
Reconciliation between Redundancy Removal and

Regularity

Guoyang Chen, Yufei Ding, and Xipeng Shen
Computer Science Department

North Carolina State University

Raleigh, NC, USA 27519

Email: {gchen11,yding8,xshen5}@ncsu.edu

Abstract—Finding the k nearest neighbors of a query point
or a set of query points (KNN) is a fundamental problem in
many application domains. It is expensive to do. Prior efforts in
improving its speed have followed two directions with conflicting
considerations: One tries to minimize the redundant distance
computations but often introduces irregularities into computa-
tions, the other tries to exploit the regularity in computations to
best exert the power of GPU-like massively parallel processors,
which often introduces even extra distance computations. This
work gives a detailed study on how to effectively combine the
strengths of both approaches. It manages to reconcile the polar
opposite effects of the two directions through elastic algorithmic
designs, adaptive runtime configurations, and a set of careful
implementation-level optimizations. The efforts finally lead to a
new KNN on GPU named Sweet KNN, the first high-performance
triangular-inequality-based KNN on GPU that manages to reach
a sweet point between redundancy minimization and regularity
preservation for various datasets. Experiments on a set of datasets
show that Sweet KNN outperforms existing GPU implementations
on KNN by up to 120X (11X on average).

I. INTRODUCTION

K-Nearest Neighbor (KNN) is an algorithm for finding the
k points in a target set that are closest to a given query point.
As a general-purpose mean of comparing data, KNN is com-
monly used in a variety of fields (information retrieval, image
classification, pattern recognition, etc). It has been rated as one
of the top-10 most influential data mining algorithms [1], and
has received many attentions in data engineering [2]–[5].

The basic KNN algorithm is inherently expensive, requiring
the computations of the distances from the query point to each
target point. When there is not just one but a set of query
points, the process could take a long time to finish. Such a
problem setting is also known as KNN join problem—it is the
focused setting in this paper.

There have been a number of studies trying to improve
KNN efficiency. They fall into two main categories.

The first category focuses on minimizing the amount of
distance computations. They are primarily about algorithm-
level optimizations. Several previous studies, for instance,
have shown that a clever usage of triangular inequality can
avoid most unnecessary distance calculations in KNN [4],
[6], [7]. Others have studied the usage of KD-tree [8]–
[10], approximations [2], [11], [12], and other algorithmic

optimizations for a similar purpose. While these methods
try to minimize redundant distance computations, they often
introduce irregularities into the computations. For instance,
in Ding and others’ triangular inequality work [4], several
condition checks are used to filter out unnecessary distance
calculations. The checking results may differ on different data
points. Consequently, the computations (execution paths and
sets of operations) may differ across data points.

The second category focuses on implementation-level op-
timizations, trying to better leverage underlying computing
systems for acceleration. The most prominent example is the
recent efforts in speeding up KNN through Graphics Process-
ing Units (GPU) [13]–[15]. As these systems typically feature
massive parallelism best suiting regular data-level parallel
computations (i.e., the processing of all data points follows
the same execution path), this category of efforts attempt to
enhance the regularity in computations. These efforts however
often introduce extra redundant computations. For instance,
the state-of-the-art implementation of KNN on GPU [13]–
[15] uses the matrix multiplication routine in a highly tuned
linear algebra library CUBLAS [16] to compute the distances
between the query and target point sets. Even though the
approach may end up computing the distances between two
points twice (e.g., when the query set equals the target set) due
to the matrix multiplication formulation of the problem, the
increased regularity allows CUBLAS to better take advantage
of the GPU computing resource, achieving a high speed.

The two directions of efforts take opposite means, as illus-
trated in Figure 1. One tries to minimize redundancy through
algorithmic optimizations, but introduces irregularities; the
other tries to enhance regularity, but adds extra redundant
computations. As a result, the two directions of efforts have
been going separately. An exception is the work by Barrientos
and others [14], which tries to implement a region-based
KNN algorithm on GPU. It, however, shows only a modest
speed (even much slowdown in some settings compared to
prior work), thanks to the tension between regularity and
redundancy.

This paper describes our efforts in battling the principled
tension faced in merging the two directions of efforts to make
KNN efficient. We specifically concentrate on developing an
efficient triangular inequality-based KNN on GPU. We inves-
tigate a set of techniques to effectively reconcile the opposite

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.116

623

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.116

623

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.116

623

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.116

609

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.116

609

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.116

609

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.116

609

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.116

609

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.116

609

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.116

621

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.116

621

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.116

621



KNN Opt 
Alg. Opt. 

Irregularity 
Less computations 

Imple. Opt. 

Regularity 
More computations 

Alg.     &    Imple.  

 

Fig. 1. Two main directions for speeding up KNN.

means of the two directions. At the algorithm level, we
introduce an adaptive design, which, based on the properties
of the current data sets, automatically adjusts the algorithm
and parallelism on the fly to reach a sweet point between
regularity preservation and redundancy minimization. At the
implementation level, we explore optimizations of data layout
and data placement on memory and thread-data remapping to
remove irregularities in the computations.

Putting these techniques together, we create Sweet KNN,
an efficient KNN implementation on GPU. By reaching a
sweet point between redundancy minimization and regularity
preservation, Sweet KNN achieves 11X average (up to 120X)
speedups over the prior GPU implementations of KNN.

The rest of the paper is organized as follows. Section II first
gives some background knowledge. Section III then describes
our basic implementation of triangular inequality-based KNN
on GPU. Section IV elaborates on our solutions for dealing
with the regularity-redundancy tension to bring out the large
potential of Sweet KNN. Section V reports the experimental
results. Section VI concludes the paper with a short summary.

II. BACKGROUND

This section presents some background on GPU, triangular
inequality and its role in KNN.

A. GPU

As a massively parallel architecture, GPU features hun-
dreds or thousands of cores. GPU is often equipped with
several types of memory. On Tesla K20c, for instance, the
memory consists of global memory, texture memory, constant
memory, shared memory, and a variety of cache. These types of
memory differ in size, access constraints and latency. When a
GPU kernel gets launched, usually thousands of threads will be
created and many of them start running on GPU concurrently.
These threads are organized in a hierarchy: 32 consecutive
threads form a warp and they execute in lockstep, a number
of warps form a thread block, and all blocks form a grid.
When a GPU function (called a GPU kernel) is launched, many
GPU threads get created, which all execute the same GPU
function. Thread ID is used in the kernel code to differentiate
the behaviors of the threads.

There are two factors that critically affect the performance
of a GPU program. The first is memory coalescing on global
memory. Roughly speaking, when the memory locations ac-
cessed by all the threads in a warp fall into a small memory
segment (128 bytes), the accesses will get coalesced and

one memory transaction is sufficient to bring all. Otherwise,
multiple memory transactions would be needed.

The second factor is called thread divergence. It happens
when the threads in a warp diverge at the values of some condi-
tion checks, which lead them into executing different branches
of the condition statements (e.g., some threads execute the
“if” branch while others execute the “else” branch). Upon a
thread divergence, the different groups of threads’ executions
get serialized. When one group is executing one branch, the
other group has to wait in idle.

Both factors entail the importance of regularity for a GPU
kernel to gain high performance on GPU. When a kernel con-
tains lots of condition checks and irregular memory accesses,
consecutive threads may end up diverging in control flows and
memory segments to access, resulting in low performance.

B. Triangle Inequality (TI) and Landmarks

KNN involves extensive point-to-point distance calcula-
tions. Previous works [4] have shown that TI is a theorem very
useful for avoiding some unnecessary distance calculations.

A formal definition of TI is as follows:
Let q, t, L represent three points and d(pointA, pointB) repre-
sent the distance between pointA and pointB in some metric
(e.g., Euclidean distance). Triangular Inequality (TI) states that
d(q, t) ≤ d(q, L) + d(L, t). The assistant point L is called a
landmark.

Directly from the definition, we could compute both the
lowerbound (LB) and upperbound (UB) of the distance be-
tween two points as follows. Figure 2 gives an illustration.

LB(q, t) = |d(q, L)− d(t, L)| (1)

UB(q, t) = d(q, L) + d(t, L) (2)

q t

L

Fig. 2. Illustration of distance bounds obtained from Triangular Inequality
through one landmark L.

The bounds can be used to approximate the distance
between the query and the target point and avoid the need
for computing their distances in KNN. For example, suppose
that the so-far kth closest distance to query point q is dk, and t
is the next target point to check. As long as LB(q, t) ≥ dk, we
can simply omit the computation of the exact distance between
q and t as t cannot be part of the k points closest to q.

A simple extension to the theorem leads to an alternative
method for distance estimation. It uses two landmarks, with
one close to the query and the other close to the target, as
Figure 3 shows. The lowerbound (LB) and upperbound (UB) of
the distance can be estimated as follows (assuming d(L1, L2)
is much larger than d(q, L1) and d(L2, t)):

LB(q, t) = d(L1, L2)− d(q, L1)− d(L2, t) (3)

UB(q, t) = d(q, L1) + d(L1, L2) + d(L2, t). (4)

624624624610610610610610610622622622



q t

L1 L2

LB(q, t) = d(L1, L2)  d(q, L1)  d(L2, t)

UB(q, t) = d(q, L1) + d(L1, L2) + d(L2, t) 

Fig. 3. Illustration of how two landmarks can be used for computing lower
and upper bounds of distances.

The proof is shown in previous work [4].

C. TI-Based KNN

TI-based KNN uses the aforementioned triangular inequal-
ity (both one and two-landmark cases) to avoid some unneces-
sary distance calculations. Understanding the TI-based KNN
algorithm is needed for following the rest of this paper.

Before reviewing TI-based KNN, we first introduce a set
of notations to be used in the rest of this paper.

Q: a set of query points;
T: a set of target points;
k: the number of nearest neighbors to find;

mq: the number of clusters formed on Q;
mt: the number of clusters formed on T;

dk(q,T): The distance from a point q to its kth

nearest neighbor in a target data set T.
It is also called the kth nearest neighbor
distance of q.

Figure 4 outlines the pseudo-code of the TI-based KNN.
It contains three main steps.

Step 1: Initialize Clusters

This step first, through function detLmNum(Q,T) in Fig-
ure 4, determines the number of clusters (mq and mt) to
form on the query set and the target set respectively. The
method is to set the numbers to 3 ∗√|Q| and 3 ∗√|T| (if
the space is not enough, use the largest possible numbers). It
then creates landmarks for both the query set and the target set
through sampling or other pivot selection techniques [3], [4],
[17]. Our practice (init(Q, T, mq , mt) in Figure 4) follows
the previous work [4] as detailed in Section III-A. The init
function then assigns each query or target point to the closest
landmark, forming query clusters and target clusters. We also
call the landmark of a cluster its center. For each query cluster,
this step records the maximal distance from its members to the
cluster center. For each target cluster, it records the distances
from each of its points to the center, and sorts those points in
descending order of the distances.

After Step 1, the algorithm starts a loop, treating each query
cluster. There are two main steps in the treatment.

Step 2: Choose Candidate Clusters (level-1 filtering)

The purpose of this step is to exclude some target clusters.
For one query cluster, there may be several target clusters
which are far away from the query cluster such that points in

those target clusters are impossible to be among the k nearest
neighbors of any point in the query cluster. This step tries
to find such target clusters and exclude them from further
consideration. It does it in two substeps:

Step 2.1: Calculate the Upper Bound (calUB(q, Ct, k) in
Figure 4). This substep calculates the upper bound UB, which
is a value no smaller than dk(q,C

t) for all q ∈ q. It calls
getUBs(q, cj, k) on each target cluster (cj ∈ Ct), which
returns k bounds, with the ith bound being guaranteed to be
no smaller than di(q, cj) for all q ∈ q.

To get the k bounds, getUBs(q, cj, k) uses TI (the 2-
landmark case). It is illustrated in Figure 5, in which, u, v,
and w are three points in t1 that are closest to the landmark
c1, while a is the point in q that is farthest from landmark
cq . The bounds returned by getUBs(q, c1, 3) would be
d(a, cq) + d(cq, c1) + d(c1, u), d(a, cq) + d(cq, c1) + d(c1, v),
and d(a, cq) + d(cq, c1) + d(c1, w), per the second equation
shown in Figure 3. (Step 1 has prepared the needed info for
this step.)

Procedure calUB(q, Ct, k) pools all these upper bounds
of all target clusters together, and picks the kth smallest among
them as the UB for the query cluster1. That ensures that UB is
no smaller than the kth nearest neighbor distance of any query
point.

Step 2.2: Filtering based on UB (groupFilter(UB, q,
C) in Figure 4). This substep goes through every target cluster.
For a given target cluster, it calculates the lowerbound (l) of the
group-to-group distances from the query cluster to the target
cluster (getLB(q, t) in Figure 4). It does it by applying the
triangular inequality (2-landmark case) to the points in q and
t that are farthest to their centers. In Figure 5, for instance,
getLB(q, t1) returns d(cq, c1)− d(a, cq)− d(f, c1) (a and f
are the farthest points in q and t1 from cq and c1 respectively).
If UB < l, then this target cluster is too far from the query
cluster. Otherwise, it is chosen as a candidate target cluster for
the query cluster for further examination.

Step 3: Point-level filtering (level-2 filtering)

This step (pointFilter(S, q, UB) in Figure 4) examines
the points in the candidate target clusters to find k nearest
neighbors for each query point. It tries to avoid unnecessary
distance calculations at each point. It first sorts the candidate
target clusters in ascending order based on the distances from
their centers to the query center. Recall that in Step 1, points
in a target cluster are already sorted in a descending order of
their point-to-center distances. In such an order, the algorithm
examines all the candidate target points when treating each
query point. The order is essential for effective filtering. When
examining each of the candidate points (t), it applies triangle
inequality (1-landmark case) to the target point (t) and the
query point (q) as follows: l = d(q, tc) − d(t, tc), where tc
is the target center. The algorithm computes d(q, t) only if
|l| ≤ UB. If l > UB, thanks to the order of examination,
this target point and all remaining points in the target cluster
are too far from the query point (as their lower bounds

1There are some subtle optimizations: getUBs(q,t,k) may terminate early if
its newly attained upper bound is already greater than the kth smallest bounds
seen so far.

625625625611611611611611611623623623



// Input:  
//     Q: query dataset; T: target dataset;  
//     k: # of nearest neighbors to find 
// Output:  
//     R: the set of the k nearest neighbors 
Main Procedure of TI-based KNN
// Cq, Ct: grouping of Q and T by landmarks 
1. [mq, mt] = detLmNum(Q, T); //# landmarks to create
2. [Cq, Ct] = init(Q, T, mq, mt); // cluster Q and T
3. foreach q in Cq // foreach query cluster
4.    UB = calUB(q, Ct, k);
5.    candGroups = groupFilter(UB, q, Ct);
6.    R = R  pointFilter(candGroups, q, UB));

// group-level filtering 
Procedure groupFilter(UB, q, C)
1.     V = {};
2.     foreach cj in C
3.          l = getLB(q, cj); 
4.     if (l < UB) // close enough
5.          V = V {cj};
6.     return V;

// get k UBs of the k shortest distances from q to t 
Procedure getUBs(q, t,  k    )
  use 2-landmark TI to calculate k upper bounds,    
  with the jth being the upper bound of the jth 
  shortest point-to-group max distances from 
   cluster q to cluster t.

Procedure getLB(q, t)
   use 2-landmark TI to calculate the 
   lower bound of group-to-group min  
   distances from cluster q and cluster t.

// get UB of the kth nearest neighbor  
// distances of a cluster q, regarding  
// the set of target point clusters C 
Procedure calUB(q, C, k)
1.   W = {};
2.   foreach cj �C //foreach target cluster
3.        W = W  getUBs(q, cj, k); 
4.   return the kth smallest value in W

// point-level filtering 
// q: a cluster of query points 
// S: a set of target point groups; points in each group are decreasingly ordered on point-to-center distances 
Procedure pointFilter(S, q, UB)
1.  S.sort(); // increasingly sort groups in S based on the distances from their centers to the center of c
2.   foreach point q in q
3.     u = UB;
4.     foreach cluster e in S
5.        foreach point t in e
6.           l= d(q, ec) - d(t, ec); // ec is center of e;
7.           if (| l |  u)  // a point possibly close enough 
8.             calculate distance to see whether t is indeed close enough; 
9.             if so, update u and the nearest neighbors of q with the kth nearest distances of q;
10.         else if (l > u) 
11.           break; // no other points in e can be close enough due to the order of the points in e 
12.  return the collection of the k nearest neighbors of every query point.

Fig. 4. Pseudo-code of the basic TI-based KNN.

q

t1

t2

t3
a cq

c1

c2

c3

u

v
w

f

Fig. 5. Illustration of the use of TI by getUBs() and getLB() in Figure 4.

increase monotonically), and can hence be safely skipped from
checking. (Note l can be negative; if l < −UB, the remaining
points of the target cluster still need to be checked.) UB gets
updated (tightened) throughout the process.

III. BASIC IMPLEMENTATION OF TI-BASED KNN ON

GPU

Previous work [4] has shown that TI-based KNN can avoid
a large portion of distance calculations, outperforming the
standard KNN by orders of magnitude. But making it work
efficiently on GPU is challenging for all the condition checks
and irregular memory accesses the 2-level filtering incurs.

Our exploration starts with a basic implementation of the
TI-based KNN on GPU, which is presented in this section.
Next section will present our optimizations for reconciling the
redundancy removal by TI and the irregularities it introduces.
The description in this section follows the three steps outlined
in the previous section.

A. Step 1: Initialize Clusters

Recall that this step is to create some landmarks for both
the query and target sets, and assign each point to its closest
landmark to form a number of clusters.

In our GPU implementation, the landmark generation fol-
lows the same algorithm as in the previous work [4]. For the
query dataset, we create a GPU kernel to randomly generate
3 ∗ √n candidate landmarks for a dataset containing n points
and compute the sum S of all the pair-wise distances among
these landmarks. The kernel repeats the process for several
(empirically we find that 10 strikes a good tradeoff between
the overhead and the clustering quality) times and choose the
set of candidates that have the largest sum S as the landmarks
to use.

To find the closest cluster center for each query point, |Q|
threads are created with each working on one query point. Each
thread calculates the distances between the query point and
every cluster center, and assigns the query point to the closest
cluster center CQi. It also updates the maximal distance in
this cluster CQi by using a user-defined floating-point atomic
operation on GPU.

The work for the target clusters is more involved as it
requires sorting the distances. The work consists of two main
tasks: recognizing the members of each cluster and putting
them into a container, and then sorting each container based
on the distances from its members to the center of that cluster.
A complexity is that the numbers of members in the clusters
are unknown before the clustering, and could differ much
between different clusters. Using dynamic data structures as
the containers can circumvent the problem but would incur
large overhead. In our implementation, we address the issue
through two kernel calls. The first kernel creates |T | threads

626626626612612612612612612624624624



with each calculating the distances between a target point and
all cluster centers, finding the closest center, and recording
the distance. It increases the corresponding cluster size by 1,
and uses that size as the local ID of this target point in that
cluster. By the end of the kernel, the size of every cluster
becomes clear. The following CPU code then allocates a GPU
array for each cluster accordingly. The second kernel then
goes through all target points and puts each into the array
of its cluster. The local IDs recorded in the first kernel helps
avoid synchronizations in this step: For a target point with
local ID equaling i, a thread just needs to put it into the ith
location in the array of its cluster. Without local IDs, one may
append a target point to the end of a list, which would require
atomic operations because other threads may try to append
other points to the end of the same list at the same time.
The avoidance of synchronizations makes the implementation
efficient.

B. Step 2: Choose Candidate Clusters (level-1 filtering)

As the previous section mentions, this step contains two
substeps. The amount of parallelism of the two substeps
differs.

In substep 1, to estimate the UB of the kth nearest neighbor
of each query cluster, we need to go through all target clusters.
Due to the data dependencies involving the update to UB of
a query cluster, we create |CQ| threads with each working on
one query cluster. (We use |CQ| and |CT | to represent the
number of query clusters and the number of target clusters
respectively.)

Substep 2 is to filter some clusters by comparing the lower
bounds with the UB of the query points. Here the calculated
lowerbound is for each pair of query cluster and target cluster.
There is no data dependency between different pairs, so we
create |CQ| ∗ |CT | threads with each working on one pair
(CQi, CTj). The pseudo code of filtering the clusters is shown
in Algorithm 1.

Algorithm 1: KNN level-1 filtering on GPU

input : query clusters CQ, target clusters CT
output: candidate target clusters close to each query

cluster

1 qc = getAQueryCluster();
2 tc = getATargetCluster();
3 qcDist = EuclDistance (CQ[qc].center, CT[tc].center); //

distance between centers
4 if qcDist - CQ[qc].maxWithinDist -

CT[tc].maxWithinDist < CQ[qc].UB then
5 cnt = atomicAdd(&CQ[qc].candidatesCount, 1);

CQ[qc].candidates[cnt] = {tc, qcDist};

C. Step 3: Point-level filtering (level-2 filtering)

Algorithm 2 shows the pseudo code of the GPU kernel
for the level-2 filtering of TI-based KNN. Each GPU thread
handles one query point (corresponding to one iteration of
the loop at line 2 in Procedure pointFiler(S, c, UB) in
Figure 4). The thread’s ID (tid) is taken as the index of the
query point in Q. It identifies the ID of the corresponding

query cluster (cid) at line 2 in Algorithm 2. Recall that in Step
2, each query cluster already gets an upperbound of its kth

nearest neighbor distances. That upperbound (CQ[cid].UB) is
used by the GPU thread as the initial upperbound for filtering
(line 3 in Algorithm 2). The thread uses array kNearests to
track the k nearest neighbor distances of the query point. It is
initially set to the k nearest neighbor distances of the query
cluster (line 4 in Algorithm 2) and gets refined in the following
loop (line 5).

Algorithm 2: KNN Level-2 Filtering Algorithm

input : Q (query dataset), T (target dataset), CQ, CT , k
output: k nearest neighbors of each query point

1 tid = get thread id();
2 cid = Q[tid].clusterID; // cluster of the query
3 θ = CQ[cid].UB; //upperbound of the cluster
4 kNearests = CQ[cid].kUBs; //upperbounds of the cluster
5 for tc = 0 to CQ[cid].candidateTargetClusters do
6 q2tc = Edistance(Q[tid].point, CT[tc].center);
7 for t = 0 to CT [tc].membersize do
8 //apply triangular inequality
9 q2t lb = q2tc - CT [tc].member[t].distFromCenter;

10 if q2t lb > θ then
11 break;
12 else if q2t lb < -1.0 * θ then
13 continue;
14 else
15 q2t = Edistance(Q[tid].point,t);
16 if q2t < kNearests.max, evict kNearests.max,

and put q2t into kNearests.
17 θ = kNearests.max;
18 end
19 end
20 end

Each iteration of that loop examines one candidate target
cluster. Line 6 calculates the distance from the query to
the target cluster center (function “Edistance” calculates the
distances between two points). The loop at line 7 examines
each point in the target cluster. It then applies 1-landmark TI:
Line 9 gets the difference between the query-to-target center
distance and the point-to-center distance of the target point.
Lines 10 to 18 compares the result with the upperbound (θ)
to determine whether it is necessary to calculate the distance
between the query and the target. Only if |q2t lb| < θ
(line 14), it is necessary. After getting that distance, if it is
smaller than the current kth distance (i.e., kNearests.max in
Algorithm 2), it removes the kth distance from kNearests,
and puts this new distance into it. It then updates the upper
bound with the new kNearests.max.

For easy understanding, our explanation assumes that each
thread has its own kNearests array. In our implementation,
they are actually put together into one big array, as illustrated
in Figure 6 (a) and (b). These two graphs illustrate two possible
memory layouts of kNearests. Our experiments show that
the second layout gives better performance than the first.
The reason is that as the threads in a warp go through their
respective part of the array, they access consecutive locations
in the second case but not in the first case. Hence the second
layout gives more coalesced memory accesses, which is hence
used in our basic implementation.

627627627613613613613613613625625625



. . .

. . .

. . .

for quefo qu ry 1y

. . .

. . .

. . .

for quefo qu ry 2y

for quefo qu ry 3y

.

for quefo qu

..

ry ny 

for q
uee

q
rry 1
y

for q
ue

q
f

rry 2
y

for q
ue

q
f

rry 3
y

.

for q
ue

q
f

rry n
y

(a) Layout 1 (b) Layout 2

Fig. 6. Memory layouts for kNearests (locations on one row are consecutive
on memory).

IV. SWEET KNN

This section presents Sweet KNN. Sweet KNN builds upon
the basic TI-based KNN design described in the previous
section. It overcomes its limitations by optimizing the design
in three aspects: making some key algorithmic design elas-
tic, minimizing the impact of irregularities TI introduced by
carefully matching the computations with GPU characteristics,
and creating an adaptive scheme to automatically tailor the
algorithm configurations on the fly for each problem instance.
These optimizations help Sweet KNN strike a sweet point
in the tradeoff between redundancy removal and regularity
preservation.

A. Overview

The benefits of applying triangle inequality to KNN mainly
come from two parts. First, it can reduce unnecessary distance
calculations. When the dimensions of points are large, the
cost of distance calculation is high. With triangle inequality,
the benefits can be substantial. Second, in the prior KNN
implementations on GPU that use CUBLAS [13], [15], the
distance between each query point and each target point is
stored in global memory. With triangular inequality, only
distances between each query cluster and each target cluster
and the point-to-center distances within each cluster need to be
stored in memory, reducing the memory usage and the overall
access latency.

However, the basic implementation described in the pre-
vious section sometimes even runs slower than the prior
CUBLAS-based implementations (detailed in Section V). The
primary reason is the irregularities introduced into the com-
putations by the applications of triangular inequality. For in-
stance, each level of TI-based filtering involves some condition
checks, on which, threads in a warp could diverge. At level-
1 filtering, the divergences could happen when different query
clusters have different sets of candidate target clusters; at level-
2 filtering, the divergences could happen when different queries
have different updates to kNearests array and differ in the
comparisons with the upperbound. Similarly, the disparity in
candidate clusters and candidate neighbors of the different
queries could cause threads of a warp to access memory loca-
tions distant from one another, causing many none-coalesced
memory accesses. In comparison, the prior CUBLAS-based
implementation computes the distances from all queries to all
targets and have a simple consistent computation pattern for
all threads, much more GPU-friendly.

This section describes a set of techniques Sweet KNN
uses to reconcile the redundancy minimization with its side
effects on computation regularity. The key is two-fold: to make
the design elastic such that the tradeoff between redundancy
and parallelism can be adjusted on the fly through an adap-
tive scheme; to make the implementation better match the
performance characteristics of GPU. As the adaptive scheme
adjusts configurations at the levels of both algorithm and
implementation, we postpone its description to the end of
this section. We will first describe the enabled algorithm-level
elasticity, and the set of implementation-level changes.

B. Enabling Algorithmic Elasticity

The elasticity we introduced into Sweet KNN is mainly on
the 2-level filtering and the algorithmic parallelism, two most
critical aspects on the performance.

1) Filter Design: The first aspect we make elastic is the
strength of the level-2 filter.

The two levels of filtering in TI-based KNN involves many
condition checks, updates to the upperbounds, and frequent
accesses to the kNearests array. Our measurements show that
when k is modest, the filtering benefit outweighs the negative
performance impact of these complexities. But when k is
large, the kNearests array becomes large, and updating it
incurs lots of overhead. Also, each thread has more possible
locations to access, hence more opportunities for threads to
show disparities in behaviors.

The essence of our idea is to reduce the differences among
threads and avoid kNearests update overhead by simplifying
the filter design when k gets large. Specifically, we let the
level-2 filtering use the UB obtained from the level-1 filtering
without further updating it, and avoid using kNearests at all.
All results calculated at line 15 in Algorithm 2 are stored into
global memory, from which, a later launched GPU kernel finds
the k minimal distances. We call this weakened filtering partial
level-2 filtering and the original full level-2 filtering.

The design of the weakened filtering has two benefits. First,
it directly reduces the number of memory accesses to these
data structures, which are typically non-coalesced accesses.
Second, the reduced filtering strength reduces the divergences
of threads in the filtering checks. Our experiments (detailed in
Section V) show that most distance computations could still
be saved even with the weakened level-2 filtering.

When k is modest or small, the full filtering should be used
as the partial filtering would leave some potential untapped.
The details on choosing the strength of the level-2 filtering
will be presented in Section IV-D.

2) Parallelism: Besides filter design, parallelism is a sec-
ond dimension that we find important to be made adjustable.
In our basic implementation, each GPU thread handles one
query point. The amount of parallelism is determined by the
number of query points. When the number of query points is
modest, the parallelism could be insufficient to take the full
advantage of the GPU computing resource.

We hence extend the basic KNN level-2 algorithm to make
parallelism elastic. Besides the query-level parallelism, we
also exploit the parallelism in the loops at lines 5 and 7 in

628628628614614614614614614626626626



TABLE I. AN EXAMPLE OF WARP DIVERGENCE FOR KNN WITHOUT

OPT

threadID QpointID QclusterID Candidate ID
0 0 4 10, 8, 5, 1

1 1 5 9, 7, 3

... ... ... ...

100 100 4 10, 8, 5, 1

101 101 5 9, 7, 3

... ... ... ...

365 365 4 10, 8, 5, 1

366 366 5 9, 7, 3

... ... ... ...

TABLE II. AN EXAMPLE OF WARP DIVERGENCE FOR KNN WITH MAP

threadID QpointID QclusterID Candidate ID
0 0 4 10, 8, 5, 1

1 100 4 10, 8, 5, 1

2 365 4 10, 8, 5, 1

... ... ... ...

64 1 5 9, 7, 3

65 101 5 9, 7, 3

66 366 5 9, 7, 3

... ... ... ...

Algorithm 2, by allowing multiple threads to work for one
query point concurrently when the query-level parallelism is
insufficient.

We use a lightweight runtime model to automatically de-
termine the number of threads to create and how the iterations
of the two-level nested loop shall be assigned to the threads.
We describe the model when we explain our adaptive scheme
in Section IV-D3.

With multiple threads processing candidates in parallel,
updating the heap storing k-nearest neighbors may cause race
conditions (if the full filtering is used). To solve it, we make
each thread operate on its own local heap which stores the k-
nearest neighbors the thread has seen so far. The upper bound
θ in Algorithm 2 is kept shared among the threads working on
the same query point, they use atomicMin to update θ. After the
kernel finishes, for one query point, there will be a number of
sorted heaps where each stores k nearest candidates. The final
step is to launch |Q| threads with each thread working to select
the k minimal value from all the sorted heaps related with one
query point. As each heap has been sorted, a technique similar
to the one in merge sort is used in this step.

C. Implementation-Level Optimizations

At the implementation level, we develop three main op-
timizations to further mitigate the effects of the computation
irregularities caused by the TI-optimizations.

1) Thread-Data Remapping: Thread-data remapping is a
way to reduce thread divergences [18]. The basic idea is to
adjust the assignments of tasks to threads such that threads
in a warp, after the reassignment, could have no or minimum
divergences. We implement this idea in Sweet KNN to further
reduce the influence of the irregularities in computations.

We focus on the divergences at lines 5-20 in Algorithm 2
for its seriousness. Our basic TI-based KNN uses an intuitive
way to process query points: Thread i handles the ith query
point. It works well for the sequential version on CPU [4], but
causes many warp divergences on GPU.

Table I shows an example. Threads 0, 100 and 365, for
instance, will need to examine the same candidates clusters
(10,8,5,1) as they work for query point 0, 100, 365 respectively,
which happen to be in the same query cluster. However, these
threads are not in the same warp. Thread 1 is in the same warp
as thread 0, whose candidate clusters that need to examine are
totally different. As a result, warp divergences happen, leading
to not only serialization in execution but also poor memory
performance.

To address the issue, Sweet KNN creates a map between
thread IDs and query point IDs that the thread will work for.
The map is constructed such that to the largest degree, threads
in the same warp work for query points in the same cluster
and they iterate over the similar sets of candidate clusters
in the same order. Table II illustrates the new map between
threads and query points in our example. (The information of
candidates—such as membersID, dist2cluster—can be shared
among threads in the same warp.)

For the basic KNN, each query cluster only needs to
record the maximum point-to-center distance. To create such a
mapping, Sweet KNN records query members for each query
cluster during initialization of clusters. Each query cluster
copies its member IDs to a continuous segment of the map
where the starting address is attained through the use of the
atomic function in GPU atomicAdd(&start addr, memberSize).

2) Data Placement: GPU has various types of memory of
different attributes as Section II mentions. Previous studies
have shown that placing data onto the appropriate types of
memory could have some large influence on GPU program
performance. The best placement however is determined by
many factors: the access patterns to the data, the data size, the
effects of the placement on the overall GPU resource pressure,
and so on.

We build data placement optimization into Sweet KNN.
Particularly, we focus on the placement of the kNearests
array(s) on memory. As we have seen, the array is frequently
updated and read throughout the TI-based KNN. Its placement
hence has some substantial influence on the overall perfor-
mance.

Because the array is not read-only, it cannot be put onto
some read-only types of memory (e.g., constant memory).
Three options are valid: global memory, shared memory, and
registers. Each has its pros and cons. For example, global
memory has the largest memory size but has the longest access
latency. Shared memory has a much limited size, but as it is on-
chip memory, it is much faster to access than global memory
is. Register file is the fastest to access among the three. Its
size is also limited. If more registers are needed for a kernel,
the registers may get spilled into L1 cache, L2 cache or global
memory [19], causing a lot of overhead. Moreover, too much
usage of shared memory and registers per thread could result
in a situation where only a small number of threads could get
deployed on GPU due to the limited overall resource on GPU.
If the usage of registers are too large, it would be better to use
global memory instead of registers.

Because of the dependence of the appropriate placements
on the problem size and many other runtime factors, we de-
velop a module in our adaptive scheme to decide the placement

629629629615615615615615615627627627



1st dim of all points 2nd dim of all points

all dims of point 1 all dims of point 2

…   …  …   …   …   …

…   …  …   …   …   …

(a) column major

(b) row major

Fig. 7. Memory layouts of data points.

at runtime. The details are given when we explain the adaptive
scheme in Section IV-D.

3) Data Layout: Previous implementations of the basic
KNN on GPU use a column-major data layout format to store
all query and target points in order to make memory accesses
coalesced. The layout is shown in Figure 7 (a). That layout
fits the computation patterns of the basic KNN well as threads
in a warp need to simultaneously access the same dimension
of different data points. The layout puts the same dimension
of different points together, creating coalesced accesses.

That layout however does not work well for TI-based KNN
because TI-based KNN avoid most distance computations.
Their accesses to the data points tend to have some irreg-
ular strides. Our experiments show that the row-major layout
illustrated in Figure 7 (b) can actually better fit the needs of TI-
based KNN. In addition, to maximize the bandwidth efficiency,
we use vector loading(float4) for each read.

D. Adaptive Scheme

This subsection describes the adaptive scheme that we have
developed in Sweet KNN. By customizing the TI-based KNN
algorithm and implementation on the fly to best fit the data
sets, the adaptive scheme is a key for Sweet KNN to strike a
good balance between redundancy elimination by TI and the
regularity preservation of computations for GPU.

There are many factors that could affect the performance
of TI-based KNN:

1) Some are the factors associated with KNN problem
itself (e.g. query dataset Q, target dataset T, number
of nearest neighbors to find k, data dimensions d, w/
or w/o index information for the results).

2) Some are about the GPU hardware (e.g., memory
size, number of SMs, registers, etc.).

3) Some are parameters of the triangle inequality-based
optimizations (e.g., # of clusters, parameters in the
two-level filtering).

The influence of these factors are often coupled with
one another. For instance, the number of points and GPU
memory size limit the number of clusters that can be created
to filter target points. The adaptive scheme in Sweet KNN
tries to consider the most important factors to make practically
appropriate decisions. As a scheme coded into Sweet KNN,
it runs when Sweet KNN is invoked and quickly configures
Sweet KNN based on the current dataset. It is hence important
to make the scheme as lightweight as possible.

Figure 8 outlines the selection of three main aspects of
our design. (If query datasets are partitioned to fit into GPU

Q, T, k

k/d<8?
Yes No

Level-1 TI filtering; 
updating upperbound

Level-1 TI filtering; 
updating upperbound

Full level-2 TI filtering; 
updating upperbound

k*4

kNearests in 
shared mem.

in registers
in global 

mem.

Partial level-2 filtering; no  
upperbound update

|Q|>=r*max_cur? 

Query level 
parallelism

Multi-level 
parallelism

k*4<=th1

Yes No

k*4>th2

o.w.

Fig. 8. Adaptive scheme used in Sweet KNN (th1 and th2 are two thresholds
described in Section IV-C2.) Q: query dataset; T: target dataset; k: number of
nearest neighbors to find; d: data dimension.

memory, Q in Figure 8 represents one of the partitions.) Based
on the ratio between k and d (the data dimension), it decides
whether the full 2-level filtering or the partial 2-level filtering
(i.e., the one without frequent update of upperbounds) shall
be used. As the full filtering needs to create local kNearests
for each thread, the algorithm decides the placement of these
local data structures based on the needed size (sizeof(float)∗
k) according to the discussions in Section IV-C2. Finally, it
decides whether fine-grained (inside-query) parallelism shall
be used. We explain each of them further as follows.

1) Filtering Strength and Number of Landmarks: Two most
time-consuming parts in KNN are 1) computing distances, and
2) selecting k minimal distances for each query point. When
k/d exceeds a certain level, the second part becomes more
important than the first one. Using the partial filtering can help
reduce the overhead of the second part. Based on empirical
observations, we find that the scenarios for the partial filtering
to outperform the full filtering is when k/d > 8 (the top part
in Figure 8).

The number of landmarks determines the number of clus-
ters to be formed for the TI-based filtering to function. A
good setting helps eliminate 99% unnecessary distance calcu-
lations [3], [4]. According to a previous work [3], we set the
number to 3

√
N for N points if the memory is large enough. If

the memory is insufficient, Sweet KNN uses the whole global
memory size as the budget to calculate the largest number of
clusters allowed.

2) Data Placement: When the full filtering is used, each
thread has a local kNearests array to store the k shortest
neighbor distances that the thread has seen so far. As Sec-
tion IV-C2 mentions, the placement of the array is important
for performance. We develop a simple mechanism to decide the
appropriate placements on a given problem instance. Through
query APIs, the mechanism first gets the hardware information

630630630616616616616616616628628628



(shared mem size, number of registers). It then sets the first
threshold to th1 = shared mem size/max currPerSM ,
where, shared mem size represents the size of shared
memory on one stream multiprocessor (SM) on GPU, and
max currPerSM represents the maximal number of threads
that can run concurrently on an SM. Only if the size of
one kNearests array is no greater than th1, it is considered
for shared memory. To determine whether we should place
kNearests onto register files, we set the second threshold to
th2 = max regPerThread ∗ 4 Bytes (th2 is greater than
th1 on GPU because of the larger size of registers than shared
memory). Here, max regPerThread represents the maximal
number of registers a thread can use. Only if kNearests is
less than th2 (and greater than th1), it is declared as a local
variable in the kernel such that it could possibly be placed into
registers.

This design gives a higher priority to shared memory over
register files. The rationale is that due to the usage of registers
in the other parts of the kernel, the register file is more likely to
be the resource limiting the number of threads per SM, while
the shared memory is not used for any other data structures.

On Kepler GPU, for instance, the shared memory size is
48KB per SM, and the register file size on one SM is 64K.
If the maximal number of threads can run concurrently on an
SM is 2048, the two thresholds we get are th1 = 24 and
th2 = 1024.

3) Parallelism: With the parallelism made adjustable,
Sweet KNN may depend on the problem instance to decide
whether to leverage only the cross-query parallelism or both
the cross-query and inside-query parallelism. And in the latter
case, how many threads to use for each query point and at
which level of parallelism each thread shall work are also
subject to runtime adaptation.

The adaptive scheme in Sweet KNN makes these decisions
based on the GPU hardware limit and the properties of
the problem instance. The total number of threads is set to
(r ∗ max cur), where, max cur is the maximum number
of threads that can be concurrently active on the GPU, and
r is a cache conflict factor. The value of max cur can
be automatically calculated according to the GPU hardware
properties (shared memory size, register file size, etc.) and
the amount of shared memory and register usage in the GPU
kernel [20]. Previous work [21] has shown that for memory-
access intensive programs, using the maximum concurrency on
GPU often causes serious conflicts in GPU cache accesses and
hence low throughput. Our observation on KNN echoes it. We
use r to factor in that consideration. Our empirical study shows
that r = 0.25 consistently works well for various settings of
KNN.

For |Q| query points, when |Q| is greater or equal to
r ∗ max cur, only query-level parallelism is exploited as it
is sufficient to keep the GPU busy. Otherwise, there will be
r∗max cur

|Q| threads working for each query point. We consider

that the member size of each cluster is roughly
|T |
|CT | (recall,

|CT | is the number of target clusters). So the inner loop (line

7 in Algorithm 2) is parallelized by a factor of
|T |
|CT | while the

outer loop (line 5 in Algorithm 2) is parallelized by a factor

of r∗max cur
|Q| / |T |

|CT | .

TABLE III. DATASETS FROM UCI

Data Set Full name Number of Points Dimension

3DNet 3D spatial net-
work

434874 4

kegg KEGG
Metabolic
Reaction
Network
(Undirected)

65554 29

keggD KEGG
Metabolic
Reaction
Network
(Directed)

53414 24

ipums IPUMS Census
Database

256932 61

skin Skin Segmen-
tation

245057 4

arcene Arcene 100 10000

kdd KDD Cup
1999 Data

4000000 42

dor Dorothea Data 1950 100000

blog Blog Feedback 60021 281

For the practical deployment of the adaptive scheme, we
implement multiple versions of the relevant GPU kernels
and insert dynamic checks into Sweet KNN to choose the
appropriate versions to invoke at runtime.

V. EVALUATIONS

In this section, we report some experimental results we
obtained when comparing the efficiency of Sweet KNN with
other alternatives. The results are promising: We observe up to
120X speedups over the state-of-art GPU implementation of
KNN (k=1 on a 3D spatial network dataset) with an average
speedup as much as 11X. Our experiments cover a set of
different input datasets. Besides reporting the speeds, we also
analyze the impact of different settings of parameters on KNN.

A. Methodology

Our experiments use a system equipped with Intel Xeon
E5-1607v2 processors and an NVIDIA K20c Kepler GPU.
CUDA 7.5 is used. Table III shows 9 data sets from the
UCI machine learning repository [22]. We select data sets by
following 3 rules: (a) the value of each attribute should be
numeric; (b) the datasets should cover a good spectrum of
sizes; (c) the dimensions of the points in the datasets should
cover a wide range as well. Without noting otherwise, the same
dataset is used as both the query and target dataset in all the
experiments, and the number of nearest neighbors to find (k)
is set to 20. (Section V-C1 studies the sensitivity on different
k values.)

The state-of-the-art GPU-based KNNs that are publically
available employ one of two ways in their implementations:
purely using CUDA or leveraging the matrix-matrix mul-
tiplication routine in some high-performance GPU library
such as CUBLAS [16]. Our survey finds that the CUBLAS-
based KNN in a package by Garcia and others [13], [15]
gives the best performance, outperforming other CUDA-based
implementations by up to 10X. We hence downloaded the code
of that version [23] as the baseline in our comparisons.

That baseline version uses a two-stage scheme in the
implementation. First, it uses a CUBLAS-based GPU kernel
to compute all the distances from every query point to every

631631631617617617617617617629629629



0
1
2
3
4
5
6
7
8
9

10
11
12

Sp
ee

du
p(

X)
 

Datasets 

Basic KNN-TI

Sweet KNN

 22 44    15 24   

Fig. 9. Overall speedups over the CUBLAS-based basic KNN on GPU.

target point, and stores these distances on the GPU global
memory. Then, it launches a second GPU kernel, with each
GPU thread sorting the distances of a query point and finding
the k target points that have the minimal distances to the query
point. If the dataset is too large for the GPU memory, the basic
KNN partitions the query dataset such that the memory usage
of each partition can fit into the GPU memory.

When running our method, we use 256 as the thread
block size. Tuning the size could possibly lead to even better
performance; but our following results show that even with-
out tuning, our method already outperforms the state of art
significantly.

B. Overall Performance

Figure 9 shows the overall speedups over the CUBLAS-
based basic KNN. The KNN-TI results are the performance of
the basic implementations of triangular inequality-based KNN
on GPU (i.e., the version in Section III). The Sweet KNN
results are the performance of the TI-based KNN with the
optimizations and adaptive algorithm in Section IV applied
upon the basic KNN-TI implementation.

The calculations of the speedups have considered all the
overhead (e.g., the preprocessing to form clusters and queries
and targets). Each experiment is repeated for a number of
times. As we did not observe any substantial fluctuations, we
report the average results.

As we can see, the basic KNN-TI can provide on average
5X speedups over the baseline. It shows slight slowdowns on
some datasets (arcene, dor, and blog). Sweet KNN-TI improves
the performance of the basic KNN-TI version significantly.
It outperforms the baseline substantially on every dataset,
showing on average 11.5X speedups.

To help explain the speedups, Table IV shows the profiling
details of the level-2 filtering algorithm (Algorithm 2) of the
basic KNN-TI and Sweet KNN. We add a profiling variable
to count every distance calculation. The saved computations
is calculated as (|Q| ∗ |T | − count)/(|Q| ∗ |T |). Warp ef-
ficiency is obtained from the NVIDIA hardware profiling
tool (nvprof) [24], defined as the ratio of the average active

TABLE IV. PERFORMANCE DETAILS OF KNN-TI AND SWEET KNN.

Data Set
Basic KNN-TI Sweet KNN

saved comp. warp effi. saved comp. warp effi.

3DNet 99.7% 16.3% 99.7% 29.4%

kegg 99.5% 8.7% 99.5% 42.4%

keggD 99.5% 10.1% 99.5% 35.5%

ipums 99.4% 11.8% 99.4% 33.3%

skin 99.7% 19.6% 99.7% 41.2%

arcene 26.9% 59.5% 1.82% 89.8%

kdd 99.6% 7.1% 99.6% 57.4%

dor 91.5% 20.9% 70.1% 78.6%

blog 99.5% 21.2% 99.5% 35.3%

threads per warp to the maximum number of threads per warp
supported on a GPU multiprocessor. It characterizes the degree
of utilization of the GPU cores.

As the results show, for datasets other than arcene and
dor, triangle inequality can save more than 99% distance
computations. Sweet KNN has on average a 3X higher warp
efficiency than KNN-TI, thanks to the reductions of thread
divergences and non-coalesced memory accesses and the in-
creases of parallelism brought by the optimizations in Sweet
KNN.

On datasets 3DNet and Skin, both KNN-TI and Sweet
KNN achieve the most significant speedups among all datasets.
Because the baseline version of KNN computes and stores the
distances between every query and every target point, the total
memory space needed for it to handle either of the two datasets
exceed the amount of memory on the GPU. The baseline
KNN partitions the query points into a number of groups (e.g.,
175 groups for 3DNet) such that the memory can hold the
results of each group. It processes these groups one by one.
The GPU thread occupancy in the processing of each group
is relatively low, while the amount of memory accesses is
tremendous. Both KNN-TI and Sweet KNN avoid 99.7% of
the distance calculations. That brings two other benefits: They
can avoid most of the memory accesses and stores needed by
the basic KNN, and fit the processing of more query points
onto GPU in one kernel execution and hence more parallelism.
Sweet KNN exploits even more parallelism for its multiple
levels of parallelizations. It uses 434874 and 245057 threads to
work for each query point in one kernel execution for 3DNet
and SKin respectively. With all these benefits, Sweet KNN
outperforms the baseline KNN by 44X and 24X on the two
datasets respectively.

The size of the datasets kegg, keggD, and blog are not
as large as 3DNet and skin. KNN-TI does not show much
speedup over the baseline KNN and even a slight slowdown
on blog. Even though it still avoids over 99% distance compu-
tations, as Table IV shows, it has very low warp efficiencies on
these datasets due to the irregular control flows and memory
accesses the TI-optimizations incur and the limited parallelism
in the smaller datasets. Sweet KNN boosts the warp efficiency
substantially and improves the performance significantly: 5.7X
versus 1.7X on kegg, 4.6X versus 2.1X on keggD, and 0.85X
versus 2.3X.

Datasets ipums and kdd have many query points and
also relatively higher dimensions. The needed memory for
processing all the query points exceed the GPU memory in
all the three versions of KNN. They all partition the query
datasets and process each partition each time. KNN-TI avoids

632632632618618618618618618630630630



0
5

10
15
20
25
30
35
40
45

Sp
ee

du
p(

X)
 

Datasets 

K=1 K=8 K=20 K=64 K=512
 120 77    52 

Fig. 10. Speedups of Sweet KNN on different k values (arcene has only
100 points and hence does not have results at k = 512).

over 99% distance calculations but is subject to less than 12%
warp efficiency. It gives only about 1.2X speedups. Sweet
KNN enhances warp efficiency to 33% and 57% respectively,
yielding 5.2X and 4.2X speedups over the baseline KNN.

Datasets arcene and dor have small numbers (100 and
1950) of query points, but each point is of high (10000
and 100000) dimensions. Because of the small number of
points, the amount of unnecessary distance calculations is
much smaller than on other datasets. KNN-TI avoids 26.9%
and 91.5% distance calculations respectively, showing slight
slowdowns over the baseline KNN. The adaptive scheme in
Sweet KNN automatically chooses the reduced strength of
filtering in these two cases. It avoids 1.82% and 70.1% distance
calculations on them. However, because its adaptive scheme
chooses to use many threads to process one query point for
the limited parallelism at the levels of query points, it achieves
much higher warp efficiencies (89.8% and 78.6% versus 59.5%
and 20.9% in KNN-TI), and yields 9.2X and 5.6X speedups
over the baseline KNN.

We next report a series of sensitivity studies of Sweet KNN
by varying the problem settings.

C. Sensitivity Study

When studying the impact of one parameter, we fix other
parameters’ values.

1) Value of k: Here, k is the number of nearest neighbors
the KNN tries to find for each query point. As k increases, the
time spent on updating the local kNearests array increases. In
this study, we increase k from 1 to 8, 20, 64, and 512.

Figure 10 shows the speedups of Sweet KNN at these
different k values. Because arcene has only 100 data points,
it does not have k = 512 results. Overall, the speedups by
Sweet KNN on the datasets decrease as k increases from 1 to
64, and then increases as k gets to 512.

The reasons for the decreasing part are as follows. The
adaptive scheme in Sweet KNN selects the full 2-level filtering
for all data sets when k <= 64 (except 3DNet when k = 64).
As k becomes larger, kNearests gets larger. Threads in a warp
have more locations to access and hence more probabilities for
them to diverge in both control flows and memory accesses.
Secondly, that also increases the time for Sweet KNN to access
and update kNearests.

TABLE V. PERFORMANCE OF SWEET KNN ON DATASETS WITH

k/d > 8 WHEN k=512 (SWEET KNN CHOOSES THE PARTIAL FILTER IN

THESE CASES)

Datasets 3DNet kegg keggD ipums skin kdd

full saved comp 99% 98% 98% 98% 99% 99%
filter spdup(X) 23.5 1.3 2.7 10.9 10.3 5.9

partial saved comp 96% 97% 97% 95% 96% 98%
filter spdup(X) 35.3 6.3 5.8 14.1 23.2 30.5

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

kegg keggD blog

Sp
ee

du
p(

X)
 

Datasets 

clusters=100 clusters=200 clusters=400

clusters=800 clusters=1600 clusters=3200

Fig. 11. Speedups by Sweet KNN on different # of landmarks (i.e. clusters).

While as k gets to 512, the adaptive scheme selects the
reduced filtering strength for Sweet KNN to work on datasets
3DNet, kegg, keggD, ipums, skin, and kdd, because k/d of these
datasets are greater than 8. The filtering still remains quite
effective. As Table V shows, the avoided distance computations
are 95-98%, only up to 3% less than those avoided by the
full filtering. On the other hand, the reduced filtering strength
helps significantly improve the regularity in the computations
and hence the warp efficiency, helping Sweet KNN produce
significantly larger speedups (5.8X–35.3X) than what it would
have produced if it still uses the full filtering, as Table V shows.
The results indicate the efficacy of the adaptive scheme in
helping Sweet KNN strike a good balance between minimizing
redundancy and maintaining regularity.

2) Number of Landmarks: The number of landmarks de-
termines the number of query clusters and target clusters. To
examine the effectiveness of our method in choosing the right
number of landmarks, we experiment with a spectrum of the
values to see the effects. As the datasets kegg, keggD and blog
have similar numbers of points but different dimensions, we
focus on those three datasets and try 6 different numbers of
landmarks.

Figure 11 shows the impact. The number of points is
around 60000 in each of the datasets. According to Sec-
tion IV-D, our implementation selects 3

√
60000, which is 745,

as the number of landmarks. As we can see from Figure 11,
the performance of KNN-TI get improved when # of clusters
increases from 100 to 800. But as the number of clusters
increases further, the performance drops due to the overhead of
unnecessary clusters and the clustering overhead. It offers an
evidence on the efficacy of the selection method implemented
in Sweet KNN.

3) Parallelism: When the number of query points is small,
Sweet KNN uses multiple threads for processing one query
point concurrently, as Section IV-B2 describes. We validate the
appropriateness of the choices of the numbers of threads per
query point by measuring the performance when some other

633633633619619619619619619631631631



0
2
4
6
8

10
12
14

arcene(100 points) dor(1950 points)

Sp
ee

du
p(

X)
 

Datasets 

2 4 8 16 32 64 128 256

Fig. 12. Speedups by Sweet KNN on different # of threads for one query
point.

numbers are used. We experiment on the datasets with only a
small number of points: arcene and dor.

Figure 12 shows the observed speedups by Sweet KNN in
the different settings. For arcene, the setting that our method
chooses is 2048*13/(4*100) = 66 threads per query point. As
we can see, when the setting increases from 2 to 64, the
performance increases and reaches optimal when the setting
is around 64. After 64, the performance drops due to the
increased merge overhead and the much reduced strength of
filtering.

The setting our method chooses for dor is:
(2048*13)/(4*1950)=3.4 (rounded to 4). We also observe a
peak performance around that setting. These results confirm
the effectiveness of the method we use for selecting the
appropriate parallelism levels.

VI. CONCLUSION

The computing efficiency of KNN is essential. This paper
presents the design and implementation of Sweet KNN, a
high-performance triangular-inequality-based KNN on GPU.
Experiments on a set of datasets show that Sweet KNN
consistently outperforms the state of the art of KNN on GPU
significantly, regardless of the k value, the size or dimensions
of the dataset, or other properties of the problem instance. The
speedup is as much as 120X, and 11X on average, dramatically
advancing the state of the art of efficient KNN.

At a high level, this work shows a systematic way to make
a data mining algorithm automatically strike a good balance
between redundancy minimization and regularity preservation.
It shows the effectiveness of three principles: making design
elastic, adding adaptivity, and closely matching the implemen-
tation with the properties of the underlying platform (e.g.,
GPU). We expect that these principles can help advance the
computing efficiency of many other data mining algorithms on
modern massively parallel systems.

REFERENCES

[1] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, S. Y. Philip et al., “Top 10 algorithms in
data mining,” Knowledge and Information Systems, vol. 14, no. 1, pp.
1–37, 2008.

[2] B. Yao, F. Li, and P. Kumar, “K nearest neighbor queries and knn-joins
in large relational databases (almost) for free,” in Data engineering
(ICDE), 2010 IEEE 26th international conference on. IEEE, 2010,
pp. 4–15.

[3] X. Wang, “A fast exact k-nearest neighbors algorithm for high di-
mensional search using k-means clustering and triangle inequality,” in
Neural Networks (IJCNN), The 2011 International Joint Conference on.
IEEE, 2011, pp. 1293–1299.

[4] Y. Ding, X. Shen, M. Musuvathi, and T. Mytkowicz, “TOP: A
framework for enabling algorithmic optimizations for distance-related
problems,” Proceedings of the VLDB Endowment, vol. 8, no. 10, pp.
1046–1057, 2015.

[5] C. Li, Y. Gu, J. Qi, G. Yu, R. Zhang, and Q. Deng, “Insq: An influential
neighbor set based moving knn query processing system,” in 2016 IEEE
international conference on data engineering (ICDE), 2016.

[6] W. Lu, Y. Shen, S. Chen, and B. C. Ooi, “Efficient processing of k
nearest neighbor joins using mapreduce,” Proceedings of the VLDB
Endowment, vol. 5, no. 10, pp. 1016–1027, 2012.

[7] T. Emrich, F. Graf, H.-P. Kriegel, M. Schubert, and M. Thoma,
“Optimizing all-nearest-neighbor queries with trigonometric pruning,”
in Scientific and Statistical Database Management, Springer, 2010, pp.
501–518.

[8] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for
finding best matches in logarithmic expected time,” ACM Transactions
on Mathematical Software (TOMS), vol. 3, no. 3, pp. 209–226, 1977.

[9] B. Merry, J. E. Gain, and P. Marais, “Accelerating kd-tree searches for
all k-nearest neighbours.” in Eurographics (Short Papers), 2013, pp.
37–40.

[10] V. Ramasubramanian and K. K. Paliwal, “Fast k-dimensional tree
algorithms for nearest neighbor search with application to vector quan-
tization encoding,” Signal Processing, IEEE Transactions on, vol. 40,
no. 3, pp. 518–531, 1992.

[11] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang, “Fast approx-
imate nearest-neighbor search with k-nearest neighbor graph,” in IJCAI
Proceedings-International Joint Conference on Artificial Intelligence,
vol. 22, no. 1, 2011, p. 1312.

[12] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu,
“An optimal algorithm for approximate nearest neighbor searching fixed
dimensions,” Journal of the ACM (JACM), vol. 45, no. 6, pp. 891–923,
1998.

[13] V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest neighbor search
using GPU,” in Computer Vision and Pattern Recognition Workshops,
2008. CVPRW’08. IEEE Computer Society Conference on. IEEE, 2008,
pp. 1–6.

[14] R. J. Barrientos, J. I. Gómez, C. Tenllado, M. P. Matias, and M. Marin,
“knn query processing in metric spaces using GPUs,” in Euro-Par 2011
Parallel Processing. Springer, 2011, pp. 380–392.

[15] V. Garcia, E. Debreuve, F. Nielsen, and M. Barlaud, “K-nearest neighbor
search: Fast GPU-based implementations and application to high-
dimensional feature matching,” pp. 3757–3760, 2010.

[16] “CUBLAS,” http://developer.download.nvidia.com/.

[17] W. Lu, Y. Shen, S. Chen, and B. C. Ooi, “Efficient processing of k
nearest neighbor joins using mapreduce,” Proceedings of the VLDB
Endowment, vol. 5, no. 10, pp. 1016–1027, 2012.

[18] E. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen, “On-the-fly elimina-
tion of dynamic irregularities for GPU computing,” in Proceedings of
the International Conference on Architectural Support for Programming
Languages and Operating Systems, 2011.

[19] “Register Spilling,” http://on-demand.gputechconf.com/gtc-express/
2011/presentations/register spilling.pdf.

[20] K. Gupta, J. A. Stuart, and J. D. Owens, “A study of persistent threads
style GPU programming for GPGPU workloads,” in Innovative Parallel
Computing (InPar), 2012. IEEE, 2012, pp. 1–14.

[21] G. Chen, B. Wu, D. Li, and X. Shen, “PORPLE: An extensible
optimizer for portable data placement on GPU,” in Proceedings of the
47th International Conference on Microarchitecture, 2014.

[22] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[23] V. Garcia, E. Debreuve, and M. Barlaud, “KNN CUDA,” http://
vincentfpgarcia.github.io/kNN-CUDA/.

[24] “NVIDIA Visual Profiler,” http://docs.nvidia.com/cuda/
profiler-users-guide/#visual-profiler.

634634634620620620620620620632632632


