
Call Sequence Prediction through Probabilistic Calling Automata

Zhijia Zhao, Bo Wu, Mingzhou Zhou, Yufei Ding, Jianhua Sun, Xipeng Shen, Youfeng Wu∗

College of William and Mary ∗Intel Labs
{zzhao,bwu,mzhou,yding,jianhua,xshen}@cs.wm.edu ∗youfeng.wu@intel.com

Abstract
Predicting a sequence of upcoming function calls is impor-
tant for optimizing programs written in modern managed
languages (e.g., Java, Javascript, C#.) Existing function call
predictions are mainly built on statistical patterns, suitable
for predicting a single call but not a sequence of calls. This
paper presents a new way to enable call sequence predic-
tion, which exploits program structures through Probabilistic
Calling Automata (PCA), a new program representation that
captures both the inherent ensuing relations among func-
tion calls, and the probabilistic nature of execution paths. It
shows that PCA-based prediction outperforms existing pre-
dictions, yielding substantial speedup when being applied to
guide Just-In-Time compilation. By enabling accurate, effi-
cient call sequence prediction for the first time, PCA-based
predictors open up many new opportunities for dynamic pro-
gram optimizations.

1. Introduction
Languages with a managed environment—such as JAVA,
Javascript, C#—become increasingly popular. Programs in
these languages often have a large number of functions, and
feature many dynamic properties. For them, knowing the up-
coming sequence of function calls in a run can be helpful.
For example, a feature in these languages is dynamic func-
tion loading: Some classes or functions are loaded from local
disks or remote servers during an execution [26]. The load-
ing takes time. With the upcoming call sequence known, the
delay can be largely hidden through prefetching. As another
example, the runtime system supporting those languages, es-
pecially on embedded systems, often uses a small chunk
of memory (called code cache) to store the generated na-
tive code for reuse. Knowing the upcoming call sequence
can enhance the code cache usage substantially [17]. It can
also help the runtime system decide when to invoke JIT
to compile which function and at which optimization lev-
els [16], and so on. The benefits may go beyond the runtime
of managed languages. Co-design virtual machines [19], for
instance, use runtime Binary Code Translation to reconcile
disparity between conventional ISA and native ISA. Its run-
time translation also uses JIT, sharing similar opportunities.

Call sequence prediction is to provide such knowledge
through prediction. It is challenging for the large scope of
prediction. The state of the art is yet preliminary. Most of
them have concentrated on exploiting statistical patterns in
call history [4, 24, 28], and predicting the next one call

rather than a sequence of calls. This limited prediction scope
does not well suit the many needs of runtime systems. Even
worse, as the scope enlarges, the regularity diminishes, form-
ing a main barrier for existing prediction techniques.

In this paper, we present a new way to enable call se-
quence prediction. It centers on an effective exploitation of
program structures. The rationale is that program structures
inherently define some constraints on function calling rela-
tions, which often cast some deciding effects on function call
sequences. Conceptually, the key of this approach is in de-
veloping an expressive model of the relations among func-
tion calls to effectively capture those constraints. To facili-
tate runtime call sequence prediction, the model must distin-
guish call sites, capture calling contexts, incorporate the in-
fluence of branches and loops, and finally accommodate the
various complexities in programs and language implemen-
tations (e.g., function dynamic dispatch, function inlining,
code coverage variations across inputs). Existing models—
such as call graphs, call trees, and calling context trees [3]—
meet some but not all these requirements.

We present Probabilistic Calling Automata (PCA), a new
program representation that uses extended Deterministic Fi-
nite Automata (DFA) to capture both the inherent ensuing
relations among functions, and the probabilistic nature of
execution paths caused by branches, loops, and dynamic dis-
patch. A PCA is composed of a number of augmented state
machines, with each encoding the control flows related func-
tion calls in a function. The PCA features a return stack and
a shadow stack for efficiently maintain calling contexts, an
α-stack to handle complexities brought by exceptions and
unknown function calls, and the concept of v-nodes and
candidate tables for addressing calling ambiguities caused
by polymorphism, function pointers, and dynamic dispatch.
Serving as a unified representation for function calls, PCA
incorporates static program structures with profiling infor-
mation, supports easy runtime state tracking, and tolerates
various complexities in practical deployment.

After presenting the definition, properties, construction
and usage of PCA in Section 2 and Section 3, we discuss the
insufficiencies of existing program representations in Sec-
tion 4, introduce some metrics for call sequence prediction
in Section 5, and then describe an empirical comparison
between PCA-based predictors and the extensions of three
alternative methods, respectively based on Calling Context
Trees and statistical patterns. Experiments show that PCA-
based predictor achieves 89% on average in a basic accu-
racy metric, 20–50% higher than that of the other predic-

1 2014/7/22

tors. Through parallel JIT compilation, we demonstrate that
a simple usage of the PCA-based prediction can lead to per-
formance improvement by up to 32% (15% on average).

Overall, this work makes the following contributions:

• It introduces PCA, a novel representation of function
ensuing relations in a program that captures the influence
cast by control flows and calling contexts.
• It shows how PCA can be used to enable effective call

sequence prediction with design choices and usage study,
as well as a systematic comparison with alternatives.
• It provides a set of metrics for measuring the quality of a

call sequence prediction at various levels. They may meet
the needs of different uses of the prediction.
• Finally, this work, for the first time, demonstrates the fea-

sibility and benefit of accurate call sequence prediction,
which opens up new opportunities for dynamic optimiza-
tions in various layers of the execution stack.

2. Problem Definition and Design
Considerations

As the problem has not been systematically explored before,
we first provide a formal definition as follows.

2.1 Definition of Call Sequence Prediction
Definition 1. A function call sequence of a program is a
sequence of the IDs of the functions in the order of their
invocations in an execution time window.

Definition 2. Call Sequence Prediction: For a given exe-
cution of program P , function call sequence prediction at a
time point t is to predict the function call sequence of P in
the time window that immediately follows t.

The time window is called prediction window. Its length
is usually in logical time (e.g., the number of function calls),
and may be fixed or vary. Depending on the windows’
length, the prediction may happen many times during an
execution of a program. For a multithreading execution, the
prediction can be at the whole program level including all
threads, or at the level of one or several specific threads.

Function call sequences are largely dictated by program
structures. A primary goal of this work is to examine how
to leverage program structures for call sequence prediction.
Conceptually, the problem is to develop a representation
that is effective in capturing the relevant constraints on call
sequences coded in a program.

2.2 Design Considerations
Ensuing Relations vs. Calling Relations There are some
commonly used inter-procedural program representations,
such as call graphs, call trees and calling context trees. They
primarily represent calling relations among functions. But a
call sequence is about which call follows which—and hence
an embodiment of a series of ensuing relations.

It is important to note the differences between these two
kinds of relations. Calling relations are about what func-
tions would be called by what functions, while ensuing re-
lations are about what function would be called right af-
ter what function calls. Calling relations affect ensuing re-
lations. Knowing Y as one of the callees of X, for instance,
suggests that Y will be, with some uncertainty in the pres-
ence of branches, called after a call to X. But when that call
will happen is not coded in the calling relation: It could be
immediate, several or hundreds of calls later. An example is
the call of “D()” by “A()” in the PCAExample code in Fig-
ure 1 (a). For the loop before “D”, there could be zero or
thousands of “C” being called before “D” is called. Con-
versely, two adjacent function calls in a call sequence, say
“V W”, does not entail that W must be called by V: That
call to W could be made by V, its caller, or any of its calling
ancestors— respectively illustrated by ”A C” in lines 10 and
12, ”C D” in lines 12 and 14, and ”D B” in lines 14 and 6 in
the PCAExample.

Four Basic Properties to Consider So the first considera-
tion in our design of program representation is that it must
capture ensuing relations of function calls. Ensuing relations
naturally relate with program control flows (e.g., branches,
loops), and often differ from one call site to another and from
one calling context to another. So the representation should
also consider these factors. In addition, to be used in run-
time call sequence prediction, the representation should be
reasonable in size, resilient to program complexities, and ap-
plicable to most executions of a program. We put these con-
siderations together as follows, and call them the four basic
properties:

• Ensuing relations: capturing ensuing relations among
function calls;
• Discriminating: discerning different control flows, call

sites, and calling contexts1;
• Generality: being resilient to program complexities, such

as ambiguous calling targets in the presence of virtual
functions, function dynamic dispatch, and so on;
• Scalability: having a bounded and acceptable size, re-

gardless of the program execution length.

Existing representations were designed mainly for pro-
gram analysis rather than call sequence prediction. They
center around calling relations, and fall short in some of the
four basic properties (detailed in Section 4). Because of their
insufficiency, we propose the following design of PCA.

3. Probabilistic Calling Automaton (PCA)
Intuition PCA is in an augmented form of finite state au-
tomata. Before defining it formally (in Section 3.6), we first

1 Here, calling context refers to the sequence of functions on the current call
stack. A more precise context also includes parameter values, which further
complicates the problem. It is out of the scope of this work.

2 2014/7/22

1: M(){
2: C();
3: if (...) A(1);
4: else {
5: A(0);
6: B();}
7: C();
8: A(2);
9: }

10: A(x){
11: for (){
12: C();
13: }
14: D();
15: }

(a) “PCAExample” program

M

C, 1 A,3 C, 5B, 4

A C,7
.25

D,8

return
stack

.75

shadow
stack

A, 2

A, 6

.7

.3

I II

III

V

IV V
VI

VII

VII

VIII

 stack

(b) PCA

return

return

Figure 1. An example program named “PCAExample” and its PCA.

1 2 3 4
A A DB

Figure 2. A DFA for code “A(); B(); A(); D();”.

offer some intuitive explanations. We choose automata as the
basic form for their natural fit for expressing ensuing rela-
tions. For instance, Figure 2 shows an automaton for code
“A(); B(); A(); D();”. The four nodes represent four stages
of an execution of the code. The DFA can easily track the
execution through state transitions: Upon the first call of the
function “A”, it moves to state 1, and then to state 2 after
“B” is invoked, and so on. The structure of the DFA reflects
the ensuing relations of function calls imposed by the con-
trol flow in the function—in Figure 2, a constraint is that “A
D” but not any other sequences immediately follows the call
of “B”. With this DFA, call sequence prediction becomes a
simple walk over the DFA. For instance, suppose the DFA is
now at node 1. To predict the remaining call sequence, we
can simply walk along the DFA from node 1 and output the
functions on the edges we bypass (“B A D” in this example.)

This example is simple, but conveys the basic idea of
PCA: Incorporating constraints defined by program code
into a finite automaton and converting call sequence predic-
tion into a walk over the automaton. For the idea to work,
there are many challenges, some from program structures
(e.g., branches, loops), some from language implementa-
tions (e.g., function dynamic dispatching), some from com-
piler transformations (e.g., function inlining and outlining).
PCA addresses these challenges through a careful design.

To make the explanation easy to follow, we first draw on
an example (PCAExample) rather than formalism to explain
our PCA design and how it addresses various complexities
for runtime call sequence prediction. After that, we provide a
formal, rigorous definition of PCA, along with the algorithm
to construct it automatically.

3.1 Structure of PCA
A PCA consists of a number of finite state automata, and
three types of stacks. There is one automaton for each non-
leaf function in the program. (A function is a leaf function if
its code contains no function calls; it is non-leaf otherwise.)

Nodes Each node in a PCA automaton corresponds to one
call site in the function. If the invoked function is non-leaf,
we call the node a diamond, otherwise, a circle. Each node

carries a label, written as 〈FunctionID, CallSiteID〉, where
“FunctionID” and “CallSiteID” are the ID of the function
invoked at that call site and the ID of the call site itself. (A
unique ID is assigned to every function and every call site.)
A diamond carries an extra field, recording the address of the
entry point of the automaton of the function called at the call
site represented by the diamond. This field allows smooth
transitions among automata of different functions.

When the “FunctionID” at a call site is either non-unique
or unknown at the PCA construction time, “*” is used for
that field of the node. Such a node is called a v-node (v
stands for virtual function). A v-node can be either a dia-
mond or circle. The abstraction of v-nodes is important for
treating ambiguous function calls as Section 3.4 will show.

An automaton has a single entry node, and a single termi-
nal node. They correspond to no call site, just indicating the
entry and exit points of the automaton respectively.

Edges Edges in a PCA represent the ensuing relations
among the function call sites contained in a function. There
is a directed edge from node A to node B in an automaton if
after A’s call site (i.e., the call site represented by node A) is
reached in an execution, node B’s call site could be reached
before any other call site in that automaton is reached. Note
that some call sites in other automata could be reached be-
tween them. An example is the call of “A” on line 5 and the
call of “B” on line 6 in Figure 1 (a). The latter immediately
follows the former and hence there should be an edge be-
tween their nodes, despite that the callees of function “A”
are reached between the calls to “A” and “B”.

Each edge carries a label and a weight. The label is the ID
of the sink node’s call site. It gives conveniences to tracking
program state transitions in a call site discriminative manner
as we will see later. The weight is the probability for the
sink to follow the source in the program’s executions. An
edge flowing into a terminal node can have only “return” or
“exit” as the label, indicating the exit of the function.

Stacks There are three stacks, associated with the entire
PCA of a program. They are the return stack, shadow stack,
and α-stack. The first two are designed to provide discrimi-
nation of calling contexts, explained in Section 3.2. The third
helps handle unexpected function calls for practical deploy-
ment of PCA, explained in Section 3.4.

3 2014/7/22

Example Figure 1 (b) shows the PCA of the PCAExample
code in Figure 1 (a). The top part shows the automaton of
function “M”. It contains three diamonds, all representing
calls of the non-leaf function “A” at the bottom. The three
dotted lines are not PCA edges, but illustrations of the three
diamonds’ references to the entry of A’s automaton. Entry
and terminal nodes are shown as disks. Each node has its
ID labeled. For instance, the diamond on top has a label
“A,2”, meaning that this call site ID is “2” and the call is to
function “A”. The edge from node “C,1” to “A,2” has label II
as it is the ID number of the call site represented by the sink
node. Its weight “.7” indicates that 70% instances of the call
site 1 are immediately followed by a call made at call site
2 in function “M”. Weights equaling 1 are not shown for
readability. Theoretically speaking, the call site ID needs to
be labeled only on either the edge or in the sink node. Having
the label at both places is for conveniences.

3.2 Basic Usage for Tracking and Prediction
The design of PCA makes it handy for efficient tracking the
state of a program execution and predicting its upcoming
function calls.

Tracking Execution State To track the execution state of a
program through PCA, we just need to let PCA transit to its
next state upon every function call in an execution. An exit or
return prompts a transit to its terminal state. When reaching a
diamond node, the transition immediately moves to the entry
node of the corresponding automaton. For instance, a call
at line 3 of PCAExample makes the PCA move from state
“C,1” to “A,2”, and then immediately to the entry node of
the automaton of function “A”. State transitions when a PCA
reaches a terminal state are facilitated by the return stack.
When the PCA transits from a diamond node to the entry of
another PCA, the address of the diamond node is pushed into
the return stack. When the PCA reaches the terminal state,
it pops the diamond node address out of the return stack and
jumps to that address immediately.

The runtime tracking requires some code to be instru-
mented at function call sites. To minimize the overhead, the
inserted code only puts the ID of the function and call site
(or a predefined numerical ID for “return”) into a buffer. At
the beginning of a prediction, the buffer is consumed to bring
the PCA status to date.

Predicting Call Sequences Call sequence prediction by
PCA is a quick walk over the PCA while outputting the IDs
of the functions in the passed nodes. The return and shadow
stacks make it possible for the prediction to discriminate call
sites and calling contexts. When a sequence prediction starts,
the shadow stack gets a copy of the content of the return
stack to attain the current program state to work with. When
a sequence prediction finishes, the shadow stack is emptied.

Figure 3 illustrates how the PCA in Figure 1 (b) supports
the prediction process of PCAExample. The gray color in-
dicates the time when the stacks are inactive. When the pro-
gram starts, both stacks are empty and the PCA is at the start-

.

execution starts

return
stack

shadow
stack

current
PCA
state

M

predicted
call seq.

after the first call to A A A,2

after a call to C C,7 A,2

call seq. pred. starts C,7 A,2 A,2

copy

pred. walk reaches node D,II A,2 A,2 C C C D

pred. walk reaches node A A A,2 C C C D C A

pred. walk reaches node D,II A,6 A,2 C C C D C A C C C C D

A,6

the pred. walk finishes A,6 A,2 C C C D C A C C C C D

execution resumes

ex
ec

ut
io

n
ex

ec
.

pr
ed

ic
tio

n

Figure 3. Illustration of how the PCA in Figure 1 (b) supports
call sequence prediction. It assumes that the prediction starts after
execution sees the call sequence “M C A C” and the goal is to
predict all remaining function calls.

ing state, state M. After line 3 (C and A are called), the PCA
moves to state “A” and the diamond node “A,2” is pushed
into the return stack. After a call to C on line 12, the PCA
gets to state “C,7”. It is assumed that the runtime now starts a
call sequence prediction. The shadow stack attains a copy of
the content of the return stack and becomes active, while the
return stack pauses its operations. The predictor starts walk-
ing on the PCA from the current state, state “C,7”, which
has two outgoing edges. Suppose that the predictor takes the
backedge (which carries a call to “C”) three times before
taking the edge (carrying a call to “D”) towards node “D,8”.
That walk yields the predicted sequence “C C C D”. As node
“D,8” leads to a terminal node, the shadow stack pops out
node “A,2” and the prediction walk immediately jumps to
that node. It is assumed that the walk then takes the edge to
node “C,5” and then to node “A,6” and outputs “C A” as the
prediction. It then gets to node “A” again and continues the
prediction. When the prediction finishes, the shadow stack is
emptied and the return stack becomes active again.

The example touches one type of ambiguity in PCA: A
node has more than one outgoing edge, as exemplified by
nodes “C,1” and “C,7”. We call this edge ambiguity. Edge
weights provide probabilistic clues on resolving the ambi-
guity. We experiment with two policies for exploiting the
hints. The first is the maximum likelihood (ML) approach,
which always selects the edge with the largest weight. The
second is random walk, which chooses an edge with a prob-
ability equaling the weight of that edge. For a node with k
outgoing edges, the approach works like throwing a k-sided
biased dice, the biases of which equal the edge weights.

The ML approach seems to be subject to loops: A
backedge with a high probability may trap the predictor into

4 2014/7/22

/* a is an array of Animal that has a virtual function “voice()”; class
Animal has subclasses Cat, Dog, and Sheep.*/

1: for (i=0;i<N;i++){
2: F();
3: a[i].voice();
4: G();
5: }

Figure 4. An example of dynamic dispatch for polymorphism

the loop2. However, when using PCA for call sequence pre-
diction, the runtime queries the PCA occasionally. Hence,
even though PCA might predict a seemingly-infinite loop,
continued execution of the real program generally results in
escaping the loop. A subsequent PCA query would then ask
about execution following the loop. In practice, it outper-
forms random walk in most cases as Section 6 will show.

3.3 Challenges for Practical Deployment
The aforementioned basic usage of PCA for prediction has
two implicit assumptions:

1. Known-ID condition: The PCA construction can com-
pletely determine the ID of the function to be invoked
at every call site.

2. Completeness condition: The PCA captures all possible
and correct ensuing relations among function calls of a
program.

The two conditions ensure that all call sequences occur-
ring in an execution would be expected (and hence process-
able) by the PCA. However, in many practical cases, the two
conditions do not hold due to the complexities in language
implementation, compiler optimizations, and PCA construc-
tion process. We will base our discussion mainly on a man-
aged programming language (e.g., Java). Other types of lan-
guages (e.g., C/C++) share some of those complexities.

Function Dynamic Dispatch The known-ID condition
does not always hold in the presence of function dynamic
dispatch, with which feature, what function is called at a
call site may remain unknown until the call actually hap-
pens. It often relates with polymorphism. For instance, sup-
pose Cat, Dog, and Sheep are all subclasses of Animal, and
they all have their own implementation of the virtual func-
tion “voice()” in Animal. The call to “a[i].voice()” at line
3 in Figure 4 may actually invoke the “voice()” function of
any of the three classes, depending on which subclass a[i]
is. Another common cause of dynamic dispatch is function
pointers, whose values may not be precisely determined at
compile time in a C program. No matter what the implemen-
tation is, a common property of dynamic dispatch is that the
exact function to be invoked at a call site sometimes cannot
be determined until the call happens. As an analogy to the
edge ambiguity mentioned earlier, this issue can be regarded

2 If the edge weights get appropriately updated across iterations, ML may
not face such a problem.

as node ambiguity. It is embodied by v-nodes in a PCA, the
labels of which have “*” as the FunctionID.

Compilation Complexities As Section 3.6 will show, PCA
construction usually happens through some training runs
with the help of compilers. In a managed environment, the
compilation is through a JIT compiler, and typically happens
in every run. The compilation may differ in different runs,
causing different ensuing relations among function calls,
and hence the violation of the completeness condition. For
instance, function inlining replaces a call site with the code
of the callee, while function outlining forms new functions in
the binary code. So different inlining and outlining decisions
in different runs could lead to different sets of call sites and
ensuing relations.

Furthermore, training runs and production runs may have
a different coverage of the code. Some functions invoked
in a production run may have never been encountered by
the JIT compiler in training runs, and hence may not appear
in the constructed PCA. The training process could aggres-
sively apply JIT to all possibly invoked functions, no matter
whether they are invoked in the training runs. However, due
to ambiguity in calling targets, it could end up including too
many irrelevant functions (e.g., an entire library excluding
library calls to JNI, which are not JITed).

Exception Handling Exception handling causes violations
to both conditions. In Java, it is usually implemented with
static exception tables, which, similar to function pointers,
cause fuzziness in function calling targets. At the same time,
some exceptions (e.g., division by zero) are not checked.
Similar to signal handlers in C code, there may be no explicit
calls to those handlers in the code, forming violations to the
completeness condition.

Moreover, sometimes users may not be concerned of all
functions. They, for instance, may not be interested in the
invocations of functions in the Java Runtime but only those
in the application. The bottom line is that some kind of
resilience to the incompleteness of PCA and node ambiguity
would be necessary for a practical deployment of PCA.

3.4 Solutions through α-Node and α-Stack
Features of v-nodes help address the issues related to the
known-ID condition. Each v-node is equipped with a candi-
dates table. Every entry in the table indicates the possibility
for that call site to be an invocation of a particular function.
A threshold K is used to control the size of the table. Only
the top K most likely candidates appear in the table. Fig-
ure 5 shows the PCA for a variant of the “M” function in our
PCAExample, in which, the call to “A” at line 3 is replaced
with a function pointer whose most likely calling targets are
functions “A” and “B”. Besides them, there is another 15%
chance for the target to be some other functions. The proba-
bilities of candidate targets are obtained through offline pro-
filing, but adjustable at runtime as explained later.

During sequence prediction, the candidate table is used
for speculating on the ID of the function to be invoked at the

5 2014/7/22

corresponding call site. The speculation employs the same
methods as in resolving edge ambiguity (i.e., the ML or
random walk method). The speculation happens every time
when the prediction-oriented PCA walk reaches an v-node.

The issues on completeness condition are addressed
through a combination of dynamic PCA evolvement and
α-stack. The dynamic evolvement is done at JIT time. Our
examination shows that function inlining and outlining are
the major reasons for violations of the completeness condi-
tion. The dynamic adjustment for inlining and outlining is
straightforward. Upon a function inlining, the JIT replaces
the node of that call site with the automaton of the inlined
function; upon a function outlining, the JIT creates an au-
tomaton for the newly formed PCA, assigns an ID to the
new call site, and updates the automaton of the parent PCA
accordingly. As outlining happens rarely, negligible over-
head was seen on the runtime PCA construction. The edge
weights of the newly created PCA are initiated with some
values determined by the compiler (e.g., a policy common
in compiler construction is to put 0.9 for backedges and 0.5
for normal two-way branches [36]).

As an option, during runtime, edge weights can be re-
fined with the runtime observations through weighted aver-
age (i.e., new weight = old weight*r + new observations*(1-
r), 0.5 > r > 0) with the decay rate r set by the user. Such
an adjustment can be applied to other existing edges as well.
(Our experiments did not use this runtime refinement.)

The α-stack addresses the issue of incomplete PCA (i.e.
some functions do not have automata built). Initially the α-
stack is empty and inactive. At an invocation of a function
that has no automata built, the ID of the function is pushed
into the α-stack, and the α-stack becomes active. While the
α-stack is active, the ID of an invoked function is automat-
ically pushed into the stack, regardless of whether the func-
tion has PCA; the top of the stack pops out at each func-
tion return. The PCA stalls while the α-stack is active. It
resumes state transitions as soon as the α-stack becomes in-
active when it turns empty. For example, suppose that the
PCA is now in state “C,1” of Figure 1 (b) and some unex-
pected function “X” is then invoked. Assume that “X” calls
“Y” and “Y” calls “A”. Neither “X” nor “Y” has automaton
built. The PCA would stay at node “C,1” until “X” returns.
It then resumes state transition according to the PCA.

Essentially, the α-stack makes operations on PCA skip
functions that do not have automata, as well as the functions
directly or indirectly invoked by them. Such a design offers
a simple way to deal with unexpected calls. A more sophisti-
cated design is to skip only functions that have no automata
(e.g., “X” and “Y” but not “A” in our example). It is poten-
tially doable, but adds much complexity: It has to deal with
broken chains of states. For instance, when “A” returns, it is
unclear which state the PCA should return to.

Additional complexities include native function calls and
tail call optimizations. Native code is ignored. Optimized tail

calls become jump instructions and hence are not tracked or
predicted.

3.5 Properties
We now examine how PCA embodies the four basic proper-
ties listed in Section 2.

(1) Ensuing relations. PCA is centered on ensuing rela-
tions. A transition edge represents what function call follows
(rather than invokes) another call. For example, in Figure 1
(b), “C,5”→“A,6” represents that after the finish of “C” on
line 7 in Figure 1 (a) (represented by node “C,5”), the next
function call must be a call to “A” at line 8 (represented by
node “A,6”), despite that “C” never calls “A” in the program.

(2) Discriminating. The structure of PCA encodes both
branches and loops. Its edge weights facilitate the resolution
of ambiguities caused by control flows. With node and edge
labels carrying call site IDs, PCA naturally distinguishes dif-
ferent call sites. The return stack and shadow stack add call-
ing contexts to PCA. For example, suppose the PCA is now
at state “C,7” in Figure 1 (b). The two stacks help the predic-
tion automatically tell whether the call of “A” was from node
“A,2”, “A,3”, or “A,6” when the PCA walk returns from
node “D,8”, and hence produce different prediction results.
In addition, the PCA structure allows an even deeper level
of discrimination: Instead of defining an edge weight as a
probability given the source node, one could employ condi-
tional probabilities as edge weights, with the top k levels of
the shadow stack as the conditions. In this way, they could
further discriminate call sites and calling contexts. Such a
model may increase the size of the PCA; we leave it to fu-
ture study.

(3) Generality. The design of v-node and α-stack, along
with runtime PCA evolvement, make PCA resilient to vari-
ous complexities in the language implementation, compila-
tion, and other aspects.

(4) Scalability. Unlike some other representations (e.g.,
dynamic call tree), the size of a PCA is bounded by the
number of call sites in a program, independent of the length
of an execution. Section 6 reports the size on some programs.

Besides those, the modular structure of PCA gives good
compatibility. If the body of a function is changed, except
edge weights and that function’s automaton, the structure of
the program’s PCA needs no change.

3.6 Formal Definition of PCA and Its Construction
We now give a formal definition of PCA as follows:

Definition A PCA P is a tuple
〈A1, A2, · · · , Ak,Σ,Γ,Λ, r, s, α〉, where:

Ai : a finite state machine Σ : input alphabet
Γ : stack alphabet Λ : exit alphabet
r : the return stack s : the shadow stack
α : the α-stack

State machine Ai in a PCA is a tuple
〈Ni, si, fi, ei, δi, P,Di,Mi〉, where:

6 2014/7/22

M

C, 1 A,3 C, 5B, 4

*, 2

A, 6

.7

.3

I II

III

V

IV V
VI

Function ID Probability

A 0.45

B 0.4

Figure 5. Example PCA with v-nodes Used.

Ni : the set of nodes.
si : a unique entry node. si ∈ Ni.
fi : a unique terminal node. fi ∈ Ni.
ei : a unique error node. ei ∈ Ni.
δi : transition relation over Ni.
P : transition probability over δi.
Di : the set of diamonds, Di ⊂ Ni.
Mi : a mapping function from Di to sj , j 6= i.

Transition relation δi is a finite set of rules such that: 1© for
every state S ∈ (Ni − fi) and an input symbol a ∈ Σ,
there is a unique rule of the form δi(S, a) → T , where
T ∈ (Ni − fi − si); 2© for any input symbol a ∈ Λ, there
is at least one state S ∈ (Ni − fi) such that δi(S, a) →
fi. Recursion is allowed; a self-recursive call corresponds
to a diamond that carries a reference to the entry node of
its own automaton. Transition probability P is a function
which to every rule δi(S, a) → T assigns its probability
P (δi(S, a) → T) ∈ (0, 1] so that for any given S ∈ Ni,
we have ∑

T∈Ni:∃a,δi(S,a)→T
P (δi(S, a)→ T) = 1.

There is a special transition: d→Mi(d), ∀d ∈ Di, which
happens every time when d is reached; with the transition, d
is pushed into the return stack, r. Another special transition
is: fi → τ(r) (where τ(r) is the top of the stack r), which
happens every time when fi is reached; meanwhile, r pops
its top off the stack. The shadow stack s gets a copy of r
when call sequence prediction starts. During and only during
the prediction, s plays the role of r in dictating the state
transitions. Like many conventional automata, there is an
implicit error state e associated with a PCA; ∀x ∈ Ni, x→ e
on any unexpected input. Along with such a transition, x
is pushed into the α-stack. While the PCA is at e, every
input belonging to the exit alphabet Λ makes the α-stack
pop, while all other inputs are pushed into the α-stack. When
the length of the stack becomes two, an encounter of input
a ∈ Λ prompts the transition e → τ(α) besides making the
α-stack pops. After the transition, the α-stack pops again to
turn empty.

Construction The construction of PCA involves two main
steps: The first builds up the PCA structure during compila-
tion; the second trains the PCA by adding weights through
profiling. Algorithm 1 outlines the procedures.

Algorithm 1 PCA Construction
1: /* Building PCA Structure */
2: G[F] = control flow graph of function F ;
3: P={};
4: for each function f do
5: if G[f] contains function calls then
6: R = buildRegExp(G[f]);
7: R′ = cleanUp(R);
8: A = regExp2DFA(R′);
9: createCandidateTables(A);

10: P .add(A);
11: end if
12: end for
13: connectAutomata(P);
14:
15: addWeights(P); /* Profiling for Weights */

For the modularity of PCA, the first step can happen on
each function individually. Not all instructions in a function
are relevant to function calls. A compiler goes through the
code, ignores irrelevant parts, and converts the rest into an
automaton. Conceptually, in this step, the compiler derives
a skeleton of the control flow graph, where, all statements
but function calls and branches are removed, (leaving some
empty basic blocks), while the edges remain. The compiler
derives a regular expression from the skeleton graph. The
vocabulary of the regular expression consists of β, represent-
ing an empty block in the skeleton graph, a terminal variable
and a non-terminal variable for each function in the program.
The β helps encode the logic of empty blocks into regu-
lar expression. The non-terminal variable represents a call
to the function. The terminal variable represents the entry
of the function, which is always the first symbol in the regu-
lar expression of the function. Branches are represented with
the “|” operator, while loops (or backedges) are represented
with the “*” or “+” operator.

Next, the compiler simplifies the regular expression in
a standard way, which removes all βs as well. Figure 6
shows the regular expressions of our PCAExample. We re-
fer to such a set of regular expressions as the function call-
ing grammar (FCG) of the program. As a whole, an FCG
is a Context Free Grammar (CFG). The simple form di-
rectly leads to PCA through standard algorithms of regular
expression-to-automaton conversion. Another advantage of
using FCG as the intermediate form is that the conversion
algorithms, by default, minimize the generated automaton

7 2014/7/22

M → m C1 (A2| (A3 B4)) C5 A6

A → a C7
+ D8

B → b
C → c
D → d

Figure 6. The FCG of the program in Figure 1 (a). Every letter
represents a function. An upper-case letter is a non-terminal vari-
able, and a lower-case letter is a terminal variable, representing the
prologue of a function represented with the corresponding upper-
case letter, and a subscript represents a call site ID.

M

C A

D

B

M

C A

D

M

C A

D

C

C

M

C A

DC

C C C

(a) Static call graph (b) Dynamic call graph

(c) Dynamic call tree

(d) Calling context tree

A

DCC C C

Figure 7. Four other representations of function calls in execu-
tions of “PCAExample” in Figure 1 (a). In the program, no func-
tions except “M” and “A” contain function calls. In the considered
execution, the “if” branch is taken.

and hence the overall size of the PCA. The candidate tables
are then built for each v-node in the DFA.

The final step adds weights to the edges in the PCA. It
uses profiling executions of the program to do so. During
a profiling run, the PCA runs along with it by updating its
state upon each function call. A profiler records the number
of times an edge is visited if the out-degree of the source is
greater than one. The weight of an edge is then used to cal-
culate the weights on those edges. It puts in the probabilities
for the entries in candidate tables in the same manner. An
edge that has not been encountered in the profiling runs is
assigned with an extremely small weight for the complete-
ness of the PCA.

What profiling mechanism to use is orthogonal to the
proposal of PCA. Besides offline profiling, there are many
other techniques for efficient online sampling [9, 14, 21] or
cross-run accumulation of samples [25]. They could all be
used for PCA construction, depending on the usage scenario.

4. Comparisons to Existing Representations
Before this work, there are a variety of program represen-
tations relevant to program function calls. In this section,
we examine four most commonly studied ones, qualitatively
showing that they are ill fit for call sequence prediction for
not meeting some of the four basic properties. Section 6
will complement the comparison with some quantitative ev-
idences.

Among existing models of program function calls, the
most influential are static and dynamic call graphs, dynamic
call trees, and calling context trees (CCTs). We use Figure 7
to review them briefly. In a static call graph (Figure 7 (a)),
each function has a unique node no matter at how many call
sites it is invoked, and there is an edge directed from func-
tion “M” to function “A” if it is possible for “M” to call “A”.
A dynamic call graph (Figure 7 (b)) has the same structure,
except that it is built through a profiling run and there is
an edge between two nodes only if that invocation actually
takes place in that run. A dynamic call tree (Figure 7 (c)) also
comes from a profiling run. It adds calling context informa-
tion, with each node representing a function invocation, and
the path to it from the root representing its calling context. A
CCT [3] is similar to a dynamic call tree except that it uses
a single node to represent all calls to a function that have the
same calling contexts. In Figure 7 (d) for instance, all the
“C” nodes under “A” in Figure 7 (c) are folded into one.

All four representations are designed for program anal-
ysis rather than call sequence prediction. They have some
variations. We analyze their properties with their basic forms
first, and discuss their extensions later. Specifically, we ex-
amine them against the four basic properties, which qualita-
tively reveals their limitations for call sequence prediction.

• Ensuing relations. The four representations are all cen-
tered on calling relations rather than ensuing relations.
For example, Figures 7 (a) (b) (c) and (d) all indicate that
both “C” and “D” are possible callees of “A”, but none
encodes the relation that a call to “D” must follow calls
to “C” if those calls are made by “A”3. The lack of en-
suing relations makes them fundamentally ill fit for call
sequence prediction.
• Discriminating. Control flows: None of the four rep-

resentations encodes branches or loops. The static call
graph in Figure 7 (a), for instance, fails to show that func-
tion “A” is invoked at both branches and “B” is not. The
other three representations, on the other hand, completely
miss the branch that contains “B”. Moreover, none of the
representations expresses that “C” is called inside a loop
(the dynamic call tree in Figures 7 (c) shows four con-
secutive calls to “C” in “A” but leaves it unclear whether
they are caused by a loop or four different call sites of
“C”.) Missing control flows hinders these representations
for call sequence prediction. For example, the control

3 Nodes in a dynamic call tree by default have no specific orders. If extended
with a time order, the tree may capture some ensuing relations.

8 2014/7/22

flows tell us that if and only if the second call sites of
“A” is reached, “B” will be called immediately after “A”
finishes. None of the four representations captures that
constraint. Calling contexts: Dynamic call tree and CCT
both maintain calling contexts. But static and dynamic
call graphs do not. In Figures 7 (a) and (b), for instance,
all calls to “C” are aggregated into a single node, despite
that they differ in their calling contexts. Call sites: None
of the representations except dynamic call trees offers a
full discrimination of call sites. For instance, the two sites
of calls to “C” in “M” are folded into a single node in Fig-
ures 7 (a) (b) (d). They hence fail to encode that different
call sequences could follow the two calls.
• Generality. Dynamic call graphs, call trees, and CCT all

contain only the invocations made in some training exe-
cution(s) rather than the complete calling relations in the
program. Some functions (e.g., “B”) absent from them
may be called in other runs. It is possible to append these
newly encountered calls to these graphs or trees at run-
time. But there are no machinery in these representations
to overcome the incompleteness and the ambiguity (e.g.,
by dynamic dispatch) for call sequence prediction.
• Scalability. Static and dynamic call graphs are bounded

by the number of unique functions in the program. CCT
is bounded by the number of distinct calling contexts.
They all have reasonable scalability, although sometimes
a CCT could be orders of magnitude larger than the
program itself. A dynamic call tree, on the other hand,
may contain as many nodes as the number of function
invocations in a run, often too large for practical usage.

Overall, in their basic forms, the four representations all
miss some of the basic properties. They have some varia-
tions, the extra features of which may alleviate some issues,
but cannot address their inherent limitations. For example,
in a call graph with labeled edges, a caller may have mul-
tiple calling edges connecting to a callee, with each edge
corresponding to a distinct call site. Similarly, CCT can be
made call site-aware as well if different call sites of a func-
tion are represented with different nodes, even if they have
the same calling context [32]. However, these variations do
not change the inherent nature of these representations of
centering around calling rather than ensuing relations. Nei-
ther do they address the issues on control flows or generality.

Consequently, these representations cannot well capture
the relevant constraints defined by the program. In Figure 7,
for example, none of them reflects the constraint that either
“B” or “C” but not any other functions will follow the first
invocation of “D”. Neither do they reflect that if “A” has
been invoked twice by “M” and the current execution point
is inside “D”, there will be definitely no other function calls
by the end of the execution.

The qualitative analysis reveals the high-level limitations
of these representations for call sequence prediction; Sec-

tion 6 confirms them through some quantitative comparisons
with PCA.

5. Metrics for Call Sequence Prediction
We find no prior definition of metrics for assessing a call
sequence prediction. We introduce three levels of metrics,
which are of different strictness, suitable for different uses
of the prediction results.

LetQ and Q̂ be the true and predicted call sequences, and
U and Û be the set of unique functions inQ and Q̂. The three
levels of metrics are as follows.

• Set-level: It quantifies the closeness between U and Û .
We introduce the following notations: TP = |U ∩ Û |,
TN = |U ∩ Û |, FP = |Û − U |, FN = |Û − U |;
U and Û are the set of functions in the entire program
that do not appear in U or Û respectively. (“T” for true,
“F” for false, “N” for negative, “P” for positive.) Follow-
ing information retrieval theory [18], we use two com-
mon metrics: recall=TP/|U |; precision=TP/|Û |. They
respectively measure how much the true set is uncovered
and how precise the prediction set is. To integrate them
into a single metric, we borrow the concept of Matthews
correlation coefficient (MCC) [31], which takes into ac-
count true and false positives and negatives and is gener-
ally regarded as a balanced measure. It is defined as
MCC= TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
.

MCC has a value range [-1, 1]. We normalize it to [0, 1]
as follows: Set accuracy=(MCC + 1)/2.
• Frequency-level: Let nf and n̂f be the numbers of times

the function f appears in Q and Q̂ respectively. The
frequency accuracy of Q̂ is
1− averagef∈U∪Û (|nf − n̂f |/max(nf , n̂f)).
• Sequence-level: Let e be the minimum number of atomic

editing operations (insertion, deletion, or replacement of
a single token in Q̂) needed to change Q̂ into Q. The
sequence accuracy of Q̂ is 1−e/max(|Q|, |Q̂|). LetQ∗

be the sequence of the functions in U ordered in their first
occurrences in Q, and Q̂∗ be the counterpart for Q̂. The
first-occ sequence accuracy is the sequence accuracy of
Q̂∗ regarding Q∗.

The usage of “max” in the frequency accuracy and se-
quence accuracy ensures that the accuracy is in the range of 0
and 100%. For instance, the e in sequence accuracy must be
no greater than max(|Q|, |Q̂|) since a naive way to generate
Q from Q̂ is to replace every token in Q̂with the correspond-
ing one in Q and its number of operations is max(|Q|, |Q̂|).

As an example, assume that the true sequence is “A A
B C B D”, while the predicted sequence is “A A A B E
F”, and there are 10 unique functions in the whole program.
The measures are as follows: TP=2, TN=4, FP=2, FN=2, re-
call=0.5, precision=0.5, set accuracy=0.58, frequency accu-

9 2014/7/22

racy=0.19, sequence accuracy=0.33, first-occ sequence ac-
curacy=0.5.

Set-level measures are the most relaxed among all. They
ignore the order and frequency of function calls in the se-
quences. First-occ sequence accuracy is slightly stronger by
considering the order of the first-time occurrences of the
functions in Q. They are useful when the prediction is for
guiding early compilation or prefetching.

Frequency accuracy reflects how well the prediction cap-
tures the hotness of the functions in Q. It is useful for
hotness-based optimizations.

Sequence accuracy is the most strict on the difference
between two sequences. The usage of atomic editing oper-
ations in the definition avoids some misleading effects of
alternative definitions. For instance, Hamming distance—
which does pair-wise comparison at token level—is sensi-
tive to local differences and cannot precisely measure the
similarity of two sequences. For example, Q is “A B C D”
while Q̂ is “E A B C”, accuracy based on Hamming dis-
tance is 0, even though the two sequences share a large sub-
sequence. The definition on atomic operations is not subject
to the problem. Computing the needed minimum number of
operations can be challenging, but some existing tools (e.g.,
the Linux utility “diff”) can be used as the ruler.

6. Evaluation
For evaluation, we concentrate on the following questions:

• Can PCA enable accurate call sequence predictions?
What is the time and space cost?
• Is the enabled prediction useful?

For the first question, we design a set of experiments to
measure the call sequence prediction accuracies and over-
head; for the second question, we apply the prediction re-
sults to help JIT decide when to compile which methods for
reducing response time. It would be ideal to assess these
results in the context of existing techniques. But it is diffi-
cult as there are no existing work directly on call sequence
prediction. To circumvent the difficulty, we implement three
other call sequence predictors by extending most relevant
existing techniques.

6.1 Three Alternatives
In Machine Learning, there is a problem called discrete
sequence prediction [22], but its prediction target is still just
the next symbol in a sequence. To put our results into a
context, we implement two representatives of such methods
and extend them for call sequence prediction.

Alternative-1: The first is called Pattern method, an ex-
tension from the single-call predictor by Lee and others [13,
24]. It is based on Markov model. Through a Machine Learn-
ing engine, it derives statistical patterns by examining all the
K + 1-long subsequences of a training sequence, based on
which, its predictor looks at theK most recent function calls
to predict which function will be called next. The authors

showed the usage of the prediction for detecting OS security
issues.

Alternative-2: The second is called TDAG method, which
also exploits frequent subsequences but in a more sophisti-
cated manner through a classical Machine Learning method
called Markov Tree [34]. It uses a tree to store frequent
subsequences of various lengths and maintains confidence
for each tree node. With the tree, it intelligently picks the
best subsequence (frequent enough with strong predictive
capability) for each prediction. To avoid tree size explo-
sion, it adds some constraints on the nodes and height of
the tree [22]. In our implementation, we adopt the same pa-
rameter values as in the previous publication.

Both methods were originally designed for predicting
only the next symbol. We expand the prediction target nat-
urally to a sequence of calls. The training process remains
the same as in the previous work. At a prediction time, the
extended methods gives prediction of the next symbol, ˆst+1,
based on the previous k-symbol sequence (st−k+1, st−k+2,
· · · , st) in their default manner, and then in the same manner,
gives prediction ˆst+2 by regarding the sequence (st−k+2,
st−k+3, · · · , ˆst+1) as the most recent k-symbol sequence.
Other symbols in the time window are predicted likewise.
A comparison to these methods helps reveal the benefits of
PCA’s capitalization of program inherent constraints.

Alternative-3: Although we are not aware of previous us-
age of the other representations listed in Section 4 for call
sequence prediction, they can be adapted to do so in a man-
ner similar to our PCA. We implement such a predictor on
CCT, the most sophisticated representation of all of them.
It is called CCT-based predictor. There are two extensions.
First, we add an edge from every node to each of its imme-
diate parents (callers), representing the transition happening
when the current function returns. Second, we use profiling
to add probabilities to all the edges in the extended CCT in
the same way as in PCA construction. As a program exe-
cutes, each function call triggers one move on the CCT. At
prediction time, the predictor walks on the CCT based on the
directions of its edges, and outputs as the predicted sequence
the functions corresponding to the nodes it encounters. For a
node with multiple outgoing edges, we also experiment with
both the ML and random walk approaches.

A comparison to CCT-based predictor helps quantita-
tively assess the benefits of PCA for its better treatment to
control flows, calling contexts and call sites.

6.2 Methodology
All experiments happen on a machine equipped with dual-
socket quad-core Intel Xeon E5310 processors that run
Linux 2.6.22; the heap size (”-Xmx”) is 512MB for all.
We use Jikes RVM [1] (v3.1.2), an open-source Java Vir-
tual Machine, as our basic framework. We modify its JIT to
derive the FCG from a function’s bytecode, and to collect
calling sequence for training the edge weights on a PCA and
a CCT. The Jikes RVM runs with the default JIT (includ-

10 2014/7/22

Table 1. Benchmark Information
Program # code # unique call. Seq. length (×106)

lines contexts (×103) small default
antlr 32263 1006 7 490
bloat 73563 1980 9 6276
eclipse 1903219 4816 18 1267
fop 88846 175 3 44
luindex 8570 374 10 740
lusearch 12709 6 9 1439
pmd 49331 8043 6 2727
xalan 243516 163 33 10084

Table 2. Size of Candidate Sets
Program size distribution

1 2 3 4 ≥5
antlr 73% 10% 9% 4% 4%
bloat 49% 15% 8% 3% 25%
eclipse 65% 22% 8% 2% 3%
fop 65% 18% 8% 8% 0%
luindex 57% 26% 15% 1% 1%
lusearch 51% 31% 6% 9% 3%
pmd 70% 18% 5% 3% 4%
xalan 72% 15% 5% 3% 4%

ing both baseline and optimizing compilation and inlining)
unless noted otherwise.

We use the Dacapo (2006) benchmark suite [7]. (The
latest version of Dacapo does not work well with Jikes
RVM [20].) Two programs, chart and jython, were left out
because they fail to run on the Jikes RVM-based profiler.
Table 1 shows the benchmarks, their lines of code, the num-
bers of unique calling contexts, and sequence lengths(i.e.,
the total numbers of calls a program makes in a run) on the
small and default inputs coming with the benchmark suite.
In our experiment, we use small runs for training and default
runs for testing. On most programs, the two runs differ sub-
stantially in both the length of call sequences, as shown in
Table 1, and the distribution of function calling frequencies
included in Appendix A. All executions involve a few JNI
calls. As Java uses dynamic dispatch, Table 2 reports the
size distribution of the candidate sets of function calls. For
all programs except for bloat, the call sites with larger than
4 candidate set are less than 5%. We use ten as the upper
bound of the candidate table size.

All reported timing results are average of ten repetitive
measurements. Each reported accuracy number of a bench-
mark is computed by averaging the prediction accuracy of
all its prediction windows. In all experiments, a prediction
window is in the unit of the number of function calls. If the
prediction window size is 20, after a program starts, the pre-
dictor is triggered after every 20 function calls to output the
prediction of what the next 20 function calls will be.

6.3 Accuracy
Table 3 shows the comparison among the four predictors on
all six metrics. In the setting, the prediction window length
is 20, and the maximum likelihood is employed for both the
PCA and CCT predictors. (Other settings are shown later.)
The rightmost column shows the geometrical mean.

PCA results are consistently better than the other predic-
tors, with about 20% higher set accuracy, 40-50% higher
frequency accuracy, about 40% higher first occurrence se-

Table 3. Prediction Accuracy (window size=20)
antlr bloat eclipse fop luin. luse. pmd xalan mean

PCA 0.94 0.96 0.79 0.89 0.90 0.86 0.91 0.92 0.89
Set CCT 0.67 0.77 0.58 0.65 0.79 0.72 0.62 0.65 0.68

accuracy TDAG 0.65 0.79 0.62 0.65 0.78 0.69 0.60 0.65 0.68
Pattern 0.79 0.87 0.51 0.82 0.51 0.86 0.69 0.79 0.72
PCA 0.92 0.96 0.65 0.84 0.95 0.96 0.85 0.92 0.87

Set CCT 0.69 0.91 0.31 0.66 0.89 0.89 0.52 0.64 0.66
recall TDAG 0.65 0.90 0.50 0.77 0.94 0.84 0.50 0.74 0.71

Pattern 0.63 0.79 0.02 0.66 0.04 0.78 0.40 0.59 0.29
PCA 0.87 0.91 0.56 0.75 0.71 0.58 0.81 0.81 0.74

Set CCT 0.18 0.34 0.09 0.15 0.40 0.23 0.12 0.17 0.19
prec TDAG 0.15 0.42 0.14 0.13 0.35 0.19 0.10 0.15 0.18

Pattern 0.53 0.70 0.01 0.63 0.04 0.68 0.37 0.57 0.25
PCA 0.78 0.87 0.36 0.66 0.52 0.45 0.74 0.77 0.62

Frequency CCT 0.07 0.13 0.05 0.08 0.26 0.12 0.06 0.12 0.10
accuracy TDAG 0.05 0.11 0.05 0.05 0.22 0.08 0.05 0.05 0.07

Pattern 0.44 0.62 0.01 0.49 0.03 0.55 0.27 0.43 0.20
PCA 0.81 0.88 0.37 0.66 0.62 0.55 0.73 0.77 0.65

1st occ. CCT 0.17 0.34 0.08 0.15 0.38 0.22 0.11 0.17 0.18
Sequence TDAG 0.15 0.40 0.13 0.09 0.35 0.18 0.10 0.11 0.16
accuracy Pattern 0.75 0.88 0.00 0.80 0.28 0.92 0.51 0.69 0.20

PCA 0.77 0.85 0.26 0.63 0.56 0.45 0.70 0.74 0.59
Full CCT 0.01 0.04 0.00 0.05 0.36 0.11 0.02 0.10 0.03

Sequence TDAG 0.00 0.00 0.00 0.00 0.35 0.04 0.00 0.00 0.01
accuracy Pattern 0.73 0.86 0.00 0.79 0.38 0.89 0.51 0.68 0.28

Table 4. Size and Training Time
Program Size (MB) Training Time (sec)

PCA CCT TDAG Pattern PCA CCT TDAG Pattern
antlr 0.55 0.96 0.02 1.7 21 15 1019 325
bloat 0.56 1.77 0.03 83 21 21 1316 6735
eclipse 1.33 1.95 0.11 15 68 39 2710 4385
fop 0.43 0.69 0.05 9.7 19 7 359 1884
luindex 0.23 0.07 0.01 0.92 23 24 1510 145
lusearch 0.20 0.02 0.01 1.1 24 22 1335 175
pmd 0.49 0.73 0.03 51 6 3 78 3724
xalan 0.55 0.24 0.02 46 11 6 477 3146

quence accuracy, and 30-56% higher whole sequence accu-
racy. As the metrics become stricter, the accuracies of all
methods except PCA drop sharply to no greater than 30%
on average. The PCA results also show some considerable
drop, but it still keeps the accuracy on half of the benchmarks
higher than 70% on all the metrics. There are some quite
challenging programs. For example, the program eclipse, for
its large number of functions and complex control flows,
causes the CCT, TDAG and Pattern methods to get near zero
frequency and sequence accuracies and less than 62% set
accuracy. The PCA does not get very high frequency and
sequence accuracies either, but it manages to still achieve a
79% set accuracy.

It is important to note the connections between prediction
errors and the usefulness of the prediction. It is generally true
that a more accurate prediction may give a larger benefit for
program optimizations. However, many program optimiza-
tions have a certain degree of tolerance of prediction errors.
For instance, when predicted call sequences are used to trig-
ger function prefetching from remote servers, a 80% means
that 20% of the prefetched functions may not be useful. The
prefetching of them may waste some bandwidth and energy.
But the prefetching of the 80% useful functions may still
shorten the execution time of the program substantially and
considerably outweigh the loss by the 20%. In the next sub-
section, we will see that the 79% set accuracy on eclipse, for

11 2014/7/22

0	
0.2	
0.4	
0.6	
0.8	
1	

an
tlr
	

blo
at	

ec
lip
se	 fop

	

lui
nd
ex
	

lus
ea
rch
	

pm
d	

xa
lan
	

av
era
ge
	

Ac
cu
ra
cy

set-‐ml	 set-‐rw	 freq-‐ml	 freq-‐rw	 seq-‐ml	 seq-‐rw	

Figure 9. Comparison between maximum likelihood (ml) and
random walk (rw). (window size=20)

example, yields up to a 10% speedup when the prediction is
applied to code cache management.

Another observation is that the CCT-based approach is
overall no better than the Pattern-based approach in terms of
prediction accuracies. It indicates that although capitaliza-
tion of program structure can be beneficial for call sequence
prediction, how to capitalize it and using what representa-
tion to encode the structure are critical: The lack of support
in CCT for various levels of contexts leaves its capitalization
of program structures ineffective.

Figure 8 gives a more detailed report. (TDAG performs
the worst and is hence omitted for lack of space.) As the
prediction scope increases, the difficulty for prediction in-
creases. All three methods show a certain degree of reduc-
tion in accuracy. On two programs with some frequently oc-
curring call sequence patterns (fop and lusearch), the Pat-
tern method performs well, yielding set accuracies close to
those from the PCA method. But across all window sizes,
PCA maintains an average accuracy higher than 80%, about
a 20% edge over the other methods.

Another dimension of comparison is between the Ran-
dom Walk and Maximum Likelihood. From Figure 9, we
can see their influence on the PCA method in terms of three
types of accuracies. For most programs, Maximum Like-
lihood gives higher accuracies. An exception is lusearch,
which has a number of loops with a low loop trip-count. Be-
ing able to get out of the loop early, Random Walk helps
the prediction. But overall, the average accuracies show that
their influence on PCA and CCT does not differ much.

Besides accuracy, we have examined the size, training
time, and prediction time of the four methods. As Table 4
shows, the pattern-based predictor can be much larger than
the other three predictors, when there are many different sub-
sequences (e.g., bloat, pmd, and xalan.) The TDAG method
successfully reduces the size of the predictor through its con-
strained tree structure (but fails in enhancing the prediction
accuracy.) The training time of both Pattern and TDAG are
several orders of magnitude longer than the other two predic-
tors. PCA predictors are slightly larger than CCT predictors;
both are quick to train. The time taken to perform a pre-
diction is independent of benchmarks. The PCA and CCT
predictors take 32µs and 8µs to predict a 40-call sequence
respectively, negligible compared to the time needed to com-

-‐10%	

0%	

10%	

20%	

30%	

an
tlr
	

blo
at	

ec
lip
se	 fop

	

lui
nd
ex
	

lus
ea
rch
	

pm
d	

av
era
ge
	

Sp
ee
du

p

pca-‐20	 pca-‐40	 pca-‐80	 cct-‐20	 cct-‐40	 cct-‐80	

Figure 10. Speedup when call sequence prediction is used for
parallel JIT compilation (Two compilation threads are used).

pile the functions by JIT. By contrast, the TDAG predictors
take 827µs on average, caused by the Markov tree searching
at each call prediction. The time overhead of state tracking
is marginal, no more than 2% for the programs.

6.4 Uses
The PCA-based call sequence prediction may benefit many
uses, such as guiding the replacement policy in code cache
to reduce cache misses [17], enabling better prefetching to
enhance the instruction cache performance [28], and helping
preload remote classes in mobile computing.

In this work, we experiment with parallel JIT compila-
tion. Parallel JIT creates multiple threads to compile func-
tions. By default, it compiles a method only after the method
gets called. With the prediction of upcoming method calls,
the compilation of a method could happen earlier, which
may reduce the program response time. Reduction of pro-
gram response time is especially important for programs
for which the responsiveness rather than steady-state per-
formance is what often matters to users. Unlike server pro-
grams, these programs are often utility tools that do not
have a long-running execution; compilation could take a
substantial portion of its execution time, especially during
the startup stage of their executions. In our experiments of
the replay runs of the Dacapo benchmarks, we observe that
method compilations take 7∼96% (65% on average) of the
execution time, depending on the benchmark.

In our experiment, we implement a prototype of paral-
lel JIT on JikesRVM. For parallel JIT to work well, there
are two aspects. The first is to determine the appropriate op-
timization level to use for the target function, the other is
to decide the good time to compile the function. There are
many studies on predicting the optimization levels [5]. The
focus of our experiment is on the compilation timing as-
pect. So to avoid the distractions of the other factor, we use
the advice files produced by JikesRVM for all experiments.
The files record the appropriate optimization level for each
method based on its importance.

In our experiments, after each prediction window, the JIT
invokes the predictor to get the predicted call sequence in the
next time window. It then creates compilation events for the
methods in the predicted sequence that have not been com-
piled before, and puts those events into the compilation event

12 2014/7/22

0	
0.2	
0.4	
0.6	
0.8	
1	

antlr	 bloat	 eclipse	 fop	 luindex	 lusearch	 pmd	 xalan	 average	

Ac
cu
ra
cy

20.pca.ml	 40.pca.ml	 80.pca.ml	 20.cct.ml	 40.cct.ml	 80.cct.ml	 20.pa?ern	 40.pa?ern	 80.pa?ern	

Figure 8. Comparison of Set Accuracy among different prediction window sizes.

queue in JikesRVM. Compilation threads automatically de-
queue the events and conduct the compilation.

The number of compilation threads we tested ranges from
two to seven. We see diminishing gains from parallel JIT
when the number is greater than two. As two is the most
cost efficient, Figure 10 reports the speedup in that setting.
We chose CCT method as the representative of alternatives
to PCA for its relative ease to use and having a similar or
higher prediction accuracy and prediction speed than others.

The baseline in Figure 10 is the performance when the
default replay mode is enabled, which uses the same compi-
lation levels as in the advice files but uses no prediction of
call sequences. Given that most studied programs are util-
ity programs, their responsiveness rather than steady-sate
performance is what often matters. The reported speedup is
for one run of the program (i.e., a warm-up iteration of the
benchmark) rather than the steady-state execution, and the
performance is based on the end-to-end walk-clock time of
an execution.

Call sequence prediction not only increases compilation
parallelism, but also enables better overlapping between ex-
ecution and compilation. The PCA-based predictions, in all
three window sizes, lead to more than 20% speedups on
three programs, and an average around 15% on all seven pro-
grams (“xalan” fails working in the default replay mode). In
contrast, the CCT-based prediction gives only slight speedup
on lusearch and pmd. It is due to its low prediction precision:
an average of 19% versus the 74% of PCA-based approach
as Table 3 shows. In consequence, many useless functions
are compiled, which delays the compilation of those useful
ones.

Two other observations are worth mentioning. First, a
larger prediction window does not always deliver higher
speedup. It is because on large windows, the prediction, al-
though finding more useful methods to compile, could en-
queue more methods that won’t be used in the near future.
Second, some programs (e.g., bloat) that have high predic-
tion precision and accuracy do not show large speedups. It is
because the speedup also depends on how much the compi-
lation time weight in the overall running time. If it is small,
the entire potential of parallel JIT is small.

7. Related Work
7.1 Program Representations
Besides the work mentioned in Section 4, some other studies
also relate with calling contexts. Program summary graphs
by Callahan [12], for instance, use nodes for formal and true
parameters of functions and edges for their bindings. By
showing the flow of values across procedures, the graphs fa-
cilitate inter-procedural data flow analysis. The probabilistic
calling context by Bond and McKinley [8] offers an effi-
cient way to collect and represent calling contexts. Later
work proposes other ways to encode calling contexts pre-
cisely [35]. Alur and others [2] analyzed Recursive State
Machines for representing recursive procedural calls in the
context of system verification. As Section 2 discusses, call-
ing context is only one of the necessary conditions for call
sequence prediction. Without capturing control flows, call
sites discrimination, and ensuing relations among calls, call-
ing contexts alone do not suffice for call sequence prediction.
Moreover, these representations provide no machinery—
such as the v-nodes, α-stack in PCA—to overcome the vari-
ous ambiguities (e.g., by dynamic dispatch) for call sequence
prediction.

Some previous studies aim at finding hot code or data
streams [15, 23]. Similar to the pattern method implemented
in Section 6, these methods centered on statistical patterns of
sequences, and hence suffer from the diminishing regularity
as prediction scope increases. Moreover, predicting cold call
sequences and dealing with local variations (e.g., caused by
branches) are essential for our call sequence prediction and
its usage for startup time reduction.

A previous study uses DFA to record traces found in a
binary translation process [30]. It starts from traces of func-
tion calls and builds automata based on their patterns. An-
other study that uses DFA is to construct object usage mod-
els [33]. For each abstract object, it builds an automaton with
some places in the code as nodes and function calls related
to that object as edge labels. Neither of the two studies is
for predicting function call sequences; the first is for com-
pressing traces and the second is for detecting anomalies in
object usage. Consequently, their designs are not suitable for
call sequence predictions. First, they are at the level of ei-
ther traces or objects, rather than the whole program. When
the scope goes to the whole program level with potentially

13 2014/7/22

infinite recursions, it becomes more complex than the pure
automata can model. Second, they do not have any of the
three stacks in PCA. The stacks adds more expressiveness to
automata. More importantly, the stacks, along with unique
call site IDs, inject into PCA the capability to discriminate
different call sites and calling contexts in the prediction. In
addition, their designs give no systematic treatment to am-
biguous or unexpected function calls.

The probabilities associated with the v-nodes were in-
spired by some prior work on virtual function target pre-
diction [6]. There are many other works trying to predict
program behaviors beyond function calls, such as function
returning values [29], load value prediction [11]. They cen-
ter on leveraging statistical patterns rather than constraints
through program representations.

7.2 Stochastic Models
In time series related domains, lots of data analysis has
been based on probabilistic state machines (e.g., weighted
automata [27], probabilistic pushdown automata [10]), or
other stochastic models (e.g., Markov Model, Markov Tree).
PCA can be regarded as an augmented form of probabilistic
state machines that is specially customized for leveraging
constraints coded in programs and for accommodating their
various complexities, reflected by its design of the three
types of stacks, diamond and v-nodes, and the edge and
node labels. These features make PCA more effective in
predicting function call sequences, as exemplified by the
comparison with Markov Trees in the evaluation.

8. Conclusion
In this paper, we have presented the first systematic study
in exploiting program defined constraints to enable function
call sequence prediction. We have introduced PCA, a new
program representation that captures both the inherent call-
ing relations among functions, and the probabilistic nature
of execution paths determined by conditional branches and
loops. Experiments show that the new approach can produce
more accurate call sequence predictions than alternatives. As
a fundamental representation of function calling relations,
PCA may open up many new opportunities for optimizing
the performance of modern virtual machines and beyond.

References
[1] Jikes rvm. http://jikesrvm.org.

[2] Rajeev Alur, Michael Benedikt, Kousha Etessami, Patrice
Godefroid, Thomas Reps, and Mihalis Yannakakis. Analy-
sis of recursive state machines. ACM Trans. Program. Lang.
Syst., 27(4):786–818, July 2005.

[3] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware
performance counters with flow and context sensitive profil-
ing. In PLDI, 1997.

[4] M. Annavaram, J. M. Patel, and E. S. Davidson. Call graph
prefetching for database applications. ACM Transactions on
Computer Systems, 21(4), 2003.

[5] M. Arnold, A. Welc, and V.T. Rajan. Improving virtual ma-
chine performance using a cross-run profile repository. In the
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 297–311, 2005.

[6] D. F. Bacon and P. Sweeney. Fast static analysis of c++ virtual
function calls. In OOPSLA, 1996.

[7] S. M. Blackburn et al. The DaCapo benchmarks: Java bench-
marking development and analysis. In Proceedings of ACM
SIGPLAN Conference on Object-Oriented Programming Sys-
tems, Languages and Applications, October 2006.

[8] M. Bond and K. S. McKinley. Probabilistic calling context.
In OOPSLA, 2007.

[9] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer:
Proportional detection of data races. In Proceedings of ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2010.

[10] Toms Brzdil, Javier Esparza, Stefan Kiefer, and Antonn
Kucera. Analyzing probabilistic pushdown automata. Formal
Methods in System Design, 43(2):124–163, 2013.

[11] M. Burtscher and B. G. Zorn. Prediction outcome history-
based confidence estimation for load value prediction. Journal
of Instruction-Level Parallelism, 1999.

[12] D. Callahan. The program summary graph and flow-sensitive
interprocedural data flow analysis. In PLDI, 1988.

[13] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection:
A survey. ACM Comput. Surv., 41(3), 2009.

[14] W. Chen, S. Bhansali, T. M. Chilimbi, X. Gao, and
W. Chuang. Profile-guided proactive garbage collection for
locality optimization. In Proceedings of PLDI, pages 332–
340, 2006.

[15] T. M. Chilimbi and M. Hirzel. Dynamic hot data stream
prefetching for general-purpose programs. In Proceedings
of ACM SIGPLAN Conference on Programming Language
Design and Implementation, Berlin, Germany, June 2002.

[16] Yufei Ding, Mingzhou Zhou, Zhijia Zhao, Sarah Eisenstat,
and Xipeng Shen. Finding the limit: Examining the potential
and complexity of compilation scheduling for jit-based run-
time systems. In Proceedings of the 19th International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’14, pages 607–622, New
York, NY, USA, 2014. ACM.

[17] A. Guha, K. Hazelwood, and M. L. Soffa. Balancing memory
and performance through selective flushing of software code
caches. In CASES, 2010.

[18] T. Hastie, R. Tibshirani, and J. Friedman. The elements of
statistical learning. Springer, 2001.

[19] S. Hu and J. E. Smith. Reducing startup time in co-designed
virtual machines. In Proceedings of the International Sympo-
sium on Computer Architecture, 2006.

[20] Jikes rvm project and status.
http://http://jikesrvm.org/Project+Status.

[21] G. Jin, A. V. Thakur, B. Liblit, and S. Lu. Instrumenta-
tion and sampling strategies for cooperative concurrency bug
isolation. In Proceedings of ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Ap-
plications, 2010.

14 2014/7/22

[22] P. Laird and R. Saul. Discrete sequence prediction and its
applications. Machine Learning, 15:43–68, 1994.

[23] J. R. Larus. Whole program paths. In Proceedings of ACM
SIGPLAN Conference on Programming Language Design and
Implementation, Atlanta, Georgia, May 1999.

[24] W. Lee, S. J. Stolfo, and P. K. Chan. Learning patterns from
unix process execution traces for intrusion detection. In AAAI
Workshop on AI Approaches to Fraud Detection and Risk
Management, 1997.

[25] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug iso-
lation via remote program sampling. In Proceedings of ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2003.

[26] B. Livshits and E. Kiciman. Doloto: code splitting for
network-bound web 2.0 applications. In Symp. on the Foun-
dations of Software Engineering, 2008.

[27] Mehryar Mohri. Finite-state transducers in language and
speech processing. Computational Linguistics, 23:269–311,
1997.

[28] P. Nagpurkar, H. Cain, M. Serrano, J. Choi, and C. Krintz.
Call-chain software instruction prefetching in j2ee server ap-
plications. In Proceedings of the International Conference
on Parallel Architecture and Compilation Techniques (PACT),
2007.

[29] C. J. Pickett, C. Verbrugge, and A. Kielstra. Adaptive software
return value prediction. Technical Report 1, McGill Univer-
sity, 2009.

[30] J. Porto, G. Araujo, E. Borin, and Y. Wu. Trace execution
automata in dynamic binary translation. In Proceedings of 3rd
Workshop on Architectural and Microarchitectural Support
for Binary Translation, 2010.

[31] D. Powers. Evaluation: From precision, recall and f-factor
to roc, informedness, markedness and correlation. Journal of
Machine Learning Technologies, pages 37–63, 2007.

[32] A. Sarimbekov, A. Sewe, W. Binder, P. Moret, M. Schoeberl,
and M. Mezini. Portable and accurate collection of calling-
context-sensitive bytecode metrics for the java virtual ma-
chine. In The 9th International Conference on the Principles
and Practice of Programming in Java, 2011.

[33] A. Wasylkowski, A. Zeller, and C. Lindig. Detecting object
usage anomalies. In Symp. on the Foundations of Software
Engineering, 2007.

[34] R. William. Dynamic history predictive compression. Infor-
mation Systems, 13(1):129–140, 1988.

[35] W.M.Summer, Y. Zheng, D. Weeratunge, and X. Zhang. Pre-
cise calling context encoding. In Proc. of the International
Conf. on Software Engineering, 2010.

[36] Y. Wu and J. Larus. Static branch frequency and program pro-
file analysis. In Proceedings of the International Symposium
on Microarchitecture, 1994.

A. Function Call Frequency Distributions
Figures 11 and 12 show the distributions of the function
call frequencies in the training (small) and testing (default)
runs. The X-axis is the method ID, and each point in the

graphs show the percentage of the number of calls of a
method over the total number of calls in a run. For better
legibility, the points are connected into curves. All programs
except lusearch and xalan show substantial differences in the
distributions.

15 2014/7/22

0.00E+00	

1.00E-‐03	

2.00E-‐03	

3.00E-‐03	

4.00E-‐03	

5.00E-‐03	

fr
eq

ue
nc
y	
in
	 %

method	 id	

antlr.small	

0.00E+00	

1.00E-‐03	

2.00E-‐03	

3.00E-‐03	

4.00E-‐03	

5.00E-‐03	

fr
eq

ue
nc
y	
in
	 %

method	 id	

bloat.small	

0.00E+00	

1.00E-‐03	

2.00E-‐03	

3.00E-‐03	

4.00E-‐03	

5.00E-‐03	

fr
eq

ue
nc
y	
in
	 %

method	 id	

antlr.default	

0.00E+00	

1.00E-‐03	

2.00E-‐03	

3.00E-‐03	

4.00E-‐03	

5.00E-‐03	

fr
eq

ue
nc
y	
in
	 %

method	 id	

bloat.default	

0.00E+00	

1.00E-‐03	

2.00E-‐03	

3.00E-‐03	

4.00E-‐03	

5.00E-‐03	

fr
eq

ue
nc
y	
in
	 %

method	 id	

eclipse.small	

0.00E+00	

1.00E-‐03	

2.00E-‐03	

3.00E-‐03	

4.00E-‐03	

5.00E-‐03	

fr
eq

ue
nc
y	
in
	 %

method	 id	

fop.small	

0.00E+00	

1.00E-‐03	

2.00E-‐03	

3.00E-‐03	

4.00E-‐03	

5.00E-‐03	

fr
eq

ue
nc
y	
in
	 %

method	 id	

eclipse.default	

0.00E+00	

1.00E-‐03	

2.00E-‐03	

3.00E-‐03	

4.00E-‐03	

5.00E-‐03	

fr
eq

ue
nc
y	
in
	 %

method	 id	

fop.default	

Figure 11. Function Call Frequency Distributions (Part I)

16 2014/7/22

0.00E+00	

1.00E-‐03	

2.00E-‐03	

3.00E-‐03	

4.00E-‐03	

5.00E-‐03	

fr
eq

ue
nc
y	
in
	 %

method	 id	

luindex.small	

0.00E+00	

1.00E-‐03	

2.00E-‐03	

3.00E-‐03	

4.00E-‐03	

5.00E-‐03	

fr
eq

ue
nc
y	
in
	 %

method	 id	

lusearch.small	

0.00E+00	

1.00E-‐03	

2.00E-‐03	

3.00E-‐03	

4.00E-‐03	

5.00E-‐03	

fr
eq

ue
nc
y	
in
	 %

method	 id	

lusearch.default	

0.00E+00	

1.00E-‐03	

2.00E-‐03	

3.00E-‐03	

4.00E-‐03	

5.00E-‐03	

fr
eq

ue
nc
y	
in
	 %

method	 id	

luindex.default	

0.00E+00	

1.00E-‐03	

2.00E-‐03	

3.00E-‐03	

4.00E-‐03	

5.00E-‐03	

fr
eq

ue
nc
y	
in
	 %

method	 id	

pmd.small	

0.00E+00	

1.00E-‐03	

2.00E-‐03	

3.00E-‐03	

4.00E-‐03	

5.00E-‐03	

fr
eq

ue
nc
y	
in
	 %

method	 id	

xalan.small	

0.00E+00	

1.00E-‐03	

2.00E-‐03	

3.00E-‐03	

4.00E-‐03	

5.00E-‐03	

fr
eq

ue
nc
y	
in
	 %

method	 id	

xalan.default	

0.00E+00	

1.00E-‐03	

2.00E-‐03	

3.00E-‐03	

4.00E-‐03	

5.00E-‐03	

fr
eq

ue
nc
y	
in
	 %

method	 id	

pmd.default	

Figure 12. Function Call Frequency Distributions (Part II)

17 2014/7/22

