
Autotuning Algorithmic Choice for Input Sensitivity

Yufei Ding∗, Jason Ansel�, Kalyan Veeramachaneni�, Xipeng Shen∗

Una-May O’Reilly�, Saman Amarasinghe�

∗: North Carolina State University, Raleigh, NC, USA
�: Massachusetts Institute of Technology, Cambridge, MA, USA

∗: {yding8, xshen5}@ncsu.edu
�:{jansel, kalyan, unamay, saman}@csail.mit.edu

Abstract
A daunting challenge faced by program performance autotuning is
input sensitivity, where the best autotuned configuration may vary
with different input sets. This paper presents a novel two-level input
learning algorithm to tackle the challenge for an important class
of autotuning problems, algorithmic autotuning. The new approach
uses a two-level input clustering method to automatically refine
input grouping, feature selection, and classifier construction. Its
design solves a series of open issues that are particularly essential
to algorithmic autotuning, including the enormous optimization
space, complex influence by deep input features, high cost in
feature extraction, and variable accuracy of algorithmic choices.
Experimental results show that the new solution yields up to a 3x
speedup over using a single configuration for all inputs, and a 34x
speedup over a traditional one-level method for addressing input
sensitivity in program optimizations.

Categories and Subject Descriptors D3.2 [Programming Lan-
guages]: Language Classifications – Concurrent, distributed, and
parallel languages; D3.4 [Programming Languages]: Processors -
Compilers.

General Terms Algorithms, Languages, Performance.

Keywords Petabricks, Autotuning, Algorithmic Optimization, In-
put Adaptive, Input Sensitivity, Two-level Input Learning.

1. Introduction
Application developers have invested a great deal of effort into ex-
tending the lifetime of software. To a large degree, this effort has suc-
ceeded. Millions of lines of code written decades ago are still being
used in new programs. A typical example of this can be found in the
C++ Standard Template Library (STL) routine std::stable_sort,
distributed with the current version of GCC and whose implemen-
tation dates back to at least the 2001 SGI release of the STL. This
legacy code contains a hard coded optimization, a cutoff constant

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, contact the Owner/Author.
Request permissions from permissions@acm.org or Publications Dept., ACM, Inc.,
fax +1 (212) 869-0481. Copyright 2015 held by Owner/Author. Publication Rights
Licensed to ACM.
PLDI’15 , June 13–17, 2015, Portland, OR, USA
Copyright c© 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00
DOI: http://dx.doi.org/10.1145/

of 15 between merge and insertion sort, that was designed in an era
when machines had 1/100th the memory of modern machines. Our
tests have shown that higher cutoffs (60 to 150) perform much better
on current architectures. While this paradigm of write once and run
it everywhere is great for productivity, a major sacrifice of these
efforts is performance. Write once use everywhere often becomes
write once slow everywhere. We need programs with performance
portability, where programs can re-optimize themselves to achieve
the best performance on widely different execution targets.

One of the most promising techniques to achieve performance
portability is program autotuning. Rather than hard-coding optimiza-
tions that only work for a single microarchitecture, or using fragile
heuristics, program autotuning exposes a search space of program
optimizations that can be explored automatically. Autotuning is used
to search this optimization space to find the best configuration to
use for each platform.

A fundamental problem in autotuning faced by programs and
libraries is input sensitivity. For a large class of problems, the best
optimization to use depends on the input data being processed. For
example, sorting an almost-sorted list that contain many repeated
values can be done most efficiently with a different algorithm than
one optimized for sorting random data. For many problems, no
single optimized program exists which can match the performance
of a collection of optimized programs autotuned for different subsets
of the input space. A common solution is to search for good
optimizations on every training input, based on which, it builds
a machine learning model that predicts the best optimization to use
in a new run according to the features of the new input [22, 30, 33,
39, 42].

Although the exhaustive approach works for certain program
optimizations, it is insufficient for algorithmic autotuning, a class
of autotuning problems, in which, the autotuners try to determine
the best ways to configure an algorithm or assemble multiple
algorithms into a recursive poly-algorithm to solve a problem [6].
Properties of algorithmic autotuning determines that it is often
infeasible to find good optimizations—or algorithmic configuration
in this context—for every training input. On one hand, in the
benchmarks we consider, the autotuner uses algorithmic choices
embedded in the program to construct arbitrary polyalgorithms. The
polyalgorithms process a single input through a hybrid of many
different individual techniques, which results in enormous search
spaces, ranging from 10312 to 101016 possible configurations of
a programm [6]. Even through intelligent search algorithms [7],
finding a desirable configuration at a training input takes hours or
days. On the other hand, algorithmic choices are often sensitive to
input features that are domain-specific and require deep, possibly
expensive, analysis to extract. For example, our singular value
decomposition benchmark is sensitive to the number of eigenvalues
in the input matrix. Hundreds or thousands of training inputs are

often prepared such that the complex input feature space could get
well covered. The large number of inputs, combined with the long
training time per input, means searching for good configurations
for every training input may take months or years for a program,
which makes the traditional exhaustive approach impractical for
algorithmic autotuning.

An intuitive solution is through clustering [11, 33, 39]. It first
clusters training inputs into groups with the members in the same
group featuring similar values of predefined input features, and
then finds the configuration that works the best for the centroid
of each group. In a production run, when a new input comes, the
program extracts its feature values, based on which, it identifies the
cluster that the input resembles the most, and then runs with that
cluster’s configuration. We call this approach the one-level learning
approach. It has been used for intelligent program compilations and
other autotuning tasks. It avoids finding the best configuration for
every training input and hence saves much training time.

The one-level approach however works inferiorly for algorithmic
autotuning, resulting in as much as 29x slowdown over using a
single configuration for all inputs on our benchmarks (detailed in
Section 4). The reason comes from three properties of algorithmic
autotuning.

• Costly Features. Due to the nature of algorithmic selection,
algorithmic autotuning often involves extracting complex, and
sometimes costly, input features such as matrix eigenvalues.
Extraction of too many such features can add a large runtime
overhead to production runs.
• Mapping Disparity. The relations between input features and

algorithmic configurations are often complex. Two inputs hav-
ing similar values in the predefined features may respond very
differently to the same algorithmic configuration. Standard un-
supervised feature selection (e.g., PCA) [23] does not solve the
problem (more in Section 4), while standard supervised methods
(e.g., decision trees) [23] cannot apply since the best config-
urations for most training inputs are unknown. The disparity
between the predefined feature space and the best configurations
causes inferior configurations to be selected by the one-level
method.
• Variable Accuracy. Unlike many compiler optimizations, algo-

rithmic autotuning has close interactions with variable accura-
cies. A program with different algorithmic configurations often
produces outputs of different quality, and the autotuner is re-
quired to produce configurations that will meet a user specified
quality of service level. For example, a Poisson’s equation solver
may require its output to match the output of a direct solver to a
certain precision with at least 95% confidence. Meeting such a
requirement is difficult especially because of the input variations.
For a class of inputs, a very fast polyalgorithm may suffice to
achieve the accuracy, while for different inputs that same solver
may not meet the accuracy target. Without carefully treating
the dual objectives of accuracy and performance, the one-level
method frequently gives configurations that miss the accuracy
target, as Section 4 shows.

This paper presents a new solution that addresses all those chal-
lenges through a two-level learning framework. It starts with the
traditional one-level learning, and employs a second-level input
learning to close the mapping disparity gap between input features
and performance space, identify cost-effective input features, and
reconcile the stress between accuracy and performance. Specifically,
in the second level, after getting the configuration (called a land-
mark) for the centroid of each input cluster, it regroups the training
inputs by drawing on the performance of all the landmark configura-
tions on each of the training inputs, based on which, it selects input

features and builds up appropriate input classifiers with algorithm
performance and computation accuracy simultaneously considered.

This design leverages the observation that running a program
once is usually much faster than autotuning the program, which
can involve thousands of runs, to find a suitable algorithmic con-
figuration. Its performance-based auto-refinement of input clusters
closes the mapping disparity gap between the clustering results and
performance, without the need for finding the best configuration
for every input. The design reconciles the stress between accuracy
and performance by introducing a programmer-centric scheme and
a coherent treatment to the dual objectives at both levels of learn-
ing. It seamlessly integrates consideration of the feature extraction
overhead into the construction of input classifiers. This two-level ap-
proach is able to achieve large speedups by making an optimization
choice which is sensitive to input variation while managing the input
space and search space complexity. In addition, we propose a new
language keyword that allows the programmer to specify arbitrary
domain-specific input features with variable sampling levels.

Contributions This paper makes the following contributions:

• Our system is, to the best our knowledge, the first to simultane-
ously address the interdependent problems of variable accuracy
algorithms and the sensitivity of algorithmic selection on deep,
complex input features.
• Our novel two-level auto-refinement approach solves the prob-

lem of input sensitivity for much larger, more complex algorith-
mic search spaces than would be tractable using state-of-the-art
techniques.
• We offer a principled understanding of the influence of pro-

gram inputs on algorithmic autotuning, and the relations among
the spaces of inputs, algorithmic configurations, performance,
and accuracy. We identify a key disparity between input prop-
erties, configuration, and execution behavior which makes it
impractical to produce a direct mapping from input properties to
configurations and motivates our two-level approach.
• We show through an experimentally tested model that for many

types of search spaces there are rapidly diminishing returns
to adding more algorithmic configurations that a program can
select across inputs. Cross-input adaptation on a few algorith-
mic configurations goes a long way, while a large number of
configurations are often unnecessary.
• Experimental results show that the two-level solution produces

up to a 3x speedup over using a single configuration for all inputs
in algorithmic selection, and a 34X speedup over prior one-level
method.

2. Language and Usage
This work is developed upon the PetaBricks language and its
compiler [6]. This section will briefly describe some of the key
features of PetaBricks, and then discuss our extensions to it to
support the exploration of input sensitive autotuning of algorithms.

Figure 1 shows a fragment of the PetaBricks Sort benchmark
extended for input sensitivity. We will use this as a running example
throughout this section.

2.1 Algorithmic Choice
The most distinctive feature of the PetaBricks language is algorith-
mic choice. Using algorithmic choice, a programmer can define
a space of possible polyalgorithms rather than just a single algo-
rithm from a set. There are a number of ways to specify algorithmic
choices, but the most simple is the either...or statement shown at
lines 6 through 16 of Figure 1. The semantics are that when the
either...or statement is executed, exactly one of the sub blocks will

1 function Sort
2 to out[n]
3 from in[n]
4 input_feature Sortedness, Duplication
5 {
6 either {
7 InsertionSort(out, in);
8 } or {
9 QuickSort(out, in);

10 } or {
11 MergeSort(out, in);
12 } or {
13 RadixSort(out, in);
14 } or {
15 BitonicSort(out, in);
16 }
17 }
18
19 function Sortedness
20 from in[n]
21 to sortedness
22 tunable double level (0.0, 1.0)
23 {
24 int sortedcount = 0;
25 int count = 0;
26 int step = (int)(level*n);
27 for(int i=0; i+step<n; i+=step) {
28 if(in[i] <= in[i+step]) {
29 // increment for correctly ordered
30 // pairs of elements
31 sortedcount += 1;
32 }
33 count += 1;
34 }
35 if(count > 0)
36 sortedness = sortedcount / (double) count;
37 else
38 sortedness = 0.0;
39 }
40
41 function Duplication
42 from in[n]
43 to duplication
44 ...

Figure 1: PetaBricks pseudocode for Sort with input features

be executed, and the choice of which sub block to execute is left up
to the autotuner.

The either...or primitive implies a space of possible polyalgo-
rithms. In our example, many of the sorting routines (QuickSort,
MergeSort, and RadixSort) will recursively call Sort again, thus,
the either...or statement will be executed many times dynamically
when sorting a single list. The autotuner uses evolutionary search
to construct polyalgorithms which make one decision at some calls
to the either...or statement, then different decisions in the recursive
calls [8].

These polyalgorithms are realized through selectors (sometimes
called decision trees) which efficiently select which algorithm to
use at each recursive invocation of the either...or statement. Figure 2
shows an example: The selector creates a polyalgorthm that first
uses MergeSort to decompose a problem into lists of less than 1420
elements, then uses QuickSort to decompose those lists into lists
of less than 600 elements, and finally these lists are sorted with
InsertionSort.

N < 600

N < 1420

 MergeSort

QuickSort

Y

Y

N

N

InsertionSort

Figure 2: A selector that realizes a polyalgorithm for sorting.

2.2 Input Features
To support exploration of input sensitivity, in this work we introduce
a new keyword input_feature into the PetaBricks language, shown
on lines 4 and 5 of Figure 1. The input_feature keyword specifies a
programmer-defined function, a feature extractor, that will measure
some domain specific property of the input to the function. A feature
extractor must have no side effects, take the same inputs as the
function, and output a single scalar value. The autotuner will call
this function as necessary.

Feature extractors may have tunable parameters which control
their behavior. For example, the level tunable on line 23 of
Figure 1, is a value that controls the sampling rate of the sortedness
feature extractor. Higher values will result in a faster, but less
accurate measure of sortedness. Tunable is a general language
keyword that specifies a variable to be automatically set by the
autotuner, and two values indicating the allowable range of the
tunable (in this example between 0.0 and 1.0).

Users may use input_feature keyword to define all the potentially
relevant features based on her domain knowledge; some of the fea-
tures could be more costly or less important than others. Effectively
selecting the subset of features that are critical and beneficial is part
of the key support offered by our two-level approach. Suitable values
of the tunable parameters are also part of the algorithmic configu-
rations that our enhanced autotuner is designed to help determine
adaptively across program inputs.

After autotuner selects the right subset of input features and
their tunable parameter values, every execution of the program of
interest will call the corresponding feature extraction functions at
the beginning of the execution. The collected input features will be
used to select the configuration of the algorithm that best suits the
current input. Section 3 will elaborate on how input features are
used by the auotuner.

2.3 Variable Accuracy
One of the key features of the PetaBricks programming language is
its support for variable accuracy algorithms, which can trade output
accuracy for computational performance (and vice versa) depending
on the quality of service requirements or program specification. Ap-
proximating ideal program outputs is a common technique used for
solving computationally difficult problems, adhering to processing
or timing constraints, or optimizing performance in situations where
perfect precision is not necessary. Algorithmic methods for produc-
ing variable accuracy outputs include approximation algorithms,
iterative methods, data resampling, and other heuristics.

At a high level, PetaBricks extends the idea of algorithmic choice
to include choices between different accuracies. The programmer
specifies a programmer-defined accuracy metric to measure the
quality of the output, and sets an accuracy target. The autotuner
must then consider a two dimensional objective space, where its

Training
Deployment

Input Classifier

Input Aware
Learning

Program

Training Inputs

Feature Extractors
Insights:
 - Feature Priority List
 - Performance Bounds

Input

Select Input Optimized
Programs

Training

Selected
Program

Run

Figure 3: Usage of the system both at training time and deployment
time. At deployment time the input classifier selects the input
optimized program to handle each input. Input Aware Learning
is described in Section 3.

first objective is to meet the accuracy target (with a given level of
confidence) and the second objective is to maximize performance. A
detailed description of the variable accuracy features of PetaBricks
is given in [5].

2.4 Usage
Figure 3 describes the usage of our system for input sensitive al-
gorithm design. The input aware learning, described in Section 3,
takes the user’s program (containing algorithmic choices), the fea-
ture extractors specified by the input_feature language keyword
and input exemplars as input. The output of the learning is an input
classifier, a subset of input features, and a set of input optimized
programs, each of which has been optimized for specific class of
inputs.

When an arbitrary input is encountered in deployment, the
classifier created by learning is used to select an input optimized
program which is expected to perform the best on this input. The
classifier will use the subset of the feature extractors to probe the
input. Finally, the selected input optimized program will process the
input and return the output.

3. Input Aware Learning
Motivated by the particular complexities of algorithmic autotuning,
we develop a two-level learning framework. The first level is shown
in Figure 4. In its first step it clusters and groups the input space
into a finite number of input classes and then uses the autotuner to
identify a good algorithmic configuration for each cluster’s centroid.
In addition however, to provide data on the mappings among inputs,
configuration and performance, it executes every exemplar (i.e.,
training input) using the configuration of each cluster. These results
will be used at the next level.

The second level is shown in Figure 5. It first refines the input
clustering results by drawing on the previously collected evidence
on the inputs and their performance on a small set of "landmark"
configurations. It then builds a large number of classifiers each
different by which input features it references and/or the algorithm
used to derive the classifier. It then computes an objective score for
every classifier and selects the best one as the production classifier.
Together, these two levels create an approach that is able to achieve
large speedups by its sensitivity to input variation and configuration
influence on program performance. We provide detail on each level.

3.1 Level 1
The main objective of Level one is to identify a set of configurations
for each class of inputs. We call these configurations “landmarks”.

Specifically, there are four steps in this level of learning.

Feature
Extraction

Input Space
Clustering

Evolutionary
Autotuner

Features

Input Optimized
Programs

Centroids

Performance
Testing

Training
Inputs

Input
Labels

Figure 4: Selecting representative inputs to train input optimized
programs.

• Step 1: Feature Extraction We assemble a feature vector
for each training input using the values computed by the in-
put_feature procedures of the program. For each property, by
using a tunable parameter such as level in the input_feature
procedure in the program, we have collected values at z different
costs which are what we call features.
• Step 2: Input Clustering We first normalize the input feature

vectors to avoid biases imposed by the different value scales in
different dimensions. We then group the inputs into a number
of clusters (100 in our experiments; sensitivity of the number
discussed in Section 4) by running a standard clustering algo-
rithm (e.g., K-means) on the feature vectors. For each cluster, we
compute its centroid. Note that the programmer is only required
to provide an input_feature function.
• Step 3: Landmark Creation We autotune the program using

the PetaBricks evolutionary autotuner multiple times, once for
each input cluster, using its centroid as the presumed inputs.
While the default evolutionary search in autotuner generates ran-
dom inputs at each step of search, we use a flag which indicates
it should use the centroid instead. We call each configuration for
each cluster’s centroid as input data to the program, a landmark.
The stochasticity of the autotuner means we may get different
configurations albeit perhaps equal performing ones each time.
• Step 4: Performance Measurement We run each landmark

configuration on every training input and record both the ex-
ecution time and accuracy (if applicable) as its performance
information.

Another simple way to select the landmarks is based on random
selection. However, the quality of the landmarks selected is worse
than that obtained with clustering algorithm based on input features,
especially when the number of landmarks (i.e., samples) is small. For
example, with 5 configurations, uniformly picked landmarks result
in 41% degradation of performance than selection with kmeans. As
the number of configurations increases, the gap shrinks. But because
finding the configuration on one sample takes a long time, clustering
algorithms (e.g., K-means) have their advantages.

Besides, we note that there is an alternative way to accomplish
Steps 1 through 3 and identify landmarks. We could find the best
configuration for each training input, group these configurations
based on their similarity, and use the centroids of the groups as
landmark configurations. This unfortunately is infeasible because
it is too time consuming to find a suitable configuration for every
input example. Modeling is not as effective as search, and search,
evolutionary in the case of PetaBricks, involves the composition and
evaluation of hundreds of thousands configurations, taking hours
or even days to finish [6]. This also has the problem we mention
previously: similar configurations do not have matching algorithm

Features
Input

Labels

Decision Tree

Max A Priori

Adaptive Tree

Classifier
Constructors

1...m

0

m+1

Classifier
Selector

Selection
Objective

Considers
cost of

extracting
needed
features

Input
Classifier

Figure 5: Constructing and selecting the input classifier.

performance. For these reasons, we cluster in the space of inputs,
and then use the second-level learning to automatically refine the
clusters.

3.2 Level 2
The main objective of this level is to identify a production classifier
that is able to efficiently identify the best landmark configuration
to use for a new input. The challenge is to determine which input
features are good predictors of a high performing classifier. Because
it is unknown, the first sub-goal is to generate a candidate set of
classifiers each with a unique set of features and all using the
data that provides evidence of the relationship between inputs,
configurations and algorithm performance. Incorporating this step
and its wealth of evidence drastically improves results. The second
sub-goal follows: choose among the candidates to identify the best
one for production. Through the following discussion, we assume
that there are u input feature extractors with each having z possible
levels of collection cost; the whole feature set is hence as large as
M = u ∗ z. We use K1 to represent the number of landmarks.

Cluster Refinement before Classifier Learning An important
step before achieving both sub-goals is to regroup the training inputs
to reflect their performance on the landmark configurations collected
in the first level. In this step, we make each set of example inputs,
their features, feature extraction costs, execution times and accuracy
scores for each landmark configuration, a row of a dataset. We
append to each row a label which is the best configuration for the
input.

More formally, we create a datatable of 4-tuples. Each 4-tuple
is < F,T,A,E >, where F is an M -dimensional feature vector
for this input, T and A are vectors of length 1 × K1 where the
ith entry represents the execution time and accuracy achieved for
this input when the ith landmark configuration is applied. E is
an M -dimensional vector giving us the values for time taken for
extraction of the features. We first generate labels L ∈ {1 . . .K1}
for each input. Label li represents the best configuration for the ith

input. For problems where only minimizing the execution time is an
objective (for example sorting) the label for the ith input is simply
arg minj T

j
i . For problems where both accuracy and execution time

are objectives, we use a user-provided threshold (per the requirement
of the particular problem and usage context) for the accuracy and
then select the subset of configurations that meet the accuracy
threshold and among them pick the one that has the minimum
execution time. For the case, in which none of the configs achieve
desired accuracy threshold, we pick the configuration that gives the
maximum accuracy. These labels regroup the inputs intoK1 clusters
that directly reflect the performance of various configurations on
those inputs.

This step and the clustering in the first level together forms our
two-level clustering strategy. By enabling an auto-refinement of
input clusters, the strategy helps close the mapping disparity gap
between the predefined input features and the performance space
that the one-level learning approach suffers from.

Setting Up the Cost Matrix Because we have K1 landmark con-
figurations, we have a K1-class problem; K1=100 in our experi-
ments. For such extreme-class classification problem, it is paramount
that we set up a cost matrix. The cost matrix Cij represents the cost
incurred by misclassifying a feature vector that is labeled i as class
j. The classifier learning algorithms use the cost matrix to evaluate
the classifiers. To construct the cost matrix for this problem we
followed this procedure. For every input, labeled i, we calculate the
performance difference between the ith landmark and the jth land-
mark. We assign a cost that is the average performance difference
for all inputs that are labeled i. This corresponds to Cp

i,j . For those
benchmarks that have accuracy as a requirement, we also include a
accuracy penalty matrix Ca

i,j , which is the ratio of inputs for which
accuracy constraint is not met by jth configuration. We construct
the final cost matrix as Cij = β · Ca

i,j · maxt(C
p
i,t) + Cp

i,j . The
cost is a combination of accuracy penalty and performance penalty
where the former is a leading factor, while the latter acts as a tuning
factor. We tried different settings for β ranging from 0.001 to 1, to
get the best performance. We found 0.5 to be the best and use that.

We then divide our inputs into two sets, one set is used for
training the classifier, the other for testing. We next pass the training
set portion of the dataset to different classification methods which
either reference different features or compute a classifier in a
different way. Formally a method derives classifier C referencing a
feature set fc ⊂ F to predict the label, i.e., C(Fi)→ Li.

Classifier Learning We now describe the classifiers we derive and
the methods we use to derive them.

(1) Max-apriori classifier: This classifier evaluates the empirical
priors for each configuration label by looking at the training data. It
chooses the configuration with the maximum prior (maximum num-
ber of inputs in the training data had this label) as the configuration
for the entire test data. There is no training involved in this other
than counting the exemplars of each label in the training data. As
long as the inputs follow the same distribution in the test data as in
the training data there is minimal mismatch between its performance
on training and testing. It should be noted that this classifier does
not have to extract any features of the input data.

Advantages: No training complexity, no cost incurred for ex-
traction of features.

Disadvantages: Potentially highly inaccurate, vulnerable to
error in estimates of prior.

(2) Exhaustive Feature Subsets Classifiers: Even though we have
M features in the machine learning dataset, we only have M

z
input properties. The bottom level feature takes minimal time to
extract and only looks at the partial input, while the top level takes
significant amount of time as it looks at the entire input. However,
features extracted for the same input could be highly correlated.
Hence, as a logical progression, we select a subset of features size
of which ranges between 1 . . . M

z
where each entry is for a property.

For each property we allow only one of its level to be part of the
subset, and also allow it to be absent altogether. So for 4 properties
with z = 3 levels we can generate 44 unique subsets. For each
of these 256 subsets we then build a decision tree classifier [38]
yielding a total of 256 classifiers.

The feature extraction time associated with each classifier is
dependent on the subset of features used by the classifier, ie. for
an input i, it is the summation

∑
j E

j
i . The decision tree algorithm

references the label and features and tries to minimize its label
prediction error. It does not reference the feature extraction times,
execution times or accuracy information. These will be referenced
in accomplishing the second sub-goal of classifier selection.

Because we wanted to avoid any “learning to the data”, we
divided the data set into 10 folds and trained 10 times on different

sets of nine folds while holding out the 10th fold for testing (“10
fold cross validation”). Of the 10 classifiers we obtained for each
feature set, we chose the one that on average performed better.

Advantages: Feature selection could simply lead to higher
accuracy and allow us to save feature extraction time.

Disadvantages: More training time, not scalable should the
number of properties increases.

(3) All features Classifier: This classifier is one of the 256 Exhaus-
tive Feature Subsets classifiers which we call out because it uses all
the u unique features.

Advantages: Sometimes lead to higher accuracy classification.
Disadvantages: More training time, higher feature extraction

time, no feature selection.

(4) Incremental Feature Examination classifier: Finally, we de-
signed a classifier which works on an input in a sequential fashion.
First, for every feature fm ∈ R, we divide it into multiple decision
regions {dm1 . . . dmj } where j ≥ K1. We then model the probability
distributions under each class for each feature under each decision
region Pm,j,k(fm = dmj |Li = k). Given a pre-specified order of
features it classifies in the following manner when deployed:

Step 1: Calculate the feature: Evaluate the mth feature for the
input and apply the thresholds to identify the decision region it
belongs to.

Step 2: Calculate posterior probabilities: The posterior for a
configuration (class label) k, given all the features {1 . . .m}
acquired so far and let d11 . . . dij be the decision regions they
belong to, is given by:

P (Li = k|f1...m) =
ΠmPm,j,k(fm = dmj |Li = k)P (L = k)∑
k ΠmPm,j,k(fm = dmj |Li = k)P (L = k)

(1)

Step 3: Compare and decide: We pre-specify a threshold on the
posterior ∆ and we declare the configuration (class label) as k
if its posterior P (Li = k|f1...m) > ∆. If none of the posteriors
are greater than this threshold, we return to step 1 to acquire
more features.

In this method, we incrementally acquire features for an input point i
based on judgement as to whether there is enough evidence (assessed
via posteriors) for them to indicate one configuration. This results in
a variable feature extraction time for different inputs thus providing
potential further reductions in feature extraction time at the time the
production classifier is applied to new inputs. For all the classifiers
preceding this one, we extracted the same number of features for all
the inputs.

This method can be applied after the previous method has found
the best subset to further save on feature extraction time.

To train this classifier, we need to find the optimal decision
regions for each feature and the threshold on posterior ∆ such that
the performance measurements mentioned above are minimized.
This could be done via a simple continuous parameter search
algorithm. Usually, more decision regions per feature help increase
the performance and in some cases search over orders could help.
This is the only classifier in our system where we introduce the
domain specific cost function into the inner loop of training of a
classifier.

Advantages: Reduced feature extraction time, scalable as the
number of attributes increase.

Disadvantages: One possible drawback for this classifier is that
it requires a storage of i× j × k number of probabilities in a look
up table. Training time.

Candidate Selection of Production Classifier After we generate
a set of classifiers based on different inputs or methods, we next need

to select one as the production classifier. We start by applying every
classifier on the test set and measuring the performance (execution
time and accuracy, if required) of the algorithm when executing with
its predicted configuration. We can compare this performance to
that of the other configurations. There are three objectives for the
production classifier: 1) minimize execution time; 2) meet accuracy
requirements; and, 3) minimize the feature extraction time.

Let βi be the minimum execution time for the input i by all
the representative polyalgorithms. Let Ψ(i, Li) be the execution
time of i when its class label is Li, given by classifier C and
gi =

∑
j Tj , j ∈ fc be the feature extraction time associated with

this classification.
Given a classifier we measure its efficacy for our problem as

follows:

For time only:ri) for classifying a data point to configuration ci
will be ri = Ψ(i, ci) + gi. The cost function (represented by
R) for all the data will be the average of all their costs, that is,
R =

∑
i(ri)/N , where N is the total number of inputs. We

refer to R as performance cost in the following description.

For time and accuracy: For the case of variable accuracy, the
efficacy is calculated with two thresholds the user defines
according to the requirements of the particular problem and
usage context. The first, H1, is the accuracy threshold, that is,
only when the accuracy of the computation (e.g., binpacking)
result at a data list exceeds H1, the result is useful. The second,
H2, is the satisfaction threshold. Suppose the fraction of inputs
whose computation results are inaccurate (ie. accuracy is less
than H) is s when classifier C is applied to our data set. If
s < H2, the classifier is considered invalid (or incurring a huge
cost). If the classifier meets this target, the performance cost of
this classifier is calculated as defined above.

3.3 Discussion of the Two Level Learning
This two level learning has several important properties.

First, it uses a two level design to systematically address mapping
disparity. Its first phase takes advantage of the properties of inputs to
identify landmark configurations. It then furnishes evidence of how
example inputs and different landmarks affect program performance
(execution time and accuracy). Its second phase uses this evidence
to (indirectly) learn a production classifier. By classifying based
upon best landmark configuration it avoids misusing similarity of
inputs. The means by which it evaluates each candidate classifier
(trained to identify the best landmark) to determine the production
classifier takes into account the performance of the configurations
both in terms of execution time and accuracy.

Second, this two level learning reconciles the stress between
accuracy and performance by introducing a programmer-centric
scheme and a coherent treatment to the dual objectives at both levels
of learning. For variable-accuracy algorithms, absolute accuracy
guarantees on arbitrary inputs are difficult to have (just like in most
software testing or machine learning tasks). The scheme we use
allows programmers to provide two thresholds. One is an accuracy
threshold, which determines whether the computation result is
considered as accurate; the other is a satisfaction threshold, which
determines whether the statistical accuracy guarantee (e.g., the
calculation is accurate in 95% time) offered by a configuration meets
the programmer’s needs. The former indicates the desired accuracy
target and the latter indicates the desired proportion of inputs that hit
that target. The accuracy thresholds are benchmark-specific, given
by the authors or users of each benchmark. For example, for a
Bin Packing benchmark, the accuracy can be set as the average of
the occupied fractions of all bins; for a clustering benchmark, it is
the difference in the average point-to-center distances between the
clustering result from the benchmark and the result from a canonical

clustering algorithm. The scheme is consistently followed by both
levels of learning. The two-level method offers a certain kind of
statistical guarantee of the accuracy.

Third, it seamlessly integrates consideration of the feature extrac-
tion overhead into the construction of input classifiers. Expensive
feature extractions may provide more accurate feature values but
may not be amortized by the time savings brought by them. The
key question is to select the feature extractions that can strike a
good tradeoff between the usefulness of the features and the over-
head. Our two level learning framework contains two approaches to
finding the sweet point. One uses exhaustive feature selection, the
other uses adaptive feature selection. Both strive to maximize the
performance while maintaining the accuracy target.

Fourth, our learning framework maintains an open design, allow-
ing easy integration of other types of classifiers. Any other classifi-
cation algorithm could be integrated into our system without loss of
generality. Moreover, it takes advantage of the PetaBricks autotuner
to intelligently search through the vast configuration space.

4. Evaluation
To measure the efficacy of our system, we tested it on a suite of
6 parallel PetaBricks benchmarks [5]. These benchmarks are up
to thousands of lines long and have search spaces with 10312 to
101016 possible configurations. Of these benchmarks, five require
variable accuracy. Each of these benchmarks was modified to add
feature extractors for their inputs and a richer set of input generators
to exercise these features. Each feature extractor was set to 3
different sampling levels providing more accurate measurements at
increasing costs. Tests were conducted on a 32-core (8× 4-sockets)
Xeon X7550 system running GNU/Linux (Debian 6.0.6). There are
50,000 to 60,000 inputs per program. Around half of them are used
for training and the half for testing. All reported results are based
on cross validation, which ensures the exclusion of training inputs
from the testing inputs.

Section 4.1 describes the definition of the accuracy metric
for each benchmark along with the accuracy thresholds used in
the experiments. We set the satisfaction threshold to 95% for all
experiments, which means that the accuracy threshold should be
satisfied on at least 95% of the inputs.

Three primary baselines are used for comparison.

• Static Oracle. It uses a single configuration for all inputs. This
configuration is selected by trying each input optimized program
configuration and picking the one with the best performance
(and meeting the satisfying accuracy threshold when applicable).
The static oracle is the performance that would be obtained by
not using our system and instead using an autotuner without
input adaptation. In practice the static oracle may be better than
some offline autotuners, because such autotuners may train on
non-representative sets of inputs.
• One Level. It is the aforementioned traditional one-level learning

approach. It clusters inputs based on the predefined features. It
fails to treat the overhead of extracting features and the disparity
between input feature and performance space, and is oblivious
to variable accuracy.
• Dynamic Oracle. It uses the best configuration for each input.

Due to the size of the search space, an oracle that tries all
possible configurations is not possible. The dynamic oracle we
use represents the best that is possible in the second level given
the landmarks available. It gives the upper bound of the possible
performance that can be obtained by our input classifier (and
reaches the accuracy satisfaction threshold). It is equivalent to a
classifier that always picks the best optimized program (given
the landmarks available) and requires no features to do so.

4.1 Benchmarks
We use the following 6 benchmarks to evaluate our results.

Sort This benchmark sorts a list of doubles using InsertionSort,
QuickSort, MergeSort, or BitonicSort. The merge sort has a variable
number of ways and has choices to construct a parallel merge sort
polyalgorithm. Sort is the only non-variable accuracy benchmark
shown. Input variability comes from different algorithms having
fast and slow inputs, for example QuickSort has pathological input
cases and InsertionSort is good on mostly-sorted lists. For input
features we use standard deviation, duplication, sortedness, and the
performance of a test sort on a subsequence of the list.

Sort1 results are sorting real-world inputs taken from the Central
Contractor Registration (CCR) FOIA Extract, which lists all gov-
ernment contractors available under FOIA from data.gov [1]. Sort2
results are sorting synthetic inputs generated from a collection of
input generators meant to span the space of features.

Clustering The clustering benchmark assigns points in 2D coor-
dinate space to clusters. It uses a variant of the kmeans algorithm
with choices of either random, prefix, or centerplus initial condi-
tions. The number of clusters (k) and the number of iterations of
the kmeans algorithm are both set by the autotuner. The accuracy
metric is

∑
d̂i/

∑
di, where, d̂i and di are the distance between

a point and its cluster center in a canonical clustering algorithm
and in our experiment respectively. The accuracy threshold is set to
0.8. Clustering uses input the features: radius, centers, density, and
range.

Clustering1 results are clustering real-world inputs taken from
the Poker Hand Data Set from UCI machine learning repository [2].
Clustering2 results are clustering synthetic inputs generated from a
collection of input generators meant to span the space of features.

Bin Packing Bin packing is a classic NP-hard problem where the
goal of the algorithm is to find an assignment of items to unit sized
bins such that the number of bins used is minimized, no bin is above
capacity, and all items are assigned to a bin. The bin packing bench-
mark contains choices for 13 individual approximation algorithms:
AlmostWorstFit, AlmostWorstFitDecreasing, BestFit, BestFitDe-
creasing, FirstFit, FirstFitDecreasing, LastFit, LastFitDecreasing,
ModifiedFirstFitDecreasing, NextFit, NextFitDecreasing, WorstFit,
and WorstFitDecreasing. Bin packing contains 4 input feature ex-
tractors: average, standard deviation, value range, and sortedness. Its
accuracy metric is defined as the average of the occupied fractions
of all bins. The accuracy threshold is set to 0.95.

Singular Value Decomposition The SVD benchmark attempts
to approximate a matrix using less space through Singular Value
Decomposition (SVD). For any m× n real matrix A with m ≥ n,
the SVD of A is A = UΣV T . The columns ui of the matrix U ,
the columns vi of V , and the diagonal values σi of Σ (singular
values) form the best rank-k approximation of A, given by Ak =∑k

i=1 σiuiv
T
i . Only the first k columns of U and V and the first

k singular values σi need to be stored to reconstruct the matrix
approximately. The choices for the benchmark include varying the
number of eigenvalues used and changing the techniques used to
find these eigenvalues. The accuracy metric used is the logrithm of
the ratio of the root mean squared (RMS) error of the initial guess
(the zero matrix) to the RMS error of the output. The RMS errors
are relative to the input matrix A. The accuracy threshold is set to
0.7. For input features we used range, the standard deviation of the
input, and a count of zeros in the input.

Poisson 2D The 2D Poisson’s equation is an elliptic partial dif-
ferential equation that describes heat transfer, electrostatics, fluid
dynamics, and various other engineering disciplines. The choices in
this benchmark are multigrid, where cycle shapes are determined

by the autotuner, and a number of iterative and direct solvers. As
an accuracy metric, we used the logrithm of the ratio of the RMS
error of the initial guess to the RMS error of the guess afterwards.
The RMS errors are relative to the accurate solution of the equation.
The accuracy threshold is set to 7. For input features we used the
residual measure of the input, the standard deviation of the input,
and a count of zeros in the input.

Helmholtz 3D The variable coefficient 3D Helmholtz equation is
a partial differential equation that describes physical systems that
vary through time and space. Examples of its use are in the modeling
of vibration, combustion, wave propagation, and climate simulation.
The choices in this benchmark are multigrid, where cycle shapes are
determined by the autotuner, and a number of iterative and direct
solvers. The accuracy metric is the same as used in Poisson 2D. The
accuracy threshold is also set to 7. For input features we used the
residual measure of the input, the standard deviation of the input,
and a count of zeros in the input.

4.2 Experimental Results
Table 1 reports the overall performance. In this section, all speedup
numbers use the performance of static oracle as the baseline unless
noted otherwise. Results from all methods exceed the accuracy sat-
isfaction threshold except for the one-level method, the satisfaction
rates of which are reported in the rightmost column of Table 1. Com-
pared to the performance by the static oracle, the one-level approach
performs better on only two out of the eight tests (with one of them
missing the accuracy target). On the other tests, the slowdown by
that approach is as much as 29 times. The comparison between
columns 5 and 6 in Table 1 indicates that the large feature extraction
cost is one of the reasons for the poor performance. But even without
considering that cost, column 5 shows that the one-level method
still brings much less speedups on sort1 and sort2, and much lower
accuracy on all other benchmarks, compared to what the two-level
method brings. The reason is its poor classifier construction for
the lack of consideration of the space disparity. Note that during
the search for the best configuration for a landmark in the 1-level
method, accuracy is considered. The problem is that despite that the
configuration works well for the landmark input, it does not work
well on other inputs that belong to the same cluster as the landmark,
because of the poor clustering results by the 1-level method, which
causes the poor accuracy.

On the other hand, the second level clustering and the follow-
up classifier construction in the two-level method help find the
refined input feature set that better correlates with the performance
of configurations on inputs. The second-level clustering is critical.
Take Kmeans as an example, 73.4% of the data points changed
their clusters when the second-level clustering is applied. The better
classifiers, plus better input features it selects, make the two-level
method significantly outperform the one-level method.

Table 1 shows that the one-level method, when its overhead
in input feature collection is not counted, gives a higher speedup
than the two-level method on clustering1. Unlike the one-level
approach, the two-level approach considers not only performance
but also cost and the computation accuracy of resulting program.
On clustering1, it uses a subset of input features on which it could
provide good performance and satisfying accuracy (>95%), while
the one-level approach uses all input features, which, although it
gives higher performance when cost is not counted, has an inferior
overall performance and a poor accuracy (54.56%).

The dynamic oracle results in Table 1 shows a spectrum of
potential among the tests, reflecting the different sensitivity of the
problems to input variations. Applications whose performance vary
more across inputs have more room for speedup by adapting to
specific inputs. Correspondingly, the speedups by the two level
approach show a range as well, from 1.04x to over 3x. The speedups

are close to what the dynamic oracle produces except on the
sort benchmark, which may require some more advanced feature
extractors to be provided.

Feature extraction time barely changes the speedups by the two-
level method, indicating that only a small amount of time was spent
on feature extraction. Generally, the less expensive features (in terms
of feature extraction time) were sufficient for the two level approach
to meet the best performance. The low extraction cost of the selected
features largely obviated the need for the adaptive classifier in the
current scenario.

In the sort benchmark, we tried both real world inputs (sort1)
and inputs from our own generator (sort2). For real world input,
the best classifier used the sorted list and sortedness features at its
intermediate sampling level and the duplication and deviation at the
cheapest level, and achieved 2.95x speedup. For inputs from our
own generator, the best classifier used the sorted list and sortedness
features at its intermediate sampling level, achieving speedup of
3.05x.

In the clustering benchmark, we also tried real world inputs and
those from our own generator. For real world input, the best classifier
used the density feature at its cheapest level, and algorithms selected
by the classifier causes a 2.38x shorter execution time. For our own
generator, the best classifier used the centers feature at its cheapest
sampling level, achieving a 1.45x speedup. However, centers feature
is the most expensive feature relative to execution time, which lowers
the effective speedup to just 1.18x.

In the binpacking benchmark, the best classifier used the devia-
tion and sortedness features at the intermediate level. The feature
extraction time is negligible compared to the sorting time, and hence
it gives a speedup of 1.08x, almost the same as that by the dynamic
oracle.

In the svd benchmark, the best classifier used only zeros input
feature at the intermediate level and achieved 1.11x speedup com-
pared to a dynamic oracle of 1.16x. It is known that svd is sensitive
to the number of eigenvalues, but this feature is expensive to mea-
sure. The features we included are cheaper and tend to reflect that
factor indirectly. For instance, it is likely, although not necessarily,
that a matrix with many 0s has fewer eigenvalues than a matrix with
only a few 0s.

In the poisson2d benchmark, the best classifier employed the
input features zeros at the intermediate level, achieving a 1.09x
speedup compared to a dynamic oracle of 1.12x.

In the helmholtz3d benchmark, the best classifier used the
residue, zeros and deviation input features at the intermediate level
and the range feature at the cheapest level. This benchmark showed
a 1.05x speedup, compared to a dynamic oracle speedup of 1.11x.

Figure 6 shows the distribution of speedups for individual inputs
to each program, sorted such that the largest speedup is on the right.
What is interesting here is the speedups are not uniform. For each
benchmark there exist small sets of inputs with very large speedups,
in some cases up to 90x. This shows that the way inputs are chosen
can have a large effect on mean speedup observed. If one had a
real world input distribution that favored these types of inputs, the
overall speedup of this technique would be much larger. In other
words, the relative benefits of using of input adaptation techniques
can vary drastically depending on your input data distribution.

Training Time The training time of the two-level method is
dominated by the time for the autotuner to find the 100 landmark
configurations. The time ranges from 2 hours to 2.7 days for our
benchmarks. An exhaustive method that finds the best configuration
for every input would take over 200 times longer, given the 20,000
to 30,000 training inputs a benchmark has in our experiments.

Table 1: Mean speedup (slowdown if less than 1) over the performance by the static oracle. The rightmost column reports the percentage of
inputs on which the one-level approach reaches accuracy threshold; the percentages by all other methods are greater than 95%, the satisfaction
threshold.

Benchmark
Name

Dynamic
Oracle

Two-level (w/o
feature extr.
time)

Two-level (w/
feature extr.
time)

One-level (w/o
feature extr.
time)

One-level (w
feature extr.
time)

One-level ac-
curacy

sort1 5.10× 2.95× 2.91× 1.23× 1.14× -
sort2 6.62× 3.05× 3.01× 0.22× 0.22× -
clustering1 3.70× 2.38× 2.37× 3.09× 0.095× 54.56%
clustering2 1.67× 1.45× 1.18× 1.15× 0.034× 77.03%
binpacking 1.10× 1.09× 1.08× 1.07× 0.99× 97.83%
svd 1.16× 1.11× 1.11× 1.04× 1.03× 72.85%
poisson2d 1.12× 1.09× 1.09× 0.89× 0.84× 64.32%
helmholtz3d 1.11× 1.05× 1.04× 0.85× 0.84× 96.97%

1 50000
1

10

20

Inputs

S
pe

ed
up

(a) sort1

1 50000
1

50

100

Inputs

S
pe

ed
up

(b) sort2

1 50000
1

50

100

Inputs

S
pe

ed
up

(c) clustering1

1 50000
1

4

7

Inputs

S
pe

ed
up

(d) clustering2

1 50000
1

2

3

4

Inputs

S
pe

ed
up

(e) binpacking

1 50000
1

2

3

Inputs

S
pe

ed
up

(f) svd

1 50000
1

2

Inputs

S
pe

ed
up

(g) poisson2d

1 50000
1

2

5

Inputs

S
pe

ed
up

(h) helmholtz3d

Figure 6: Distribution of speedups over static oracle for each individual input. For each problem, some individual inputs get much larger
speedups than the mean.

4.3 Theoretical Model Showing Diminishing Returns with
More Landmark Configurations

In addition to the evaluation of our classifier performance, it is
important to evaluate if our methodology of clustering and using
100 landmark configurations is sufficient. To help gain insight into
this question we created a theoretical model. In the model, we
consider that in the input search space of a program, some number
of optimal program configurations dominate different regions of the
input space. Assume inputs uniformly distributed in the space. Let
pi be the size of the region i, and si be the speedup the program gets
if the dominate configuration in region i is used for an input in that
region. Assume that no speedups are obtained if that configuration
is not used for that input.

If we assume the k landmark configurations are sampled uniform
randomly, the chance for sampling to miss region i is (1− pi)k. So,
the total expected loss in speedup, L, compared to a perfect method

that has taken all dominate configurations would be:

L =
∑
i

(1− pi)kpisi/
∑
i

si

Where pisi represents the cost of missing that region of the search
space in terms of speedup.

Figure 7a shows the value of this function as pi changes. It is
assumed that all si is the same. One can see that on the extremes
pi = 0 and pi = 1 there is no loss in speedup, because either the
region is so small a speedup in that region does not matter or the
region is so large that random sampling is likely to find it. For each
number of configs, there exists a worst-case region size where the
expected loss in speedup is maximized. We can find this worst-case
region size by solving for pi in dL

dpi
= 0 which results in a worst-

case pi = 1
k+1

. Using this worst-case region size, Figure 7b shows
the diminishing returns predicted by our model as more landmark
configurations are sampled. Figure 8 validates this theoretical model
by running each benchmark with varying numbers of landmark
configurations. This experiment takes random subsets of the 100

 0 0.2 0.4 0.6 0.8 1

Lo
st

 s
pe

ed
up

 (L
)

Size of region (pi)

2 configs
3 configs
4 configs
5 configs
6 configs
7 configs
8 configs
9 configs

30%

(a) Predicted loss in speedup contributed by input space
regions of different sizes.

 10 20 30 40 50 60 70 80 90 100

Fr
ac

tio
n

of
 fu

ll
sp

ee
du

p

Landmarks

70%

(b) Predicted speedup with a worst-case region size with
different numbers of sampled landmark configurations.

Figure 7: Model predicted speedup compared to sampling all input points as the number of landmarks are increased. Y-axis units are omitted
because the problem-specific scaling term in the model is unknown.

1 100

1

3

5

Landmarks

S
pe

ed
up

(a) sort1

1 100

1

3

5

Landmarks

S
pe

ed
up

(b) sort2

1 100

2

3

Landmarks

S
pe

ed
up

(c) clustering1

1 100

0.5

1.5

Landmarks

S
pe

ed
up

(d) clustering2

1 100

1

1.05

Landmarks

S
pe

ed
up

(e) binpacking

1 100

0.9

1.1

Landmarks

S
pe

ed
up

(f) svd

1 100

0.9

1.2

Landmarks

S
pe

ed
up

(g) poisson2d

1 100

0.8

1.0

Landmarks

S
pe

ed
up

(h) helmholtz3d

Figure 8: Measured speedup over static oracle as the number of landmark configurations changes, using 1000 random subsets of the 100
landmarks used in other results. Error bars show median, first quartiles, third quartiles, min, and max.

landmarks used in other results and measures that speedup over the
static oracle. Real benchmarks show a similar trend of diminishing
returns with more landmarks that is predicted by our model. We
believe that this is strong evidence that using a fixed number of
landmark configurations (e.g., 10 to 30 for the benchmarks we
tested) suffices in practice, however correct number of landmarks
needed may vary between benchmarks.

5. Related Work
A number of studies have considered program inputs in library con-
structions [13, 19, 29, 32, 36, 41, 47]. They concentrate on some
specific library functions (e.g., FFT, sorting) while the algorithmic
choices in these studies are limited. Input-centric program optimiza-
tion [42] showed the benefits in enhancing Just-In-Time compila-
tion. Jung and others have considered inputs when selecting the
appropriate data structures to use [30]. Several recent studies have
explored the influence of program inputs on GPU program optimiza-
tions [33, 39]. Chen and others have evaluated input sensitivity of

iterative optimization [16]. Muralidharan and others have recently
built a programmer-directed autotuning framework named Nitro for
selecting the appropriate code variants at runtime [34].

This current study is unique in focusing on input sensitivity to
complex algorithmic autotuning, which features vast algorithmic
configuration spaces, sensitivity to deep input features, variable
accuracy, and complex relations between inputs and configurations.
These special challenges prompt the development of the novel
solutions described in this paper.

A number of offline empirical autotuning frameworks have
been developed for building efficient, portable libraries in specific
domains. ATLAS [46] utilizes empirical autotuning to produce
a cache-contained matrix multiply, which is then used in larger
matrix computations in BLAS and LAPACK. FFTW [20] uses
empirical autotuning to combine solvers for FFTs. Other autotuning
systems include SPARSITY [28] for sparse matrix computations,
SPIRAL [37] for digital signal processing, and OSKI [45] for sparse
matrix kernels.

The area of iterative compilation contains many projects that
use different machine learning techniques to optimize lower level
compiler optimizations [3, 4, 22, 35]. These projects change both
the order that compiler passes are applied and the types of passes
that are applied. PetaBricks [6] offers a language support to better
leverage the power of autotuning for complex algorithmic choices.
However, none of these projects have systematically explored the
influence of program inputs beyond data size or dimension.

In the dynamic autotuning space, there have been a number
of systems developed [10, 12, 14, 15, 24, 26, 27, 31, 40] that
focus on creating applications that can monitor and automatically
tune themselves to optimize a particular objective. Many of these
systems employ a control systems based autotuner that operates
on a linear model of the application being tuned. For example,
PowerDial [27] converts static configuration parameters that already
exist in a program into dynamic knobs that can be tuned at runtime,
with the goal of trading QoS guarantees for meeting performance
and power usage goals. The system uses an offline learning stage
to construct a linear model of the choice configuration space which
can be subsequently tuned using a linear control system. The system
employs the heartbeat framework [25] to provide feedback to the
control system. A similar technique is employed in [26], where a
simpler heuristic-based controller dynamically adjusts the degree of
loop perforation performed on a target application to trade QoS for
performance. Fursin and others have explored run-time evaluation
of program optimizations with phase-sensitivity [21]. The principle
theme of these studies is to react to dynamic changes in the system
behavior rather than proactively adapt algorithm configurations
based on the characteristics of program inputs.

Additionally, there has been a large amount of work [9, 17,
43, 44] in the dynamic optimization space, where information
available at runtime is used combined with static compilation
techniques to generate higher performing code. Some work [18] has
studied a library-based approach to gain performance portability
across heterogeneous systems on chips while guaranteeing particular
accuracy levels.

6. Conclusions
We have shown a two level solution to the problem of input
sensitivity in algorithmic autotuning. It provides a general means
of automatically determining what algorithmic optimization to use
when different optimization strategies suit different inputs. Through
this work, we are able to extract principles for understanding the
performance and accuracy space of a program across a variety
of inputs, and achieve speedups of up to 3x over using a single
configuration for all inputs, and a 34x speedup over a traditional
one-level method. We also showed that there are fundamental
diminishing returns as more input adaptation is added to a system,
and that a little bit of input adaption goes a long way.

Acknowledgement This material is based upon work supported by DoE
awards DE-SC0005288, DE-SC0008923 and Early Career Award and
the National Science Foundation (NSF) under Grant No. 1464216, No.
1320796 and CAREER Award. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of DoE or NSF.

References
[1] Government’s open data. http://www.data.org/.
[2] UCI data sets. http://archive.ics.uci.edu/ml/datasets.
[3] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P.

O’boyle, J. Thomson, M. Toussaint, and C. K. I. Williams. Using
machine learning to focus iterative optimization. In International
Symposium on Code Generation and Optimization, pages 295–305,
2006.

[4] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. W. Reeves,
D. Subramanian, L. Torczon, and T. Waterman. Finding effective
compilation sequences. In LCTES’04, pages 231–239, 2004.

[5] J. Ansel, Y. L. W. ans Cy Chan, M. Olszewski, A. Edelman, and
S. Amarasinghe. Language and compiler support for auto-tuning
variable-accuracy algorithms. In CGO, Chamonix, France, Apr 2011.

[6] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and
S. Amarasinghe. PetaBricks: A language and compiler for algorithmic
choice. In PLDI, Dublin, Ireland, Jun 2009.

[7] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U. O’Reilly, and S. Amarasinghe. Opentuner: An extensible framework
for program autotuning. In Proceedings of The 23rd International
Conference on Parallel Architectures and Compilation Techniques,
2014.

[8] J. Ansel, M. Pacula, S. Amarasinghe, and U.-M. O’Reilly. An efficient
evolutionary algorithm for solving bottom up problems. In Annual
Conference on Genetic and Evolutionary Computation, Dublin, Ireland,
July 2011.

[9] J. Auslander, M. Philipose, C. Chambers, S. J. Eggers, and B. N.
Bershad. Fast, effective dynamic compilation. In PLDI, 1996.

[10] W. Baek and T. Chilimbi. Green: A framework for supporting energy-
conscious programming using controlled approximation. In PLDI, June
2010.

[11] P. Berube, J. Amaral, R. Ho, and R. Silvera. Workload reduction for
multi-input profile-directed optimization. In Proceedings of the IEEE /
ACM International Symposium on Code Generation and Optimization,
2009.

[12] V. Bhat, M. Parashar, . Hua Liu, M. Khandekar, N. Kandasamy,
and S. Abdelwahed. Enabling self-managing applications using
model-based online control strategies. In International Conference
on Autonomic Computing, Washington, DC, 2006.

[13] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Optimizing matrix
multiply using PHiPAC: A portable, high-performance, ANSI C coding
methodology. In Proceedings of the ACM International Conference on
Supercomputing, pages 340–347, 1997.

[14] F. Chang and V. Karamcheti. A framework for automatic adaptation of
tunable distributed applications. Cluster Computing, 4, March 2001.

[15] Y. Chen, S. Fang, L. Eeckhout, O. Temam, and C. Wu. Iterative
optimization for the data center. In ASPLOS, 2012.

[16] Y. Chen, Y. Huang, L. Eeckhout, G. Fursin, L. Peng, O. Temam,
and C. Wu. Evaluating iterative optimization across 1000 datasets.
In Proceedings of the ACM SIGPLAN conference on Programming
language design and implementation, PLDI’10, pages 448–459, 2010.

[17] P. C. Diniz and M. C. Rinard. Dynamic feedback: an effective technique
for adaptive computing. In PLDI, New York, NY, 1997.

[18] S. Fang, Z. Du, Y. Fang, Y. Huang, Y. Chen, L. Eeckhout, O. Temam,
H. Li, Y. Chen, and C. Wu. Performance portability across heteroge-
neous socs using a generalized library-based approach. ACM Transac-
tions on Architecture and Code Optimization, 11, 2014.

[19] M. Frigo and S. G. Johnson. The design and implementation of FFTW3.
Proceedings of the IEEE, 93(2):216–231, 2005.

[20] M. Frigo and S. G. Johnson. The design and implementation of FFTW3.
IEEE, 93(2), February 2005. Invited paper, special issue on “Program
Generation, Optimization, and Platform Adaptation”.

[21] G. Fursin, A. Cohen, M. O’Boyle, and O. Temam. Quick and practical
run-time evaluation of multiple program optimizations. Transactions on
High-Performance Embedded Architectures and Compilers, 4050:34–
53, 2007.

[22] G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov, A. Zaks,
B. Mendelson, E. Bonilla, J. Thomson, H. Leather, C. Williams,
M. O’Boyle, P. Barnard, E. Ashton, E. Courtois, and F. Bodin. MILE-
POST GCC: machine learning based research compiler. In Proceedings
of the GCC Developers’ Summit, Jul 2008.

[23] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical
learning. Springer, 2001.

[24] P. Hawkins, A. Aiken, K. Fisher, M. Rinard, and M. Sagiv. Data
representation synthesis. In Proceedings of ACM SIGPLAN Conference
on Programming Languages Design and Implementation, 2012.

[25] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and A. Agar-
wal. Application heartbeats: a generic interface for specifying program
performance and goals in autonomous computing environments. In
ICAC, New York, NY, 2010.

[26] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and M. Ri-
nard. Using code perforation to improve performance, reduce energy
consumption, and respond to failures. Technical Report MIT-CSAIL-
TR-2209-042, Massachusetts Institute of Technology, Sep 2009.

[27] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and
M. Rinard. Power-aware computing with dynamic knobs. In ASPLOS,
2011.

[28] E. Im and K. Yelick. Optimizing sparse matrix computations for register
reuse in SPARSITY. In International Conference on Computational
Science, 2001.

[29] E.-J. Im, K. Yelick, and R. Vuduc. Sparsity: Optimization framework
for sparse matrix kernels. Int. J. High Perform. Comput. Appl.,
18(1):135–158, 2004.

[30] C. Jung, S. Rus, B. P. Railing, N. Clark, and S. Pande. Brainy: effective
selection of data structures. In Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implementation,
PLDI ’11, pages 86–97, New York, NY, USA, 2011. ACM.

[31] G. Karsai, A. Ledeczi, J. Sztipanovits, G. Peceli, G. Simon, and
T. Kovacshazy. An approach to self-adaptive software based on
supervisory control. In International Workshop in Self-adaptive
software, 2001.

[32] X. Li, M. J. Garzarán, and D. Padua. Optimizing sorting with genetic
algorithms. In CGO, 2005.

[33] Y. Liu, E. Z. Zhang, and X. Shen. A cross-input adaptive framework for
gpu programs optimization. In Proceedings of International Parallel
and Distribute Processing Symposium (IPDPS), pages 1–10, 2009.

[34] S. Muralidharan, M. Shantharam, M. Hall, M. Garland, and B. Catan-
zaro. Nitro: A framework for adaptive code variant tuning. In Parallel
and Distributed Processing Symposium, 2014 IEEE 28th International,
pages 501–512. IEEE, 2014.

[35] E. Park, L.-N. Pouche, J. Cavazos, A. Cohen, and P. Sadayappan.
Predictive modeling in a polyhedral optimization space. In IEEE/ACM
International Symposium on Code Generation and Optimization, pages
119 –129, April 2011.

[36] M. Puschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer,
J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. Johnson,
and N. Rizzolo. SPIRAL: code generation for DSP transforms.
Proceedings of the IEEE, 93(2):232–275, 2005.

[37] M. Püschel, J. M. F. Moura, B. Singer, J. Xiong, J. R. Johnson, D. A.
Padua, M. M. Veloso, and R. W. Johnson. Spiral: A generator for
platform-adapted libraries of signal processing alogorithms. IJHPCA,
18(1), 2004.

[38] J. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106,
1986.

[39] M. Samadi, A. Hormati, M. Mehrara, J. Lee, and S. Mahlke. Adaptive
input-aware compilation for graphics engines. In Proceedings of ACM
SIGPLAN 2012 Conference on Programming Language Design and
Implementation, 2012.

[40] C. Tapus, I.-H. Chung, and J. K. Hollingsworth. Active harmony:
Towards automated performance tuning. In In Proceedings from the
Conference on High Performance Networking and Computing, pages
1–11, 2003.

[41] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Amato, and
L. Rauchwerger. A framework for adaptive algorithm selection in
STAPL. In Proceedings of the Tenth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 277–288,
2005.

[42] K. Tian, Y. Jiang, E. Zhang, and X. Shen. An input-centric paradigm for
program dynamic optimizations. In the Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), 2010.

[43] M. Voss and R. Eigenmann. Adapt: Automated de-coupled adaptive
program transformation. In International Conference on Parallel
Processing, 2000.

[44] M. Voss and R. Eigenmann. High-level adaptive program optimization
with adapt. ACM SIGPLAN Notices, 36(7), 2001.

[45] R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI: A library of auto-
matically tuned sparse matrix kernels. In Scientific Discovery through
Advanced Computing Conference, Journal of Physics: Conference Se-
ries, San Francisco, CA, June 2005.

[46] R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra
software. In Supercomputing, Washington, DC, 1998.

[47] R. C. Whaley, A. Petitet, and J. Dongarra. Automated empirical
optimizations of software and the ATLAS project. Parallel Computing,
27(1-2):3–35, 2001.

