TOP: A Framework for Enabling Algorithmic Optimizations
for Distance-Related Problems

Yufei Ding, Xipeng Shen

North Carolina State University
{yding8,xshen5}@ncsu.edu

ABSTRACT

Computing distances among data points is an essential part
of many important algorithms in data analytics, graph anal-
ysis, and other domains. In each of these domains, devel-
opers have spent significant manual effort optimizing al-
gorithms, often through novel applications of the triangle
equality, in order to minimize the number of distance com-
putations in the algorithms. In this work, we observe that
many algorithms across these domains can be generalized as
an instance of a generic distance-related abstraction. Based
on this abstraction, we derive seven principles for correctly

applying the triangular inequality to optimize distance-related

algorithms. Guided by the findings, we develop Triangular
OPtimizer (TOP), the first software framework that is able
to automatically produce optimized algorithms that either
matches or outperforms manually designed algorithms for
solving distance-related problems. TOP achieves up to 237x
speedups and 2.5X on average.

1. INTRODUCTION

Distance calculations are essential to many important al-
gorithms across various disparate domains. For example, the
commonly used clustering algorithm K-Means [22] is an iter-
ative algorithm which computes the distances between every
data point and each of a set of K cluster centers in order to
decide which center is closest to each point. Nbody simula-
tion [8] computes the distances between every particle and
all its neighbors in every time step, in order to simulate the
interplay of particles and their resulting movements. Other
examples include K-Nearest Neighbor (KNN) [13], point-to-
point shortest path in graphs [4], 3D image construction [3],
and so on. These algorithms play a pivotal role in data ana-
lytics, graph analysis, digital imaging, scientific simulations,
and many other domains. In each of these algorithms, dis-
tance calculations over a large number of data points form
the typical performance bottleneck.

Researchers in those domains have devoted decades of ef-
forts to create variations of those algorithms to optimize

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.

Proceedings of the VLDB Endowment, Vol. 8, No. 10

Copyright 2015 VLDB Endowment 2150-8097/15/06.

Madanlal Musuvathi, Todd Mytkowicz
Microsoft Research

{madanm,mytkowicz}@microsoft.com

distance calculations. Due to the different natures of the
domains, the distance calculations in those problems often
differ in distance definition, calculation constraints, context
of usage, and other aspects. The previous efforts have hence
been problem-specific. The solution came from domain ex-
perts’ deep analysis of the specific problem and algorithm,
and is customized to that problem specifically. Coming up
with such a solution usually takes the domain experts lots
of deep thinking, theoretical analysis, and empirical mea-
surements. It is evidenced by the large number of research
papers published in the premium venues in those domains.
For instance, in the recent 10 years of top machine learning
or data mining conferences, there are more than 20 papers
on developing algorithms to optimize distance calculations
for K-Means (e.g., [7,12,18,25,27,28]).

This work is motivated by an observation that, despite
the many differences among those distance-related prob-
lems, the ways distance calculations have been optimized
share lots of commonality across these problems. The obser-
vation prompts us to examine the algorithm design problems
from the perspective of programming systems: If we can
generalize the various distance-related problems into a single
abstract form, we can develop an optimizing framework as a
unified solution to such algorithmic optimization problems.
The framework could save the many manual efforts previ-
ously required to optimize the algorithm for a new distance-
related problem. At the same time, the framework could
provide a more systematic treatment to existing distance-
related problems than the manual designs do, which could
lead to even better performance.

The result of our exploration is the Triangular OPtimizer
(TOP), a compiler and runtime software framework that en-
ables automatic algorithmic optimizations for various distance-
based problems. Unlike typical program optimizations that
optimize an implementation of an algorithm at instruction
level, the algorithmic optimizations that TOP enables change
the algorithm used to find out certain relations between data
points, giving speedups as much as hundreds of times.

With TOP, users specify the distance problem using a set
of APIs. TOP then automatically creates an optimized algo-
rithm for minimizing the distance calculations for that prob-
lem. TOP is applicable to all problems involving distance-
based calculations that meet the Triangular Inequality con-
dition (see Section 4.1), regardless of the domains, definition
of distances, distance calculation patterns, usage of the dis-
tances, and so on. Its result matches or outperforms the
algorithms manually designed by the domain experts. With
TOP, decades of manual efforts by the domain experts could

/*
Goal: Cluster points in S into K classes with T containing all cluster centers.
S: a set of query points to cluster.
T: a set of target points (i.e., cluster centers).
N: a set of indices of points. INI=ISI.
*/
... /l declarations
TOP_defDistance(Euclidean); // distance definition
T = init();
changedFlag = 1;
while (changedFlag){
/I find the closest target (a point in T) for each pointin S
N = TOP_findClosestTargets(1, S, T);
TOP_update(T, &changedFlag, N, S); // T gets updated

Figure 1: K-Means written in TOP API (detailed
in Section 5). Prefix “TOP_” indicates calls to TOP
API. They will be replaced with low-level function
calls by TOP compiler, making the algorithm auto-
matically avoid unnecessary distance calculations.

have been saved; it makes it much easier to create optimized
algorithms to solve new distance-based problems, and boost
the performance of existing algorithms.

Specifically, we propose a simple abstraction, called ab-
stract distance-related problem, to formalize various distance-
related algorithms across seemingly disparate domains, in a
unified manner. The abstraction allows a systematic exam-
ination of all kinds of scenarios related with distance com-
putations, which in turn, leads to a spectrum of algorith-
mic optimization along with some automatic mechanisms
for selecting the best optimization to use. We turn all these
findings into a runtime library, the invocations of which in
a program would automatically save unnecessary distance
calculations for an arbitrary distance-related problem (that
meets the triangular inequality condition).

Along with the library, we equip TOP with a set of APIs
and a compilation module. Through the API, programmers
can easily specify the distance problem, as illustrated in Fig-
ure 1. The compiler module then derives important proper-
ties of the problem, and inserts necessary calls of the library
such that at runtime, unnecessary distance calculations can
be effectively detected and avoided.

Our experiments show that TOP is able to produce algo-
rithms that match or beat (by 2.5X on average) the state-
of-the-art algorithms that have been designed by domain
experts. It is able to generate new algorithms for problems,
on which no prior work has applied triangular inequality
optimizations, and achieves 237X speedups.

Overall, this work makes the following contributions:

e Abstraction: It offers an abstraction that unifies var-
ious distance-related problems, which lays the foun-
dation for the development of automatic optimizing
frameworks.

o Algorithmic Optimization: It develops the first set of
principled analysis on how triangular inequality should
be applied to a spectrum of distance-related problems,
reduces the algorithmic optimizations into two key de-
sign questions (landmark selection and comparison or-
dering), reveals a strand of insights, and crystallizes
them into seven principles in enabling effective distance-
related optimizations.

e TOP Framework: It builds the first software frame-
work that can automatically apply algorithmic opti-
mization on various kinds of distance-related problems.

e Results: It shows that the automatic framework can
yield algorithms that match or outperform manually
designed ones. Some of the algorithms have never been
proposed for the distance-related problems by domain
experts.

Paper Structure. To develop a unifying software framework
for addressing the various distance-related problems, there
are three steps:

(1) Come up with an abstraction to represent the various
problems in a unified manner;

(2) Based on the unifying abstraction, systematically ex-
amine the optimizations that have been manually applied to
the various distance-related problems. Through the exam-
ination, uncover the essence of distance optimizations and
find out the principles for applying them effectively.

(3) Develop some necessary API, compiler support, and
runtime libraries to integrate all the findings and insights
into a software framework, which can then automatically
apply the optimizations to any problem of that class.

To the best of our knowledge, there is no prior work on
any of the three steps. They hence all need some innovations
and substantial work to develop; the second step turns out
to be particularly challenging in our exploration.

The rest of the paper starts with two examples to convey
some intuition on distance optimizations in Section 2, then
presents the unifying abstraction in Section 3, describes the
principled analysis of distance optimizations in Section 4,
the TOP framework in Section 5, evaluations in Section 6,
and finally concludes with a short summary.

2. EXAMPLES FOR INTUITION

In this section, we describe two example problems that in-
volve distance calculations and point out some unnecessary
distance calculations in them. The conveyed intuition will
help understand the following discussions on the design of
the proposed software framework.

K-Means is a popular clustering technique. It tries to
group some points into K clusters. It runs iteratively, start-
ing with K initial centers and stopping at convergence. In
each iteration, it labels every point with the center that is
closest to it, and then uses the average location of the points
in a cluster to update its center. In the standard K-Means,
each iteration computes the distances between every point
and every center in order to find the center closest to each
point. Some of the calculations are unnecessary. Consider
Figure 2 (a), where, c} is the center of point g in the pre-
vious iteration and c; gets updated into c; at the end of
the previous iteration; ¢, and cz are the centers of another
cluster in the two iterations. If we can quickly get the upper
bound of the distance between ¢ and ¢1, denoted as d(q, c1),
and the lower bound of d(g, c2), we may compare them first.
If the former is smaller than the latter, we can immediately
conclude that cq is impossible to be the new center for x and
avoid computing d(q, c2).

Point-to-point shortest path problem (P2P), illustrated in
Figure 2 (b), is another example. It tries to find the shortest
path between two points in a directed graph. The length of
each edge in the graph is known. Distance in this problem is

g
(b) P2P

(a) KMeans

Figure 2: Example distance problems.

defined on a 3-tuple (two points and a path between them),
meaning the length of that path between the two points.
During the search for the shortest path among all paths
between a query point (q) and a target point (t), we can
avoid computing the full length of a path if we can quickly
determine that the lower bound of its length is greater than
the length of the shortest path encountered so far.

3. UNIFYING ABSTRACTION

Although both involve some kind of distance calculations,
the two examples described in the previous section differ
in many aspects, including their domains (data mining ver-
sus graph analysis), natures of problem (iteratively putting
points into groups versus finding a path in a graph), dis-
tance definitions, and constraints of distance calculations
(subject to graph connectivity or not). It is hence not a
large surprise that even though both problems involve un-
necessary distance calculations, no research has tried to find
commonalities in the two problems and provide a general so-
lution for them or other distance-related problems. We find
many papers published on optimizations specific to each of
the two problems for avoiding unnecessary distance calcu-
lations ([7,9] for K-Means, [14,17] for P2P). We also find
such problem-specific manual efforts in many other distance-
related problems, even for some problems residing in the
same domain (e.g., K-Means [7,9] and KNN [16,29]).

Despite the differences among these problems, they are all
related with distance calculations. A key view motivating
this study is that if we can have an abstraction to represent
all such distance-related problems, we may be able to derive
a general approach to optimizing algorithms for such prob-
lems at that abstraction level.

Abstraction. We introduce the notion of abstract distance-
related problem as follows: It is an abstract form of the prob-
lems that aim at finding some kind of relations between two
sets of points, a query set and a target set; the relations are
about a certain type of distances defined between the two
sets of points under a certain set of constraints. We denote
such a problem with a five-element tuple (@, T, D, C, R):

e : the query set of points. It may contain one or
more points in a space. It is the central entity of the
relations of interest.

e T: the target set of points. It is the other party of the
relations of interest.

e D: a type of distance between points.

e C: constraints related with the problem. They can
be about the connectivity between @ and T, available

memory in the system, or some other conditions. A
special condition is whether the distance problem of
interest involves many iterations of update on @ or T.
If so, we call the problem an iterative distance problem.

e R: the relation of interest between Q and T. It is about
the distances between those points, such as the lower
bound of the distance, the closest targets to a query
point, and so on.

Mappings from the Concrete. The abstraction unifies vari-
ous distance-related problems into a single form, making au-
tomatic algorithmic optimization possible. Table 1 presents
how six important distance-related problems in various do-
mains can be mapped to the abstraction form. Each of the
six problems has been extensively studied in its specific do-
main, but they have never been treated together in a unified
manner. We next explain them and the mappings briefly.

KNN tries to find the K target points that are closest to a
query point. The “instantiation” column on the second row
in Table 1 shows how it maps to the abstract distance-related
problem. In that column, “x” stands for a single point (the
query), and “S” for a point set (the target). The distance
could be Euclidean or other distances, the constraint is that
the memory cost (memCost) should be within a given bud-
get (spaceBudget) determined by the user or machine, and
the relation of interest is to find K points in S that are clos-
est to x. KNNjoin is similar to KNN except that Q is a set
of points rather than contains a single point; it tries to find
the K nearest neighbors for each point in Q.

We have described K-Means in the previous section. It
maps to our abstraction well. The set of points to cluster
is Q, the center set in each iteration is T (the superscript
in S* in Table 1 stands for iterative update), its constraints
include the iterative property and memory limit, and the
relation of interest is the closest target for a query point.

ICP is a technique for mapping the pixels in a query image
with the pixels in a target image. It is an iterative process.
In each iteration, it maps each pixel in a query image with
a pixel in the target image that is similar to the query pixel,
and then transforms the query image in a certain way.

As aforementioned, P2P is a graphic problem that tries
to find the shortest path between two points (one in Q, the
other in T) in a directed graph. Q and T are two sets of
points on that graph. The distance of interest is about the
path between points, and is hence subject to the connectiv-
ity among vertices in the graph. The relation of interest is
the lower bound of the path length between two points.

Many algorithms have been manually designed specifically
for each of the five problems for avoiding unnecessary com-
putations: KNN [10, 16, 20, 29], KNNjoin [5, 11, 24, 30, 31],
KMeans [7,9,18,25], ICP [15], P2P [14,17].

Nbody [8] simulates the interplay and movements of par-
ticles in a series of time steps. In each step, it computes
the distances between every particle and all particles in its
neighborhood in every time step, from which, it derives the
force that particle is subject to, computes its movement ac-
cordingly, and updates its position. The algorithm has some
variations. The one used in this work defines the neighbor-
hood of a particle as a sphere of a given radius. The Q
and T in this problem are identical, referring to the set of
particles.

Table 1: Six Important Distance-Related Problems.

Problem Domain Description

Instantiation

KNN [13] [29] Data Mining

bors of a query point

Finding the K nearest neigh-

Q={x}, T=S, D*: Euclidean, C: memCost<spaceBudget,
R: K points in S closest to x

KNNjoin [2] [24] | Data Mining

Finding the K nearest neigh-
bors of each query point

Q=S51, T=S2, D*: Euclidean, C: memCost<spaceBudget,
R: K points in T closest to each point in Q

K-Means [22] [7] | Data Mining

K groups

Clustering query points into

Q=S1, T=S%, D*: Euclidean, C: memCost<spaceBudget
& repeated invocations, R: the point in T that is closest to
each point in Q

tions

ICP [3] [15] Image Processing Matching two images Q=51%, T=S2, D*: Euclidean, C: memCost<spaceBudget
& repeated invocations, R: the point in T that is closest to
each point in Q

P2P [4] [14] Graphics Finding the shortest path be- | Q=51, T=S2, D: path length, C: memCost<spaceBudget
tween two points on a di- | & graph connectivity, R: lower bound of the distance be-

rected graph tween query and target
Nbody [8] Computational Simulate movements of parti- | Q=S5?, T=S5?, D: Euclidean, C: memCost<spaceBudget &
Simulation cles caused by their interac- | repeated invocations, R: set of points in T that are no far-

ther than r from a query point

S, S1, S are all sets of points, which may be identical or different; superscript ¢ means that the set could get dynamically updated; x is one
point; D* could be defined as other types of distance; r is a constant give beforehand.

4. PRINCIPLES OF DISTANCE OPTIMIZA -
TIONS

With the abstraction offering a unified representation of
the various distance-related problems, it becomes possible to
extract the essence of the various manually designed opti-
mization to those problems, and reason about the principled
ways for optimizing distance-related problems.

An important insight from this work is that all the previ-
ously proposed solutions are essentially just certain instan-
tiation of triangular inequality in the context of the specific
problem. In this section, we first give a formal presentation
of triangular inequality—the basis for all the optimizations,
and then discuss some conditions under which triangular in-
equality could help avoid unnecessary distance calculations
for distance-related problems. After that, we present seven
principles we attain for using triangular inequality for ef-
fective optimizations, which serve as the foundation for our
automatic optimization framework TOP.

4.1 Triangular Inequality (TI): Concepts and
Implications

We give the formal definition of TI as follows:

Let a,b, c represent three points and d(a, b) represent the
distance between a and b; triangular inequality (TI) states
that d(a,c) < d(a,b) + d(b,c).

Although TI does not hold for all kinds of distances, it
holds for many common ones (e.g., Euclidean distance). It
provides an easy way to compute both the lower bound and
upper bound of the distance between two points as follows.
Figure 3 gives an illustration.

‘d(a’> b) - d(b7 C)‘ < d(a7 C) < d(a7 b) + d(b> C) (1)

Formula 1 offers the fundamental connection between TI
and distance-related problems. Intuitively, if the lower or
upper bound of the distance between two points could be
used in place of their exact distance in solving a distance-
related problem, the bounds provided by Formula 1 may
save the calculation of their exact distance.

But how using the bounds could help may not be imme-
diately clear. As the formula shows, to get either the upper
or lower bound of the distance between two points “a” and
“c” in order to save the calculation of d(a,c), we need two
distances d(a,b) and d(b,c). So at the first glance, there

a

@)
bo_
(@]

|d(a,b) - d(b,c)| = d(a,c) = d(a,b) + d(b,c)

Figure 3: Illustration of distance bounds obtained
from Triangular Inequality (b is a landmark).

seems to be no benefit but extra cost to use the bounds.
However, when we consider the context of distance-related
problems, the benefits become easy to see. It relates with
the following two concepts we introduce.

Landmarks and Distance Reuses. Recall that in the distance-
related problem this paper defines earlier, there are two sets
of points, @ and T'. Suppose that the objective is to find out
the upper bounds of the Euclidean distances between every
point in Q and every point in T. We compare two meth-
ods. The first directly computes all the distances between
the two point sets; there would be O(|Q| * |T'|) distances to
compute. The second picks a point = (e.g., randomly se-
lected from Q or T), computes the distances between = and
every point in Q and T, and then applies TI to obtain the
upper bounds: d(q,t) < d(q,z) + d(t,z). The number of
distance computations would be O(|Q| + |T'|), much smaller
than in the first method when |Q| and |T'| are non-trivial.
We call x an intermediate point or a landmark. Using more
than one landmark can help tighten the obtained bounds
(to be elaborated in the next section.)

We further examine the reasons for the saving. Funda-
mentally, the saving comes from reuses of the distances be-
tween a point and a landmark. The computations of the
upper bounds between each point in) and a point ¢ in T all
use d(t,z) (i.e., |Q| reuses), and similarly, the computations
between a point ¢ in @ and each point in T reuses d(q,x)
for |T'| times. We call such reuses spatial reuses, formally
defined as the reuse of distances across points.

Besides spatial reuse, temporal reuse can also help. As
mentioned in Section 3, some distance-related problems in-
volve iterative updates to either Q or T. It is possible to use

the counterpart (q) of a point in the previous iteration as
the landmark for that point (g) in the current iteration. If
the distance between ¢’ and a target point ¢, d(q’,), and the
movement of the point between the two iterations, d(q’, q),
are known (or properly estimated), the bounds of d(g,t) can
be computed with TI directly; no extra distance calculations
would be needed. Such distance reuses across iterations are
called temporal reuses. Notice that in that case, the distance
bound needs only a scalar operation to compute, while in
comparison, the distance between two d-dimension points
requires d dimensional computations.

4.2 Principles for Optimization Designs

With landmarks and distance reuses, one can better un-
derstand the underlying reasons for T1I to be helpful for op-
timizing distance-related algorithms. But to tap into the
full potential of TI, the optimization needs to be adap-
tive to fit the properties of each individual algorithm, given
that distance-related problems may vary in every component
listed in Section 3. This section presents a set of design prin-
ciples we attain through this study.

Applicability. First of all, we list the basic conditions a
distance-related problem should meet such that T optimiza-
tion can apply:

(1) Problem Condition: The solution of the distance-related
problem must involve some kinds of comparisons of distances
among points.

(2) Distance Condition: The definition of the distance
involved in the comparisons must obey triangular inequality.

The Problem Condition comes from the inequality nature
of TI, while the Distance Condition is necessary for TI to
hold. Many distance-related problems, including all the ex-
ample problems discussed in Section 3, meet the conditions.

Design Objective and Dimensions. There are two primary
considerations when designing a T1 optimization: optimiza-
tion quality and cost. The quality is about how much com-
putation the optimization can help avoid. It is determined
by both the tightness of the distance bounds offered by TI
and the way the bounds are used in solving the distance-
related problem. The cost is mainly about the space and
time overhead introduced by the TI optimization. TT opti-
mizations usually require some computations and auxiliary
space to work. The objective of TI optimization design is to
maximize the quality while minimizing the time overhead
and confining the space cost to an acceptable level (e.g.,
within a memory budget).

We crystallize the many aspects in designing T1I optimiza-
tions into two dimensions: how landmarks are defined and
how they are used in distance comparisons. We next explain
each of the two dimensions, along with seven principles for
applying T1 optimizations, which form the foundation of our
framework TOP.

4.2.1 First Dimension: Landmark Definition

Definition of landmarks determines the tightness of the
computed distance bounds, as well as the cost of TI opti-
mization. We first explain some principles for effective defi-
nitions of landmarks, and then provide the whole taxonomy
of definitions applicable to each category of problems.

Principle I. A good landmark for a pair of points should be
close to either of the two points to get tight distance bounds.
We prove it as follows. According to the definition of TI,
for points a, b and a landmark ¢, the upper bound of the
distance d(a,b) through TI is d(a,c) + d(b,c), while the
lower bound is |d(a,c) — d(b,c)|. Their difference is 2 *
min(d(a, c),d(b,c)). Therefore, the closer the landmark c
is to either a or b, the tighter the bounds are.

Principle II. Having more than one landmark can help TI
tighten bounds, if the closestLandmark information is given.
ClosestLandmark is about which landmark is closest to each
point of interest. This principle directly follows Principle
I: More landmarks, more choices, and the closestLandmark
information allows TI to operate on the landmark that pro-
duces the tightest bound among all landmarks. Such infor-
mation is sometimes free or easy to obtain. Principle IV will
elaborate on this point.

Principle III. A landmark hierarchy can help strike a good
tradeoff between cost and quality. Principle II says that more
landmarks could help tighten bounds, but they could also
increase the time and space overhead. A landmark hierarchy
helps address the dilemma by having more than one level of
landmarks. The bottom level has a relatively larger number
of landmarks while a higher level has fewer; each landmark
at a higher level represents a group of lower-level landmarks.
Use of the fine-grained landmarks at the bottom level may
help obtain a tight bound in critical situations, while use of
the coarse-grained landmarks at the higher levels in other
situations may help reduce the space and time overhead.

Figure 4 exemplifies the benefits of a landmark hierarchy.
What it shows is a small step in K-Means clustering that
tries to find the center closest to a query point gq. Centers
get updated in each iteration of K-Means. In Figure 4, we
use a broken-line circle to represent the location of a center
in the previous iteration—which, we call the ghost of the
center. For instance, C] is the ghost of C; in Figure 4.
A possible landmark hierarchy is to use the ghosts of all
centers as the low-level landmarks, and treat a group of low-
level landmarks lying closely to one another as a high-level
landmark. For instance, the broken-line oval at the top of
Figure 4, G5, is a high-level landmark corresponding to the
two low-level landmarks it contains.

In this example, the usage of two levels of landmarks is as
follows. The low-level landmark Cf is used to compute the
upper bound of the distance between ¢ and C (the new po-
sition of the center that was closest to ¢ in the previous iter-
ation); the bound is UpBound(q, C1) = d(gq, C1)+d(C1, C1).
A high-level landmark is used to compute the lower bound of
the distance between g and the group of centers correspond-
ing to the landmark; LowBound(q, G;) is computed as the
difference between LowBound(q,G}) and the maximal dis-
tance that the centers in G have moved since the previous
iteration. If UpBound(q,C1) < LowBound(q,G;), no cen-
ter in G; is possible to be the center closest to ¢, and hence,
no need to compute the distances between ¢ and those cen-
ters. This example uses the low-level landmarks to ensure
the tightness of UpBound(q, C1) because it is used in the
comparisons with all lower bounds. It uses the high-level
landmarks for lower bounds calculation to reduce the space
and time overhead: Fewer lower bounds LowBound(q, G;)
need to be recorded than using low-level landmarks for lower

X @ query point

O : cluster center in this iteration

: cluster center in previous
iteration

ks

O : group of centers in this iteration
i+ 1 group of centers in
previous iteration

Figure 4: Example of the use of landmark hierarchy
in a step of K-Means.

bounds computations, and also, fewer lower bounds need to
be updated across iterations. The example demonstrates
the potential benefits of having a landmark hierarchy.

Principle IV. For iterative distance-related problems in which
the locations of points in Q or T change slowly across itera-
tions, the locations of the points in the previous iteration shall
be considered as landmarks for the current iteration. We call
the counterpart of a point in the previous iteration as the
ghost of the point in this iteration. Using ghosts as land-
marks has two advantages. First, it naturally leverages tem-
poral reuse of distances because the distances (or distance
bounds) from ghosts to some points are typically revealed
in the previous iteration. These distances can be useful in
computing distance bounds in the current iteration (e.g., the
example in Figure 4.) Second, the ClosestLandmark infor-
mation could come for free: The ghost of a point could serve
as a landmark close to that point when points move slowly
across iterations.

Principle V. For non-iterative problems (e.g., P2P) or the
first iteration of an iterative problem, using landmarks to lever-
age spatial reuse is often beneficial. The reuse can often help
save distance computations. There are many possible ways
to select the landmarks. A method we find working well
is to cluster points in Q or T (depending on the landmark
selection as explained later) to create such landmarks. This
method finds landmarks better representing the points and
gives tighter bounds. The clustering can be lightweight; we
find it enough to run K-Means for five iterations and use the
centers as landmarks.

Taxonomy of Landmark Definitions. Guided by those five
principles, we come up with a taxonomy of landmark defi-
nitions, shown in Figure 5. The graph shows the classifica-
tions of various distance-related problems into five categories
based on whether the problem is iterative, whether QQ equals
T, and which point set gets updated across iterations (if the
problem is iterative). The graph shows the set of landmark
definitions suiting each of the categories. We explain each
of the definitions as follows and then discuss how they are
selected for a given distance-related problem.

(1) 1LIM, 1L2M, 2L1M, 2L2M: In these definitions, “L”
stands for “level”, “M” stands for “landmarks”. In all of
them, there are a number of landmarks created through sim-
ple clustering as Principle V mentions.

In “1L1M”, the computation of the bounds of the dis-
tance between a query point and a target point is through
one landmark (just like what Figure 3 shows), which shall
be close to the target point. In “1L2M”, the computation
is through two landmarks, one shall be close to the query

T T&Q

la
1L1M Tghost Qghost
1LoM Tghost2L Qghost2L [[TQghost2M | [TQghostoM

Tset Tset

2L1M Tset+Tghost| | Tset+Qghost

TQghost2L2M | | TQghost2L2M

2L.2M Tset+TghostolL| |Tset+QghostoL

C1 c2 C3 C4 C5

Figure 5: Taxonomy of landmark definitions in each
category of distance-related problems.

point, the other close to the target point, as illustrated in
Figure 6. To compute the bounds between all pairs of query
and target points, “1L1M” requires (m * z + n) distances
to be computed (z for the number of landmarks, m and n
for the size of the query and target sets): It needs to com-
pute the distance from every query point to every landmark,
and the distance from every target to a landmark close to it
(which is typically revealed already during the creation pro-
cess of the landmarks). “1L2M” requires (m + n + zq * 2¢)
distances (zq and z; for the numbers of landmarks closest to
queries and targets respectively) since it needs the distance
from each query or target to only its closest landmark, and
the distances between query-side landmarks and target-side
landmarks. When there are much fewer landmarks than
queries and targets, “1L2M” needs fewer distance compu-
tations. However, the bounds given by “1L2M” are usually
not as tight as “1L1M” gives.

The landmark definitions in “2L1M” and “2L.2M” are sim-
ilar to those in “1L1M” and “1L2M”, except that upon those
basic landmarks, they derive some high-level landmarks.
Two levels could lead to a better cost-benefit tradeoff (Prin-
ciple IIT). The difference between “1L1M” and “1L2M” is
just whether one or two landmarks are used in bounds com-
putation. Although it is possible to have a hierarchy with
more than two levels of landmarks, we have not observed
much extra benefit with that increased complexity.

All these four definitions leverage spatial reuses. They
suit non-iterative distance problems and the first iteration of
iterative distance problems. We next explain the definitions
specific to other iterations of iterative distance problems.

(2) Tghost, Qghost: These two definitions use either the
ghosts of targets or queries as the landmarks, depending
on which set gets updated across iterations (and hence has
ghosts). As Principle IV mentions, using ghosts as land-
marks have some advantages: The distances (bounds) from
landmarks to points are often known and the ClosestLand-
mark information is often available.

(3) Tghost2L, Qghost2L: These two definitions are sim-
ilar to Tghost and Qghost except that a set of high-level
landmarks are introduced to complement the low-level land-
marks to lower the space and time overhead (just like the
differences between 2LI1M and 1L1M mentioned earlier.)

(4) Tset: In the Tset definition of landmarks, points in
the target set T" are used as landmarks. The bounds of the
distance between g and a target point ¢ is obtained by apply-

O 0
Pe .
4q t

d(q.t) = d(L1,L.2)-d(q.L1)-d(L2 1)
d(q.t) = d(q.L1)+d(L1,L2)+d(L2,t)

Figure 6: Illustration of how two landmarks can be
used for computing lower and upper bounds of dis-
tances.

ing TI to q, t, and L(q), where, L(q) is a target point close
to g. This definition works when it is known which target
is close to which query point. An example is K-Means, in
which, every iteration determines the center closest to each
query point. Although the centers may move across itera-
tions, the movement is often small. As a result, the clos-
est center to a query point in an iteration usually remains
close to that query point in the next iteration. This defini-
tion is not applicable to non-iterative problems because the
CloseLandmark information is not available in those prob-
lems. Usage of this definition for TI requires computation
of d(q, L(q)) and d(t,L(q)); there are as many as |@Q| com-
putations of d(q, L(q)), and |T|? computations of d(t, L(q)).
When |T| << |Q|, the amount is still much less than pair-
wise distances between Q and T.

(5) Tset+Tghost, Tset+Tghost2L: These two definitions
are a combination of Tset and Tghost or Tghost2L. The idea
is to apply TI first to Tset landmarks. If the bounds are
insufficient for avoiding the distance computation for a pair
of query and target, Tghost or Tghost2L are then used for
attaining tighter bounds for that pair. Such a combination
could be beneficial because checks with Tset are faster to
do, while the bounds from Tghost and Tghost2L are tighter.
The combination gets the best of both worlds. Tghost2L is
preferred over Tghost if space is an issue.

(6) TQghost2M, TQghost2L2M: TQqghost2M is similar to
Tghost except that to compute the bounds of a distance, it
uses two landmarks: One is the ghost of the query, the other
is the ghost of the target. To use this landmark definition,
one needs to record the distances (or their bounds) between
every pair of query and target in each iteration. That could
incur large space and time overhead. TQghost2L2M includes
high-level landmarks to lower the space and time cost (in a
vein similar to 2L1M versus 1L1M mentioned earlier).

These two definitions apply only when Q=T or Q and
T both get updated across iterations—when both @ and T
have ghosts. On the other hand, the definitions that apply
to the other cases do not apply to these two cases because
those definitions assume no cross-iteration update of either
Q or T or both.

Selecting Landmark Definitions. As Figure 5 shows, multiple
landmark definitions may be applicable to a problem, and
one definition can have many possible configurations (e.g.,
number of landmarks). We now explain how to select a
definition fitting a given problem.

A suitable landmark definition should have an acceptable
space cost and at the same time minimize the time for solv-
ing the problem. Space cost includes the space for storing
landmarks and the distances (or bounds) between points and

landmarks. It is mainly determined by the size of the prob-
lem and the number of landmarks. With such information,
the cost can be easily computed analytically.

Execution time is more complicated. The TI optimization
helps avoid some distance calculations between queries and
targets, but also introduces time overhead, including the
time for computing distance bounds between queries and
targets, distances (or bounds) from landmarks to queries or
targets, and extra comparisons among bounds and distances
for avoiding distance calculations. The benefits and costs
depend on the size of the problem, the number of landmarks,
but also the locations or distributions of the queries and
targets. It is more difficult to compute the time cost and
benefit analytically. One option is to use runtime sampling
to model the distributions of the points, and then infers the
amount of distance computations each definition may avoid
and estimates the time benefits and cost accordingly. Due to
its complexity, we leave this option for future study. In this
work, we instead use a sequence of rules obtained empirically
for definition selection. These rules are not intended for
optimal selections, but offer a simple way to make good
selections in practice.

The rules together form a selection algorithm, outlined in
Figure 7. For category 1, the algorithm uses 2-level land-
marks if the platform is a distributed system, and 1-level
otherwise. The number of top-level landmarks in the 2-level
case equals the number of computing nodes on the plat-
form. Regarding whether TI should be applied with one
or two landmarks each time, the algorithm first examines
how many landmarks the space budget allows if the one-
landmark scheme is used. If it is too few (less than /(|Q])),
the one-landmark scheme is unlikely to offer tight distance
bounds, and the two-landmark scheme should used. Be-
cause the two-landmark scheme does not require as many
distances to be stored as one-landmark scheme requires, the
space budget could allow more landmarks created and hence
offer tighter distance bounds.

For category 2, the algorithm first decides whether Tset
should be used. Since Tset needs the computation of the
distances between every pair of targets, it applies only when
|T'| is small (less than 0.01 * |@Q|). After that, the algorithm
tries to decide whether Tghost or Tghost2L should be used
in case that the bounds from Tset are not tight enough. One
condition is whether there is enough space for Tghost. If so,
d, the number of dimensions of the data space, is checked.
Tghost is used only if d is large enough (no smaller than
1000). Otherwise, Tghost2L is used. The condition on d
comes from the following reason. Tghost may avoid more
distance calculations than Tghost2L. does because it always
uses low-level landmarks for bound computations. However,
it adds more bound computations and distance checks than
Tghost2L. does—Tghost2L. does bound computations and
distance checks only once for a group of rather than every
low-level landmark. So, Tghost is better only if a distance
calculation is much more costly than a bound computation
or check. The cost of a distance calculation is mainly de-
termined by the number of dimensions of the data space,
hence the condition. Treatment to category 3 is the same as
to category 2 except that Qghost or Qghost2L rather than
Tghost or Tghost2L is used.

For categories 4 and 5, the main question is whether 1-
level or 2-level landmarks should be used. The conditions
to check are the same as those checked for determining the

input: query set Q, target set T, number of dimensions of the data

space d, space budget Budget, category of the problem cat.
if cat==1 then

// to use 1-level or 2-level landmarks

L=1;

if distributedPlatform then

L=2;

end if

// to use 1 or 2 landmarks as intermediate points

M=1;

nMax=maxLandmarks(Budget, cat, L, M, |T, |Q|);

if nMax< 4/|Q| then

end if
end if
if cat== (2 || 3) then
// to decide whether Tset is to be used
useTset=false;
if |T') < 0.01 % |Q| then
useT'set=true;
end if
// to select Tghost/Qghost or Tghost2L/Qghost2L
if cat==2 then
spaceNeeds = estimateSpaceCost(Tghost, |T|, |Q|,useTset);
else
spaceNeeds = estimateSpaceCost(Qghost, |T'|, |Q|,useTset);
end if
L=1;
if spaceNeeds>Budget || d<1000 then
L=2;
end if
end if
if cat==(4 || 5) then
// to select TQghost2M or TQghost2L2M
spaceNeeds = estimateSpaceCost(TQghost2M, |T|, |Q]);
L=1;
if spaceNeeds>Budget || d<1000 then
L=2;
end if
end if
// setting the # of landmarks based on space budget
configure(Budget, cat, L, M, |T|, |Q|);

Figure 7: Algorithm pickLandmarkDef for selecting
landmark definitions.

number of landmark levels in category 2.

After the type of landmark definition is determined, func-
tion “configure” sets up the number of landmarks to gen-
erate. For category 1, the number of low-level landmarks
is 2\/@ for the query set and 2\/@ for the target set.
Such numbers come from previous domain-specific explo-
rations [24,29], which each studies only a specific distance-
related problem, but finds the same choice of the number of
landmarks working well. If two levels are used, the number
of landmarks at the top level equals the number of com-
puting nodes in the distributed system. For the other cate-
gories, the number of low-level landmarks either equals |T|
or |Q)| since the landmarks are just their ghosts. When the
2-level scheme is used, the number of the top-level land-

2% 4/|X|*|X|/10, where X should be re-

placed with T or @ depending on which set the landmarks
are created for. This formula is a combination of the con-
siderations for the spatial and temporal reuses. Recall that
for iterative problems, we exploit spatial reuse for the first
iteration and temporal reuse for the future iterations. The
first part of the formula, 2 % /| X|, is the best number of
landmarks for it (as discussed in category 1, which lever-
ages only spatial reuse). The second part of the formula,
|X|/10, is a good choice for temporal reuse as found in our
experiments. The formula is a geometric mean of the two.

marks equals

4.2.2 Second Dimension: Comparison Order

Besides landmark definition, another important dimen-
sion for TI to work effectively is how the bounds TT pro-
duces are used. More specifically, the order in which the
bounds are checked (called comparison order) can affect the
computing efficiency significantly. For example, suppose the
goal is to find a target closest to a query ¢q. Let dmin be the
shortest of the distances found so far between ¢ and tar-
gets. For a target t, before computing d(g,t), one can first
check whether the lower bound of d(g,t) (obtained through
TI) is larger than dpmin and skip computing d(g, t) if so. In
this example, the comparison order refers to the order in
which the targets are checked. If the order is an ascending
order of the lower bounds of d(gq,t) among all ¢, the check
can stop immediately when it encounters one target whose
lower bound is greater than dp,in: All the remaining targets
must have lower bounds greater than d,,i» as well because
of the ascending order.

Let S be a set of target points whose distance bounds
from a query point ¢ are based on the same landmark .
Our analysis gives the following principle.

Principle VI. When the objective is to find the point in S
that is the closest to the query ¢, the comparison order should
be the ascending order of d(¢,1) (¢ € S) if [is closer to ¢
than to all the targets, and should be the descending order
otherwise. It is easy to see that such an order is equivalent to
the ascending order of the lower bounds of the distances from
the targets to the query: The lower bound equals d(I,t) —
d(l,q) if the landmark is closer to the query, and equals
d(l,q) — d(I,t) otherwise.

The following principle is symmetric to Principle VI.

Principle VII. When the objective is to find the target that is
the farthest from the query, the comparison order should be
the descending order of the distances from the targets to the
landmark. This order is equivalent to the descending order of
the upper bounds of distances from the targets to the query,
since the upper bound equals d(l, t)+d(l, ¢) regardless where
l is.

When the two principles are used, many targets that are
impossible to be the closest or farthest could be skipped
from consideration. It helps avoid computing not only the
distances from them to the query, but also the lower bounds
of those distances since the principles are based on the dis-
tances from targets to landmarks rather than lower bounds.

S. TOP FRAMEWORK

To turn the abstraction and optimization into applicable
tools, we design a software framework named TOP (which
stands for triangular optimization). TOP consists of three
components: a set of APIs that users can use to formally
define a particular distance-related problem, a runtime li-
brary that implements the principles and rules for creating
optimized algorithms to fit the user-defined distance prob-
lem, and a compiler module that helps the runtime obtain
necessary information.

5.1 APIs

We introduce a small set of APIs, with which, users can
easily define their distance-related problem in a way that it

can be analyzed and handled by the TOP compiler module
and runtime. The APIs in our current implementation are
intended to be used with C or C++ languages; it can be
easily modified to work with other languages.

As Section 3 lists, there are five components of a distance-
related problem: query set Q, target set T, constraints C,
distance definition D, and inter-point relations of interest
R. The APIs contain entries for specifying each of them, as
summarized in Figure 8. It includes some predefined struc-
tures for a data point and a point set. It has a cost ma-
trix structure TOP _costMat for expressing connection con-
straints among points (e.g., points in a graph). Let M be a
TOP_costMat; if M[i, j] >= 0, there is an edge from point
i to point j with edge weight equaling M, j]; otherwise,
no edge between them. It is symmetric if the graph is undi-
rected. Figure 8 omits some structures defined for represent-
ing sparse matrices or graphs, and some APIs to facilitate
users in constructing cost matrices.

In addition, the APIs for constraints contain a TOP _update
function, which users may implement to update a point set
S. Its returned value in ”changedFlag” indicates whether the
point set gets actually updated. This function helps com-
piler and runtime determine whether the distance problem
updates a point set and which set it is. The APIs for dis-
tance definition include a function to specify the distance
in the problem if it is one of a set of predefined distances
(Euclidean etc.) that are amenable to TI. It has another
function which users may implement to define their own dis-
tances, in which case, it would be the users’ responsibility
to ensure that the distance is amenable to TI. Automatic
inference of the property could be possible, but not in the
current implementation of TOP yet.

The final part of the APIs is for specifying the kind of
relations of interest between query points and target points.
TOP currently includes four basic relations: get the lower
bound of a distance, get the upper bound of a distance,
find a certain number of targets that are closest or farthest
to a query point, find all the targets that reside within or
beyond a certain distance from the query point. It turns
out that they are enough to cover all the relations in com-
mon distance-related problems. Consider the relations of the
six problems listed in Table 1. TOP_findClosestTargets()
can be used to express the relations in KNN, KNNjoin, K-
Means, and ICP; TOP _getLowerBound() can be used for
P2P; TOP_findTargetsWithin() can be used for NBody. A
usage example is the fifth statement in the K-Means ex-
ample in Figure 1. The purpose of such a statement is to
inform the TOP compiler the relations of interest. Users do
not need to implement that relation function; the compiler
and runtime of TOP automatically determine the best ways
to implement it under the guidance of the seven principles,
as detailed in the next section.

Using the APIs to define a distance problem is simple.
For example, the six lines of code as we have illustrated in
Figure 1 compose the main part of the code for K-Means.
The first statement defines that the kind of distance is Eu-
clidean distance, the second statement invokes a function
(which a programmer writes) to load data, the third state-
ment initiates a flag variable to indicate the convergence of
the algorithm, the while loop runs until the results converge,
the fifth statement indicates the kind of relations of interest,
and the sixth statement indicates that the target data set T
could get updated—the programmer may write the body of

Predefined structures:
TOP_point, TOP_pointSet, TOP_costMat, ...

API for Constraints:
TOP_update (TOP_pointSet S, int * changedFlag, ...);
some facilities for cost matrix construction;

API for Distance:
TOP_defDistance (enum);
TOP_defDistance (TOP_point, TOP_point, TOP_costMat);

API for Relation:

TOP_getLowerBound (TOP_pointSet, TOP_pointSet, TOP_costMat);
TOP_getUpperBound (TOP_pointSet, TOP_pointSet, TOP_costMat);
TOP_findClosestTargets (int, TOP_pointSet, TOP_pointSet, TOP_costMat);
TOP_findFarthestTargets (int, TOP_pointSet, TOP_pointSet, TOP_costMat);
TOP_findTargetsWithin (float, TOP_pointSet, TOP_pointSet,TOP_costMat);
TOP_findTargetsBeyond (float, TOP_pointSet, TOP_pointSet, TOP_costMat);

Figure 8: Core APIs defined in TOP.

update function to instantiate the update process.

With the semantics conveyed by the invocations of the
APIs, the TOP compiler and runtime can then automati-
cally optimize the algorithm by selecting the best landmarks
and applying triangular inequality to materialize the algo-
rithm with the amount of distance calculations minimized.

5.2 Runtime Library and Compiler

The runtime library consists of three parts. The first part
is for selecting and configuring landmark definitions. At its
core is a function pickLandmarkDef that implements the al-
gorithm for selecting and configuring landmark definitions
as what was shown in Figure 7 in Section 4.2.1. A runtime
invocation of this function will determine the landmark def-
inition suiting the particular problem instance. The second
part is for materializing the TI optimization. It contains
a set of functions that implement the TI-based optimiza-
tion for the various kinds of relations listed at the bottom
part of the APIs in Figure 8. For each of the relations, a
number of versions are created with each as an optimized
algorithm based on one type of landmark definition. Each
of them records necessary bounds or distances for the TI to
work, and applies TI by drawing on the landmarks to avoid
as many distance computations as possible. These first two
parts of the TOP runtime library form the low-level APIs of
TOP. The implementation of the high-level APIs contains
some condition checks such that they invoke the correct TI-
optimized algorithms by calling the right low-level APIs in
the runtime library.

For instance, the library contains 15 functions, which each
implement a TI-based algorithm for finding the closest tar-
gets for a query point. They all try to use TI to estimate the
lower bound of the distance between a query point and a tar-
get and avoid computing their distances if the lower bound
is larger than the current minimum distance. They differ in
what landmarks are used for getting the lower bounds, and
in the operations related with the maintenance of the land-
marks. An invocation of TOP_findClosest Targets selects one
of them based on the category of the current problem and
the chosen definition of the landmarks.

The versions in the library subsume and go beyond ex-
isting manually designed problem-specific algorithms that
leverage T1, thanks to the taxonomy we have obtained through

Table 2: Datasets and Problem Settings.

Program Dataset source Dataset size Settings
& dim
KNN 11 from UCI [l]f 2K-10°%; 6-707 k=10;40;160
KNNjoin network, gassen- 14K-430K; 2- k£=10;100
sor, kegg 129
from UCI &
muenchen [26]
K-Means 4 from UCI & 4 14K-2.5M; 4- k=16;256;1000
image sets [28]° 384
ICP abalone, krkopt, 4K-28K; 6-16 diff* =5%;20%
letter, poke2
from UCI
P2p 6 graphs [14] 260K-1.5M -
Nbody 6 derived from 5K-440K; 3 -
48-15cr.xyz &
32-15cr.xyz [19]

—+

: car, krkopt, abalone, magic, shuttle, letter, pokel(2), sat, segment, dorothea;
o: network, gassensor, kegg, census, caltech101, notreDame, tiny, ukbench
*: difference between query and target images

this systematic study.

The main functionalities of the compiler module are two-
fold. First, it inserts invocations of some low-level API calls
(e.g., pickLandmarkDef) into the original program. Second,
it analyzes the code to determine whether the problem is
iterative and which data set gets updated across iterations.
It passes these information to the runtime library by in-
serting several low-level API calls before the invocation of
pickLandmarkDef. In a similar way, it helps inform the TOP
runtime library other necessary information (e.g., size and
dimensionality of data sets) that are collected at runtime.
The implementation of the compiler is based on LLVM [21].

6. EVALUATION

To demonstrate the efficacy of TOP, we run it on six algo-
rithms and compare with two versions: the original and the
manual. We implement the former by following the classic
algorithms as shown in the first references in the leftmost
column in Table 1. They have no triangular optimizations
applied. We implement the latter by following the second
references in the same column in Table 1, which are the re-
cent papers on manually applying triangular optimizations
to those algorithms. Because we find no previous work that
applies triangular optimizations to N-Body, its original and
previous versions are identical. All code is in C++.

We test each algorithm on a number of inputs and problem
settings (e.g., number of clusters K of K-Means). When
selecting inputs, we try to include the inputs that have been
used in the previous papers on manual optimizations; when
they are unavailable or incomprehensive, we include public
datasets that are commonly used in the domains. Table 2
lists the input size, data dimensions, and problem settings.
P2P and Nbody have no variation in settings.

Since the optimized algorithms have the same semantic as
the original algorithm has, they produce the same outputs.
Our discussion focuses on performance (running time). The
performance data are collected on a workstation equipped
with Intel i5-4570 CPU and 8G memory. Each performance
number comes from the average of five repeated runs.

6.1 Results Overview

The graph in Figure 9 reports the speedups brought by the
automatic optimizations by TOP and by the experts’ man-
ual optimizations; one point per input and problem setting.
The baseline is the execution time of the original version

c
o
@
ol ©
0102} <
P 10 O
2z V4
<
@ Wi O Knn
S Av4 + Knnjoin
B \Y / Kmeans
g L ICP]
n O Nbody
7% P2P)
——Reference line
. .
0 1 102 10*
Speedups(X) by manual version
Average Speedups (X)
Prog KNN KNNjoin K-Means iCP P2P Nbody geomean
TOP 17.0 77.1 27.6 193.4 9.8 237.6 50.3
Manual 16.6 76.4 9.6 29.9 10.1 - 20.6

Figure 9: Speedups brought by TOP and manual
optimizations over basic algorithm implementations.
The graph shows the results for each input and set-
ting; the table reports the geometric average.

(without triangular optimizations). The speedups by both
TOP and previous manual optimizations are substantial, as
much as 50X and 20X on average as the table in Figure 9
shows. The accelerations come primarily from the savings of
distance computations enabled by triangular inequality op-
timizations. As the table in Figure 10 reports, the savings
are larger than 93% for all the benchmarks.

Note that in Figure 9, all points lie either on or above
the reference line, indicating that TOP brings a similar or
greater speedup than the manual optimizations do for all
algorithms and inputs. The extra benefits of TOP are espe-
cially prominent on the iterative algorithms: ICP, K-Means,
and N-Body. On them, guided by the seven principles, TOP
is able to configure the triangular optimizations to strike a
better tradeoff between optimization overhead and benefits.
We provide some deeper insights by examining each of the
three algorithms in detail next.

6.2 Analysis in Detail

ICP. 1ICP iteratively finds the best mapping between two
images with the query image getting transformed after each
iteration. The pickLandmarkDef algorithm of TOP selects
C3:Tghost2L as the landmarks on all inputs and settings.
The manual version uses a strategy similar to our T'set scheme.
It pre-computes the distances between every two target points,
and uses them when applying triangular inequality to detect
and avoid unnecessary distance computations. TOP gets
significantly larger speedups than the manual version (193X
vs. 30X on average), for two reasons. First, it has much
smaller overhead. The pre-computation in the manual ver-
sion has a quadratic complexity in terms of the number of
data points, while the cost of TOP is close to linear, thanks
to the uses of ghost points across iterations and the land-
mark hierarchy. Second, TOP exploits both spatial reuses
(in the first iteration) and temporal reuses (in the follow-
up iterations) while the manual version exploits only spatial
reuses. Figure 11 shows the benefits of the two kinds of
reuses in saving distance calculations (note the exponential

Number of distance computations
10" ,
O Knn
-+ Knnjoin
Vv Kmeans
|

——Reference line

10°F ¥ o 1

In TOP version

.
0 108 10'®
In manual version

Average Percentage of Computations Saved by the Optimizations

Prog KNN KNNjoin KMeans ICP P2P Nbody geomean
TOP 93.0 95.6 92.9 99.6 93.2 99.4 95.6
Manual 93.0 95.6 84.37 97.5 93.2 - 92.6

Figure 10: The graph shows the number of computa-
tions in the optimized algorithms; the table reports
the percentage of computations saved by the opti-
mization.

-
<,
o

[__1Original 1
[—ISpatial Optimization
I Temporal Optimization

-
o
©
T
1

-
o
)
1

Num of distance comp. per iteration
5
S

im0l e

Different inputs and settings

Figure 11: Both spatial and temporal optimizations
save many distance computations for ICP.

scale of Y-axis). The second reason makes TOP avoid more
distance calculations than the manual version does as shown
in the table in Figure 10, while the first reason is the dom-
inant factor for the significantly larger speedups—as both
versions avoid most computations, their overhead becomes
critical for the overall performance. The large overhead of
the manual version weighs similarly over the entire execution
time across all settings, hence its similar speedups across all
settings; TOP, on the other hand, gives larger speedups on
larger datasets.

K-Means. On K-Means, the target set T is the set of clus-
ter centers, which is larger for settings with more clusters
(i.e., a larger k). According to the pickLandmarkDef algo-
rithm in Figure 7, TOP selects C2:Tset+Tghost2L when k is
small and C2:Tghost2L otherwise. The manual version com-
putes and maintains ¢ lower bounds between a query point
and its t closest target points and another lower bound for
all the other target points. It uses these bounds to leverage
triangular inequality for detecting and eliminating unnec-
essary distance computations. The idea is similar to our
C2:Tghost2L, but not as efficient. First, it has a larger

overhead to maintain those lower bounds because it needs
to keep an increasing order among those bounds in every
iteration. Second, the last lower bound (of all points except
the closest ¢ target points) is often too loose to effectively
detect redundant distance computations. In addition, the
previous work requires ¢ to be a value between k/4 and k/8;
the space cost for storing lower bounds frequently exceeds
memory budget for large problems, causing the approach
to fail. In our experiments, we extend the approach such
that ¢ is set to the largest possible value if space is an is-
sue. Despite the extension, for the two reasons mentioned,
TOP gives much larger speedups than the manual version
does (27X vs. 9.6X on average). The advantage is more
substantial when k increases, because the overhead of the
manual version in maintaining the lower bounds becomes
more significant.

N-Body. N-Body simulates the interplay and movements
of particles iteratively. Because the dimensionality is usually
low (two or three) in N-body problems, an K D — tree based
optimization is the most effective solution to them. Instead
of finding the most efficient solution, this work uses the basic
N-Body algorithm as a test case to see whether TOP can
effectively optimize a distance-related problem on which no
TI optimizations have been proposed before. The result
shows that TOP selects C5:TQghost2L.2M for creating its
landmarks on all the inputs. The TI optimizations by TOP
help save about 99.4% distance computations compared to
the original version, yielding over 238X speedups.

Other Algorithms. TOP selects C1:1L2M for the land-
mark creation for the three non-iterative algorithms (KNN,
KNNjoin, P2P). These algorithms benefit only from spa-
tial reuses, which is relatively more straightforward to do.
Previous manual optimizations can already achieve similar
performance as TOP achieves. They can all save more than
93% of the distance computations and give 9-77X speedups.
In both the TOP and manual versions, we adopt the com-
parison order as Section 4.2.2 describes, which boosts the
speedups substantially (e.g., 1.5-4X speedups for KNN).

6.3 Discussions

A distinctive feature of TOP is the landmark hierarchy
built through grouping. It brings large benefits on itera-
tive algorithms as aforementioned. The number of groups
decides the benefit-cost tradeoff. TOP uses a simple rule
to decide the appropriate number of groups as showed in
Section 4.2.1. Figure 12 provides a sensitivity study on the
number of groups. The graphs show the overall running
times when different numbers of groups are used. Each curve
in the graphs corresponds to the performance in one problem
setting. The curves all show the same trend: As the number
of groups increases, the overall running time first decreases,
and then increases, reflecting the tension between the cost
in maintaining the bounds associated with the landmarks
and the benefits in removing redundant computations. The
stars in the graphs indicate the number of groups decided
by TOP. The performance they give is less than 13% away
from that of the best decisions.

The distance optimizations introduce no hazards for par-
allelism of the data processing. Different data points can
still be processed in parallel. Our implementation of the
optimized K-Means in a parallel framework Graphlab [23]
confirms that a similar degree of large speedups exists in
the parallel versions of the optimized algorithms [6].

Kmeans

ICP

Nbody

52 _Selected by TOP

[%z Selected by TOP|

NG

Running time(ms)
am

102

10*
g o
3 ,
10
£ £
Q Q
£ 10? £ 10’
2 2
£ 10’ IS
3 =}
o o 100
100 w
-1 -1
10 10
10° 10? 10* 10°

Number of 2-level landmarks

Number of 2-level landmarks

10* 10° 102 10*
Number of 2-level landmarks

Figure 12: Running time changes when different numbers of 2-level landmarks are used.

7. CONCLUSION

At a high level, TOP shares some similarity with rela-
tional query optimization in the way that both ask for just
a specification of what to compute, and determines a good
plan for executing it automatically. This work, for the first
time, makes such a paradigm possible and beneficial for opti-
mizing distance-related algorithms. It develops the first set
of principled analysis on how triangular inequality should
be applied to a spectrum of distance-related problems. The
resulting framework TOP is able to produce algorithms that
either match or beat (by 2.5X on average) manually designed
algorithms for a list of important problems.

Acknowledgement We thank the VLDB’15 reviewers for their sug-
gestions. This material is based upon work supported by DOE Early
Career Award and the National Science Foundation (NSF) under
Grant No. 1464216, 1320796 and Career Award. Any opinions, find-
ings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of
DOE or NSF.

8. REFERENCES

[1] K. Bache and M. Lichman. UCI machine learning repository,
2013.

[2] C. Bohm and F. Krebs. The k-nearest neighbour join: Turbo
charging the kdd process. Knowledge and Information
Systems, Springer, 6(6):728-749, 2004.

[3] Y. Chen and G. Medioni. Object modeling by registration of
multiple range images. In Robotics and Automation, IEEE,
pages 2724-2729, 1991.

[4] E. W. Dijkstra. A note on two problems in connexion with
graphs. In Numerische mathematik, volume 1, pages 269-271,
1959.

[5] H. Ding, G. Trajcevski, and P. Scheuermann. Efficient
similarity join of large sets of moving object trajectories. In
Temporal Representation and Reasoning, IEEE, pages 7T9-87,
2008.

[6] Y. Ding, X. Shen, M. Musuvathi, and T. Mytkowicz. Yinyang
k-means: A drop-in replacement of the classic k-means with
consistent speedup. In ICML, 2015.

[7] J. Drake and G. Hamerly. Accelerated k-means with adaptive
distance bounds. In 5th NIPS Workshop on Optimization for
Machine Learning, 2012.

[8] V. Eijkhout. Introduction to High Performance Scientific
Computing. Lulu. com, 2010.

[9] C. Elkan. Using the triangle inequality to accelerate k-means.
In ICML, volume 3, pages 147-153, 2003.

[10] C. Elkan. Nearest neighbor classification. University of
California—San Diego, 2007.

[11] T. Emrich, F. Graf, H.-P. Kriegel, M. Schubert, and
M. Thoma. Optimizing all-nearest-neighbor queries with
trigonometric pruning. In Scientific and Statistical Database
Management, Springer, pages 501-518, 2010.

[12] A. Fahim, A. Salem, F. Torkey, and M. Ramadan. An efficient
enhanced k-means clustering algorithm. Journal of Zhejiang
University SCIENCE A, Springer, 7(10):1626-1633, 2006.

(13]

(14]

(18]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

E. Fix and J. L. Hodges Jr. Discriminatory
analysis-nonparametric discrimination: consistency properties.
In DTIC Document, 1951.

A. V. Goldberg and C. Harrelson. Computing the shortest
path: A search meets graph theory. In Proceedings of the
sizteenth annual ACM-SIAM, pages 156-165, 2005.

M. Greenspan and G. Godin. A nearest neighbor method for
efficient ICP. In 3-D Digital Imaging and Modeling, IEEE,
pages 161-168, 2001.

M. Greenspan, G. Godin, and J. Talbot. Acceleration of
binning nearest neighbor methods. In Vision Interface, IEEE,
pages 337-344, 2000.

R. J. Gutman. Reach-based routing: A new approach to
shortest path algorithms optimized for road networks. In
ALENEX/ANALC, pages 100-111, 2004.

G. Hamerly. Making k-means even faster. In SDM, SIAM,
pages 130-140, 2010.

H. Han and C.-W. Tseng. Exploiting locality for irregular
scientific codes. Parallel and Distributed Systems, IEEE,
17(7):606-618, 2006.

J. Z. Lai, Y.-C. Liaw, and J. Liu. Fast k-nearest-neighbor
search based on projection and triangular inequality. Pattern
Recognition, Elsevier, 40(2):351-359, 2007.

C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In Code
Generation and Optimization, IEEE, pages 75-86, 2004.

S. Lloyd. Least squares quantization in pcm. In Information
Theory, IEEE, volume 28,2, pages 129-137, 1982.

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein. Graphlab: A new framework for parallel
machine learning. arXiv preprint arXiv:1006.4990, 2010.

W. Lu, Y. Shen, S. Chen, and B. C. Ooi. Efficient processing of
k nearest neighbor joins using mapreduce. Proceedings of the
VLDB Endowment, 5(10):1016-1027, 2012.

W. K. Ngai, B. Kao, C. K. Chui, R. Cheng, M. Chau, and

K. Y. Yip. Efficient clustering of uncertain data. In Data
Mining, 2006. ICDM’06, IEEE, pages 436-445, 2006.
OpenStreetMap. Open data commons open database license,
2014.

D. Sculley. Web-scale k-means clustering. In Proceedings of the
19th international conference on World Wide Web, ACM,
pages 1177-1178, 2010.

J. Wang, J. Wang, Q. Ke, G. Zeng, and S. Li. Fast approximate
k-means via cluster closures. In Computer Vision and Pattern
Recognition (CVPR), IEEE, pages 3037-3044, 2012.

X. Wang. A fast exact k-nearest neighbors algorithm for high
dimensional search using k-means clustering and triangle
inequality. In Neural Networks (IJCNN), IEEE, pages
1293-1299, 2011.

C. Yu, B. Cui, S. Wang, and J. Su. Efficient index-based knn
join processing for high-dimensional data. Information and
Software Technology, Elsevier, 49(4):332-344, 2007.

D. Zhang, C.-Y. Chan, and K.-L. Tan. Nearest group queries.
In Proceedings of the 25th International Conference on
Scientific and Statistical Database Management, ACM,
page 7, 2013.

