Artificial Intelligence

CS 165A
Nov 12, 2020

Instructor: Prof. Yu-Xiang Wang

→ Markov Decision Processes
Midterm Results

Midterm results (without bonus)

- More
- 90-100
- 80-90
- 70-80
- 60-70
- <60

(Histogram is sanitized using Differential Privacy)
Midterm Results (with bonus)

Histogram is sanitized using Differential Privacy
Recap: Reinforcement learning problem setup

- State, Action, Reward
- Unknown reward function, unknown state-transitions.
- Agents might not even observe the state
Recap: Robot in a room.

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- what’s the strategy to achieve max reward?
- what if the transitions were deterministic?

Policy: $\pi : S \to A$

- UP, DOWN, LEFT, RIGHT

State-transitions with action UP:
- 80% move up
- 10% move left
- 10% move right

*If you bump into a wall, you stay where you are.
Recap: Tabular MDP

- **Discrete State, Discrete Action, Reward and Observation**
 \[S_t \in S \quad A_t \in A \quad R_t \in \mathbb{R} \quad O_t \in \mathcal{O} \]

- **Policy:**
 - When the state is observable:
 \[\pi : \mathcal{S} \rightarrow \mathcal{A} \]
 - Or when the state is not observable
 \[\pi_t : (\mathcal{O} \times \mathcal{A} \times \mathbb{R})^{t-1} \rightarrow \mathcal{A} \]

- **Learn the best policy that maximizes the expected reward**
 - Finite horizon (episodic) RL:
 \[\pi^* = \arg\max_{\pi \in \Pi} \mathbb{E} \left[\sum_{t=1}^{T} R_t \right] \]
 - Infinite horizon RL:
 \[\pi^* = \arg\max_{\pi \in \Pi} \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^{t-1} R_t \right] \quad \text{as} \quad \lim_{T \to \infty} \mathbb{E} \left[\frac{1}{T} \sum_{t=1}^{T} R_t \right] \]
 \[\gamma : \text{discount factor} \]
Recap: Parameters of an MDP are the CPTs

- Initial state distribution
- Transition dynamics
- Reward distribution

$$P(S_0) =: \pi \in \mathbb{R}^{|S|}$$

$$P(S_{t+1} | S_t, A_t) =: P \in \mathbb{R}^{|S| \times |S| \times |A|}$$

$$E[R_t | S_t, A_t] =: r(S_t, A_t)$$

$$E[R_t | S_t, A_t, S_{t+1}] =: r(S_t, A_t, S_{t+1})$$
Recap: Reward function and Value functions

- Immediate reward function $r(s,a,s')$
 - expected immediate reward
 $$r(s, a, s') = \mathbb{E}[R_1 | S_1 = s, A_1 = a, S_2 = s']$$

- State value function: $V^\pi(s)$
 - expected long-term return when starting in s and following π
 $$V^\pi(s) = \mathbb{E}_\pi[R_1 + \gamma R_2 + ... + \gamma^{t-1} R_t + ... | S_1 = s]$$

- State-action value function: $Q^\pi(s,a)$
 - expected long-term return when starting in s, performing a, and following π
 $$Q^\pi(s, a) = \mathbb{E}_\pi[R_1 + \gamma R_2 + ... + \gamma^{t-1} R_t + ... | S_1 = s, A_1 = a]$$
Recap: Bellman equations – the fundamental equations of MDP and RL

- An alternative, recursive and more useful way of defining the V-function and Q function

\[
V^\pi(s) = \sum_a \pi(a|s) \sum_{s'} P(s'|s, a) \left[r(s, a, s') + \gamma V^\pi(s') \right] = \sum_a \pi(a|s) Q^\pi(s, a)
\]
Recap: Bellman equations – the fundamental equations of MDP and RL

- An alternative, recursive and more useful way of defining the V-function and Q function

\[V^\pi(s) = \sum_a \pi(a|s) \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V^\pi(s')] = \sum_a \pi(a|s) Q^\pi(s, a) \]

- Quiz:
 - Prove Bellman equation from the definition in the previous slide.
 - Write down the Bellman equation using Q function alone.

\[Q^\pi(s, a) = ? \]

\[Q^\pi(s, a) = \mathbb{E}_a[\sum_{t=1}^\infty \gamma^{t-1} R_t + \cdots | S_t = s, A_t = a] = \sum_a \pi(a|s) \mathbb{E}_q[R_t + \cdots | S_t = s, A_t = a] \]
This lecture

• Bellman equations

• Algorithms for solving MDPs
 – Value iterations / Policy Iterations

• Exploration and Bandit problem
Let’s work out the Value function for a specific policy

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>→</td>
<td>→</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>↑</td>
<td></td>
<td>→</td>
<td>-1</td>
</tr>
<tr>
<td>↑</td>
<td>↑</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>↑</td>
<td>↑</td>
<td>←</td>
<td></td>
</tr>
</tbody>
</table>

actions: UP, DOWN, LEFT, RIGHT
e.g., UP
state-transitions with action UP:
80% move UP
10% move LEFT
10% move RIGHT
*If you bump into a wall, you stay where you are.

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

\[
V^\pi(s) = \sum_a \pi(a|s) \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V^\pi(s')] = \sum_a \pi(a|s)Q^\pi(s, a)
\]
Let's work out the Value function for a specific policy

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td></td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

actions: UP, DOWN, LEFT, RIGHT

e.g.,
- **UP**

state-transitions with action **UP**:
- 80% move UP
- 10% move LEFT
- 10% move RIGHT

If you bump into a wall, you stay where you are.

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

\[
V^\pi(s) = \sum_a \pi(a|s) \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V^\pi(s')] = \sum_a \pi(a|s)Q^\pi(s, a)
\]
Let’s work out the Value function for a specific policy

actions: UP, DOWN, LEFT, RIGHT

e.g.,

state-transitions with action UP:

*If you bump into a wall, you stay where you are.

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

\[
V^\pi(s) = \sum_a \pi(a|s) \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V^\pi(s')] = \sum_a \pi(a|s) Q^\pi(s, a)
\]

1.0 +

+
Let’s work out the Value function for a specific policy

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>+1</td>
<td></td>
</tr>
<tr>
<td>+1</td>
<td></td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

actions: UP, DOWN, LEFT, RIGHT

e.g.,

state-transitions with action **UP**:

- 80% move UP
- 10% move LEFT
- 10% move RIGHT

*If you bump into a wall, you stay where you are.

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

$$V^\pi(s) = \sum_a \pi(a|s) \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V^\pi(s')] = \sum_a \pi(a|s)Q^\pi(s,a)$$

1.0 + 0.8 *
Let's work out the Value function for a specific policy

actions: UP, DOWN, LEFT, RIGHT

e.g., UP

state-transitions with action UP:

80% move UP
10% move LEFT
10% move RIGHT

*If you bump into a wall, you stay where you are.

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

\[
V^\pi(s) = \sum_a \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^\pi(s')] = \sum_a \pi(a|s) Q^\pi(s,a)
\]

\[
1.0 + 0.8 \times (+1 - 0.04)
\]
Let’s work out the Value function for a specific policy

- Reward +1 at [4,3], -1 at [4,2]
- Reward -0.04 for each step

\[
V^\pi(s) = \sum_a \pi(a|s) \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V^\pi(s')] = \sum_a \pi(a|s)Q^\pi(s,a)
\]

\[
1.0 + 0.8 * (+1-0.04 + 0)
\]

actions: UP, DOWN, LEFT, RIGHT

e.g., UP

state-transitions with action UP:

- 80% move UP
- 10% move LEFT
- 10% move RIGHT

*If you bump into a wall, you stay where you are.
Let’s work out the Value function for a specific policy

actions: UP, DOWN, LEFT, RIGHT

e.g., UP

state-transitions with action UP:
- 80% move UP
- 10% move LEFT
- 10% move RIGHT

*If you bump into a wall, you stay where you are.

• reward +1 at [4,3], -1 at [4,2]
• reward -0.04 for each step

\[
V^\pi(s) = \sum_a \pi(a|s) \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V^\pi(s')] = \sum_a \pi(a|s)Q^\pi(s,a)
\]

\[
1.0 + 0.8 * (+1-0.04 + 0)
\]
Let’s work out the Value function for a specific policy

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+1</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>

actions: UP, DOWN, LEFT, RIGHT
e.g., UP

state-transitions with action UP:
80% move UP
10% move LEFT
10% move RIGHT

*If you bump into a wall, you stay where you are.

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

\[
V^\pi(s) = \sum_a \pi(a|s) \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V^\pi(s')] = \sum_a \pi(a|s) Q^\pi(s, a)
\]

\[
1.0 + 0.8 \times (+1-0.04 + 0) + 0.1 \times
\]

+
Let’s work out the Value function for a specific policy

actions: UP, DOWN, LEFT, RIGHT

e.g., UP

state-transitions with action UP:
- 80% move UP
- 10% move LEFT
- 10% move RIGHT

*If you bump into a wall, you stay where you are.

• reward +1 at [4,3], -1 at [4,2]
• reward -0.04 for each step

\[V^\pi(s) = \sum_a \pi(a|s) \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V^\pi(s')] = \sum_a \pi(a|s) Q^\pi(s, a) \]

\[1.0 + 0.8 \times (+1-0.04 + 0) \]
\[0.1 \times (-0.04 + V^\pi([3,2])) \]

\[V^\pi(s) = \sum a \pi(a|s) \sum s' P(s'|s, a)[r(s, a, s') + \gamma V^\pi(s')] \]

\[Q^\pi(s, a) = \sum s' P(s'|s, a)[r(s, a, s') + \gamma V^\pi(s')] \]

\[V^\pi([4,3]) = 1.0 + 0.8 \times (+1-0.04 + 0) \]
\[+ 0.1 \times (-0.04 + V^\pi([3,2])) \]
Let’s work out the Value function for a specific policy

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>+1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

actions: UP, DOWN, LEFT, RIGHT

e.g., UP

state-transitions with action UP:
 80% move UP
 10% move LEFT
 10% move RIGHT

*If you bump into a wall, you stay where you are.

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

\[
V^\pi(s) = \sum_a \pi(a|s) \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V^\pi(s')] = \sum_a \pi(a|s)Q^\pi(s,a)
\]

\[
\begin{align*}
1.0 & + 0.8 \times (+1-0.04 + 0) \\
& + 0.1 \times (-0.04 + V^\pi([3,2])) \\
& + 0.1 \times \\
& + 0.1 \times \\
& + 0.1 \times \\
& + 0.1 \times
\end{align*}
\]
Let’s work out the Value function for a specific policy

• reward +1 at [4,3], -1 at [4,2]
• reward -0.04 for each step

V^\pi(s) = \sum_a \pi(a|s) \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V^\pi(s')] = \sum_a \pi(a|s)Q^\pi(s, a)

1.0 + 0.8 * (+1-0.04 + 0)
0.1 * (-0.04 + V^\pi([3,2]))
0.1 * (-0.04 + V^\pi([3,3]))

actions: UP, DOWN, LEFT, RIGHT

e.g., UP

state-transitions with action UP:
80% move UP
10% move LEFT
10% move RIGHT

*If you bump into a wall, you stay where you are.
Optimal value functions

• there’s a set of *optimal* policies
 – V^π defines partial ordering on policies
 – they share the same optimal value function
 $V^*(s) = \max_{\pi} V^\pi(s)$

• Bellman optimality equation
 $V^*(s) = \max_a \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V^*(s')]$
 – system of n non-linear equations
 – solve for $V^*(s)$
 – easy to extract the optimal policy

• having $Q^*(s,a)$ makes it even simpler
 $\pi^*(s) = \arg \max_a Q^*(s,a)$
Inference problem: given an MDP, how to compute its optimal policy?

- It suffices to compute its Q^* function, because:

 $$
 \pi^*(s) = \arg \max_a Q^*(s, a)
 $$

- It suffices to compute its V^* function, because:

 $$
 Q^*(s, a) = \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V^*(s')]
 $$
Summary of Bellman equations – the fundamental equations of MDP and RL

- **V-function and Q function**
 - \(V^\pi(s) = \sum_a \pi(a|s) \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V^\pi(s')] \)
 - \(Q^\pi(s, a) = \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma \sum_{a'} \pi(a'|s') Q^\pi(s', a')] \)
 - \(V^*(s) = \max_a \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V^*(s')] \)
 - \(Q^*(s, a) = \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma \max_{a'} Q^*(s', a')] \)
Algorithms for calculating the V^* function

- Policy evaluation, policy-improvement

- Policy iterations

- Value iterations
Dynamic programming

• main idea
 – use value functions to structure the search for good policies
 – need a known model of the environment

• two main components
 – policy evaluation: compute V^π from π
 – policy improvement: improve π based on V^π

 – start with an arbitrary policy
 – repeat evaluation/improvement until convergence
Policy evaluation/improvement

- policy evaluation: $\pi \rightarrow V^\pi$
 - Bellman eqn’s define a system of n eqn’s
 - could solve, but will use iterative version

$$V^\pi_{k+1}(s) \leftarrow \sum_a \pi(a|s) \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V^\pi_k(s')]$$

- start with an arbitrary value function V_0, iterate until V_k converges
Policy evaluation/improvement

• policy evaluation: $\pi \rightarrow V^\pi$
 – Bellman eqn’s define a system of n eqn’s
 – could solve, but will use iterative version

\[
V_{k+1}^\pi(s) \leftarrow \sum_a \pi(a|s) \sum_{s'} P(s'|s, a) \left[r(s, a, s') + \gamma V_k^\pi(s') \right]
\]
 – start with an arbitrary value function V_0, iterate until V_k converges

• policy improvement: $V^\pi \rightarrow \pi'$
Policy evaluation/improvement

• policy evaluation: \(\pi \rightarrow V^\pi \)
 – Bellman eqn’s define a system of n eqn’s
 – could solve, but will use iterative version

\[
V_{k+1}^\pi(s) \leftarrow \sum_a \pi(a|s) \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V_k^\pi(s')]
\]
 – start with an arbitrary value function \(V_0 \), iterate until \(V_k \) converges

• policy improvement: \(V^\pi \rightarrow \pi' \)

\[
\pi'(s) = \arg \max_a Q^\pi(s, a) \\
= \arg \max_a \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V_k^\pi(s')]
\]
Policy evaluation/improvement

- policy evaluation: $\pi \to V^\pi$
 - Bellman eqn’s define a system of n eqn’s
 - could solve, but will use iterative version
 \[
 V^\pi_{k+1}(s) \leftarrow \sum_a \pi(a|s) \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V^\pi_k(s')]
 \]
 - start with an arbitrary value function V_0, iterate until V_k converges

- policy improvement: $V^\pi \to \pi'$
 \[
 \pi'(s) = \arg\max_a Q^\pi(s, a) \\
 = \arg\max_a \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V^\pi_k(s')]
 \]
 - π' either strictly better than π, or π' is optimal (if $\pi = \pi'$)
Policy/Value iteration

- Policy iteration

\[\pi_0 \rightarrow E \ V^{\pi_0} \rightarrow I \ \pi_1 \rightarrow E \ V^{\pi_1} \rightarrow I \ldots \rightarrow I \ \pi^* \rightarrow E \ V^* \]

- two nested iterations; too slow
- don’t need to converge to \(V^{\pi_k} \)
 - just move towards it
Policy/Value iteration

- **Policy iteration**
 \[\pi_0 \rightarrow E \ V^{\pi_0} \rightarrow I \ \pi_1 \rightarrow E \ V^{\pi_1} \rightarrow I \ldots \rightarrow I \ \pi^* \rightarrow E \ V^* \]
 - two nested iterations; too slow
 - don’t need to converge to \(V^{\pi_k} \)
 - just move towards it

- **Value iteration**
 \[
 V_{k+1}(s) \leftarrow \max_a \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V_k(s')]
 \]
 - use Bellman optimality equation as an update
 - converges to \(V^* \)
$k=0$

Noise = 0.2
Discount = 0.9
Living reward = 0
k=1

Noise = 0.2
Discount = 0.9
Living reward = 0
Table: Values after 2 Iterations

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.72</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-1.00</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

Parameters:

- $k=2$
- Noise = 0.2
- Discount = 0.9
- Living reward = 0
$k=3$

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=4

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=5$

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 5 ITERATIONS

0.51 0.72 0.84 1.00
0.27 0.55 -1.00
0.00 0.22 0.37 0.13
k=6

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=7$

Noise = 0.2
Discount = 0.9
Living reward = 0
k=8

VALUES AFTER 8 ITERATIONS

0.63 0.74 0.85 1.00

-1.00

0.53 0.57

0.42 0.39 0.46 0.26

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=9$

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 9 ITERATIONS
k=10

Noise = 0.2
Discount = 0.9
Living reward = 0
k = 11

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=100$

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Q-iteration

• Updating Q functions instead of V functions

\[Q_{k+1}(s, a) \leftarrow \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma \max_{a'} Q_k(s', a')] \]

• Quiz: What is the difference from the following extended version of value iteration?

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V_k(s')] \]

\[Q_{k+1}(s, a) \leftarrow \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V_{k+1}(s')] \]
Q-iteration

• Updating Q functions instead of V functions

\[Q_{k+1}(s, a) \leftarrow \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma \max_{a'} Q_k(s', a')] \]

• Quiz: What is the difference from the following extended version of value iteration?

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V_k(s')] \]

\[Q_{k+1}(s, a) \leftarrow \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V_{k+1}(s')] \]

Ans: They are identical!
Demo: grid worlds

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
MDP summary

- Tabular MDP
- Episodic vs. infinite horizon (discounted)
- Immediate reward vs long-term reward
- Value functions: V functions, Q functions
- Bellman equations, Bellman optimality equations
- How to solve MDP? Policy iterations, value iterations
MDP Summary

Standard expectimax:

\[V(s) = \max_a \sum_{s'} P(s'|s, a)V(s') \]

Bellman equations:

\[V(s) = \max_a \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V(s')] \]

Value iteration:

\[V_{k+1}(s) = \max_a \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V_k(s')], \quad \forall s \]
\[Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a \]
\[V_{k+1}^\pi(s) = \sum_{s'} P(s'|s, \pi(s))[r(s, \pi(s), s') + \gamma V_k^\pi(s')], \quad \forall s \]
\[\pi_{new}(s) = \arg\max_a \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V_{old}^\pi(s')], \quad \forall s \]
MDP Summary

Standard expectimax:

\[V(s) = \max_a \sum_{s'} P(s'|s, a) V(s') \]

Bellman equations:

\[V(s) = \max_a \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V(s')] \]

Value iteration:

\[V_{k+1}(s) = \max_a \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V_k(s')] , \quad \forall s \]

Q-iteration:

\[Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma \max_{a'} Q_k(s', a')] , \quad \forall s, a \]

Policy evaluation:

\[V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s, \pi(s)) [r(s, \pi(s), s') + \gamma V_{k}^{\pi}(s')] , \quad \forall s \]

Policy improvement:

\[\pi_{new}(s) = \arg\max_a \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^{\pi_{old}}(s')] , \quad \forall s \]
Matrix-form of Bellman Equations and VI

\[V^\pi(s) = \sum_a \pi(a|s) \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V^\pi(s')] \]

\[V_{k+1}^\pi(s) \leftarrow \sum_a \pi(a|s) \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V_k^\pi(s')] \]

\[V_{k1}^\pi = r^{T_1} + \delta P^{T_1} V_{k}^{\pi} \]
Solving MDP with VI or PI is offline planning

- The agent is given how the environment works.
- The agent works out the optimal policy in its mind.
- The agent never really starts to play at all.
- No learning is happening.
State-space diagram representation of an MDP: An example with 3 states and 2 actions.

\[r(s_2, a_1, s_1) = -2 \]

\[r(s_2, a_1, s_2) = 50 \]

\[r(s_2, a_2, s_3) = -1 \]
What happens if you do not know the rewards / transition probabilities?

\[r(s_2, a_1, s_1) = ? \]

\[r(s_2, a_1, s_2) = ? \]

\[r(s_2, a_2, s_3) = ? \]
What happens if you do not know the rewards / transition probabilities?

Then you have to learn by interacting with the unknown environment.

You cannot use only offline planning!

Exploration: Try unknown actions to see what happens.

Exploitation: Maximize utility using what we know.
Let us tackle different aspects of the RL problem one at a time

• Markov Decision Processes:
 – Dynamics are given no need to learn

• **Bandits: Explore-Exploit in simple settings**
 – RL without dynamics

• Full Reinforcement Learning
 – Learning MDPs
Slot machines and Multi-arm bandits
Multi-arm bandits: Problem setup

• No state. k-actions \(a \in \mathcal{A} = \{1, 2, \ldots, k\} \)

• You decide which arm to pull in every iteration

\[A_1, A_2, \ldots, A_T \]

• You collect a cumulative payoff of \(\sum_{t=1}^{T} R_t \)

• The goal of the agent is to maximize the expected payoff.
 – For future payoffs?
 – For the expected cumulative payoff?
Key differences from MDPs

• Simplified:
 – No state-transitions

• But:
 – We are not given the expected reward $r(s, a, s')$
 – We need to learn the optimal policy by trials-and-errors.
A 10-armed bandits example

Figure 2.1: An example bandit problem from the 10-armed testbed. The true value $q_*(a)$ of each of the ten actions was selected according to a normal distribution with mean zero and unit variance, and then the actual rewards were selected according to a mean $q_*(a)$ unit variance normal distribution, as suggested by these gray distributions.
How do we measure the performance of an online learning agent?

- The notion of “Regret”:
 - I wish I have done things differently.
 - Comparing to the best actions in the hindsight, how much worse did I do.

- For MAB, the regret is defined as follow

\[
T \max_{a \in [k]} \mathbb{E}[R_t | a] - \sum_{t=1}^{T} \mathbb{E}_{a \sim \pi} [\mathbb{E}[R_t | a]]
\]
Greedy strategy

- Expected reward
 \[q_*(a) \doteq \mathbb{E}[R_t \mid A_t = a] . \]
- Estimate the expected reward
 \[Q_t(a) \doteq \frac{\text{sum of rewards when } a \text{ taken prior to } t}{\text{number of times } a \text{ taken prior to } t} \]
 \[= \sum_{i=1}^{t-1} R_i \cdot 1_{A_i = a} \]
 \[= \frac{\sum_{i=1}^{t-1} R_i \cdot 1_{A_i = a}}{\sum_{i=1}^{t-1} 1_{A_i = a}} \]
- Choose
 \[A_t \doteq \arg \max_a Q_t(a) , \]

What is the issue with this strategy?
Exploration vs. Exploitation

(Illustration from Dan Klein and Pieter Abbeel’s course in UC Berkeley)
Next Tuesday

• Bandits algorithms
 – Explore-first
 – epsilon-greedy
 – Upper confidence bound