Artificial Intelligence

CS 165A

Nov 12, 2020

Instructor: Prof. Yu-Xiang Wang

→ Markov Decision Processes
Midterm Results

Midterm results (without bonus)

<table>
<thead>
<tr>
<th>Grade Range</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>More</td>
<td>2</td>
</tr>
<tr>
<td>90-100</td>
<td>12</td>
</tr>
<tr>
<td>80-90</td>
<td>8</td>
</tr>
<tr>
<td>70-80</td>
<td>6</td>
</tr>
<tr>
<td>60-70</td>
<td>2</td>
</tr>
<tr>
<td><60</td>
<td>1</td>
</tr>
</tbody>
</table>

(Histogram is sanitized using Differential Privacy)
Midterm Results (with bonus)

(Histogram is sanitized using Differential Privacy)
Recap: Reinforcement learning problem setup

- State, Action, Reward
- Unknown reward function, unknown state-transitions.
- Agents might not even observe the state
Recap: Robot in a room.

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- what’s the strategy to achieve max reward?
- what if the transitions were deterministic?

actions: UP, DOWN, LEFT, RIGHT

e.g.,

State-transitions with action UP:
80% move up
10% move left
10% move right

*If you bump into a wall, you stay where you are.
Recap: Tabular MDP

- **Discrete State, Discrete Action, Reward and Observation**
 \[S_t \in S \quad A_t \in A \quad R_t \in \mathbb{R} \quad O_t \in \mathcal{O} \]

- **Policy:**
 - When the state is observable: \[\pi : S \rightarrow A \]
 - Or when the state is not observable: \[\pi_t : (\mathcal{O} \times A \times \mathbb{R})^{t-1} \rightarrow A \]

- **Learn the best policy that maximizes the expected reward**
 - Finite horizon (episodic) RL: \[\pi^* = \arg \max_{\pi \in \Pi} \mathbb{E} \left[\sum_{t=1}^{T} R_t \right] \]
 - Infinite horizon RL: \[\pi^* = \arg \max_{\pi \in \Pi} \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^{t-1} R_t \right] \]

\(\gamma \): discount factor
Recap: Parameters of an MDP are the CPTs

- Initial state distribution
- Transition dynamics
- Reward distribution
Recap: Reward function and Value functions

• Immediate reward function $r(s,a,s')$
 – expected immediate reward
 \[r(s, a, s') = \mathbb{E}[R_1 | S_1 = s, A_1 = a, S_2 = s'] \]
 \[r^\pi(s) = \mathbb{E}_{a \sim \pi(a|s)}[R_1 | S_1 = s] \]

• state value function: $V^\pi(s)$
 – expected long-term return when starting in s and following π
 \[V^\pi(s) = \mathbb{E}_\pi[R_1 + \gamma R_2 + \ldots + \gamma^{t-1} R_t + \ldots | S_1 = s] \]

• state-action value function: $Q^\pi(s,a)$
 – expected long-term return when starting in s, performing a, and following π
 \[Q^\pi(s, a) = \mathbb{E}_\pi[R_1 + \gamma R_2 + \ldots + \gamma^{t-1} R_t + \ldots | S_1 = s, A_1 = a] \]
Recap: Bellman equations – the fundamental equations of MDP and RL

• An alternative, recursive and more useful way of defining the V-function and Q function

\[
V^\pi(s) = \sum_a \pi(a|s) \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V^\pi(s')] = \sum_a \pi(a|s)Q^\pi(s, a)
\]

• Quiz:
 – Prove Bellman equation from the definition in the previous slide.

 – Write down the Bellman equation using Q function alone.

\[
Q^\pi(s, a) = ?
\]
This lecture

• Bellman equations

• Algorithms for solving MDPs
 – Value iterations / Policy Iterations

• Exploration and Bandit problem
Let’s work out the Value function for a specific policy

actions: UP, DOWN, LEFT, RIGHT

e.g.,

state-transitions with action **UP:**

- 80% move UP
- 10% move LEFT
- 10% move RIGHT

If you bump into a wall, you stay where you are.

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

\[
V^\pi(s) = \sum_a \pi(a|s) \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V^\pi(s')] = \sum_a \pi(a|s)Q^\pi(s,a)
\]

\[
V^\pi(s) = 1.0 + 0.8 \times (+1 - 0.04 + 0) + 0.1 \times (-0.04 + V^\pi([3,2])) + 0.1 \times (-0.04 + V^\pi([3,3]))
\]
Optimal value functions

• there’s a set of *optimal* policies
 – V^π defines partial ordering on policies
 – they share the same optimal value function

$$V^*(s) = \max_{\pi} V^\pi(s)$$

• Bellman optimality equation

$$V^*(s) = \max_a \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V^*(s')]$$

 – system of n non-linear equations
 – solve for $V^*(s)$
 – easy to extract the optimal policy

• having $Q^*(s,a)$ makes it even simpler

$$\pi^*(s) = \arg \max_a Q^*(s,a)$$
Inference problem: given an MDP, how to compute its optimal policy?

- It suffices to compute its Q^* function, because:

 $$\pi^*(s) = \arg \max_a Q^*(s, a)$$

- It suffices to compute its V^* function, because:

 $$Q^*(s, a) = \sum_{s'} P(s' | s, a)[r(s, a, s') + \gamma V^*(s')]$$
Summary of Bellman equations – the fundamental equations of MDP and RL

• V-function and Q function

 – V^π function Bellman equation

 \[
 V^\pi(s) = \sum_a \pi(a|s) \sum_{s'} P(s'|s, a) \left[r(s, a, s') + \gamma V^\pi(s') \right]
 \]

 – Q^π function Bellman equation

 \[
 Q^\pi(s, a) = \sum_{s'} P(s'|s, a) \left[r(s, a, s') + \gamma \sum_{a'} \pi(a'|s') Q^\pi(s', a') \right]
 \]

 – V^* function Bellman (optimality) equation

 \[
 V^*(s) = \max_a \sum_{s'} P(s'|s, a) \left[r(s, a, s') + \gamma V^*(s') \right]
 \]

 – Q^* function Bellman (optimality) equation

 \[
 Q^*(s, a) = \sum_{s'} P(s'|s, a) \left[r(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right]
 \]
Algorithms for calculating the V* function

- Policy evaluation, policy-improvement
- Policy iterations
- Value iterations
Dynamic programming

• main idea
 – use value functions to structure the search for good policies
 – need a known model of the environment

• two main components
 – policy evaluation: compute V^π from π
 – policy improvement: improve π based on V^π

 – start with an arbitrary policy
 – repeat evaluation/improvement until convergence
Policy evaluation/improvement

- policy evaluation: $\pi \rightarrow V^\pi$
 - Bellman eqn’s define a system of n eqn’s
 - could solve, but will use iterative version
 $$V_{k+1}^\pi(s) \leftarrow \sum_a \pi(a|s) \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V_k^\pi(s')]$$
 - start with an arbitrary value function V_0, iterate until V_k converges

- policy improvement: $V^\pi \rightarrow \pi'$
 $$\pi'(s) = \arg \max_a Q^\pi(s,a)$$
 $$= \arg \max_a \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V_k^\pi(s')]$$
 - π' either strictly better than π, or π' is optimal (if $\pi = \pi'$)
Policy/Value iteration

- **Policy iteration**

 \[\pi_0 \rightarrow E \ V^{\pi_0} \rightarrow I \ \pi_1 \rightarrow E \ V^{\pi_1} \rightarrow I \ldots \rightarrow I \ \pi^* \rightarrow E \ V^* \]

 - two nested iterations; too slow
 - don’t need to converge to \(V^{\pi_k} \)
 - just move towards it

- **Value iteration**

 \[V_{k+1}(s) \leftarrow \max_a \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V_k(s')] \]

 - use Bellman optimality equation as an update
 - converges to \(V^* \)
$k=0$

Noise = 0.2
Discount = 0.9
Living reward = 0
k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 1 ITERATIONS
k=2

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

0.00 0.00 0.72 1.00
0.00 0.00 -1.00
0.00 0.00 0.00 0.00
$k=3$

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=4$

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 4 ITERATIONS
\(k=5\)

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=6$

Noise = 0.2
Discount = 0.9
Living reward = 0
Gridworld Display

VALUES AFTER 7 ITERATIONS

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.62</td>
<td>0.74</td>
<td>0.85</td>
<td>1.00</td>
</tr>
<tr>
<td>0.50</td>
<td>0.57</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>0.34</td>
<td>0.36</td>
<td>0.45</td>
<td>0.24</td>
</tr>
</tbody>
</table>

- **k=7**
- **Noise = 0.2**
- **Discount = 0.9**
- **Living reward = 0**
k=8

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=9$

Noise = 0.2
Discount = 0.9
Living reward = 0
k=10

Noise = 0.2
Discount = 0.9
Living reward = 0
k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 11 ITERATIONS

0.64 0.74 0.85 1.00

0.56 0.42 0.47 0.27

-1.00
k=12

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=100

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Q-iteration

- Updating Q functions instead of V functions

\[Q_{k+1}(s, a) \leftarrow \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma \max_{a'} Q_k(s', a')] \]

- Quiz: What is the difference from the following extended version of value iteration?

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V_k(s')] \]
\[Q_{k+1}(s, a) \leftarrow \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V_{k+1}(s')] \]

Ans: They are identical!
Demo: grid worlds

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
MDP summary

- Tabular MDP

- Episodic vs. infinite horizon (discounted)

- Immediate reward vs long-term reward

- Value functions: V functions, Q functions

- Bellman equations, Bellman optimality equations

- How to solve MDP? Policy iterations, value iterations
MDP Summary

Standard expectimax:
\[V(s) = \max_a \sum_{s'} P(s'|s,a)V(s') \]

Bellman equations:
\[V(s) = \max_a \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V(s')] \]

Value iteration:
\[V_{k+1}(s) = \max_a \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V_k(s')], \quad \forall s \]

Q-iteration:
\[Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a \]

Policy evaluation:
\[V_{k+1}^\pi(s) = \sum_{s'} P(s'|s,\pi(s))[r(s,\pi(s),s') + \gamma V_k^\pi(s')], \quad \forall s \]

Policy improvement:
\[\pi_{new}(s) = \arg\max_a \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s \]
Matrix-form of Bellman Equations and VI

\[V^\pi(s) = \sum_a \pi(a|s) \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^\pi(s')] \]

\[V^\pi_{k+1}(s) \leftarrow \sum_a \pi(a|s) \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^\pi_k(s')] \]
Solving MDP with VI or PI is offline planning

- The agent is given how the environment works
- The agent works out the optimal policy in its mind.
- The agent never really starts to play at all.
- No learning is happening.
State-space diagram representation of an MDP: An example with 3 states and 2 actions.

State transitions and rewards:
- $r(s_2, a_1, s_1) = -2$
- $r(s_2, a_1, s_2) = 50$
- $r(s_2, a_2, s_3) = -1$
What happens if you do not know the rewards / transition probabilities?

Then you have to learn by interacting with the unknown environment.

You cannot use only offline planning!

Exploration: Try unknown actions to see what happens.

Exploitation: Maximize utility using what we know.
Let us tackle different aspects of the RL problem one at a time

• Markov Decision Processes:
 – Dynamics are given no need to learn

• Bandits: Explore-Exploit in simple settings
 – RL without dynamics

• Full Reinforcement Learning
 – Learning MDPs
Slot machines and Multi-arm bandits
Multi-arm bandits: Problem setup

- No state. k-actions \(a \in \mathcal{A} = \{1, 2, \ldots, k\} \)

- You decide which arm to pull in every iteration

 \[A_1, A_2, \ldots, A_T \]

- You collect a cumulative payoff of \(\sum_{t=1}^{T} R_t \)

- The goal of the agent is to maximize the expected payoff.
 - For future payoffs?
 - For the expected cumulative payoff?
Key differences from MDPs

• Simplified:
 – No state-transitions

• But:
 – We are not given the expected reward $r(s, a, s')$
 – We need to learn the optimal policy by trials-and-errors.
Chapter 2: Multi-armed Bandits

If we select randomly from among all the actions with equal probability, independently of the action-value estimates, we call methods using this near-greedy action selection rule \(\text{-greedy} \) methods. An advantage of these methods is that, in the limit as the number of steps increases, every action will be sampled an infinite number of times, thus ensuring that all the \(Q_t(a) \) converge to \(q^\ast(a) \). This of course implies that the probability of selecting the optimal action converges to greater than \(1 \), that is, to near certainty. These are just asymptotic guarantees, however, and say little about the practical effectiveness of the methods.

Exercise 2.1
In \(\text{-greedy} \) action selection, for the case of two actions and \(\epsilon = 0.5 \), what is the probability that the greedy action is selected?

The 10-armed Testbed
To roughly assess the relative effectiveness of the greedy and \(\text{-greedy} \) action-value methods, we compared them numerically on a suite of test problems. This was a set of 2000 randomly generated \(k \)-armed bandit problems with \(k = 10 \). For each bandit problem, such as the one shown in Figure 2.1, the action values, \(q^\ast(a), a = 1, \ldots, 10 \), were selected according to a normal distribution with mean zero and unit variance, and then the actual rewards were selected according to a mean \(q^\ast(a) \) unit variance normal distribution, as suggested by these gray distributions.

Figure 2.1: An example bandit problem from the 10-armed testbed. The true value \(q^\ast(a) \) of each of the ten actions was selected according to a normal distribution with mean zero and unit variance, and then the actual rewards were selected according to a mean \(q^\ast(a) \) unit variance normal distribution, as suggested by these gray distributions.
How do we measure the performance of an online learning agent?

- The notion of “Regret”:
 - I wish I have done things differently.
 - Comparing to the best actions in the hindsight, how much worse did I do.

- For MAB, the regret is defined as follow

\[
T \max_{a \in [k]} \mathbb{E}[R_t | a] - \sum_{t=1}^{T} \mathbb{E}_{a \sim \pi} [\mathbb{E}[R_t | a]]
\]
Greedy strategy

- Expected reward
 \[q_*(a) \doteq \mathbb{E}[R_t \mid A_t = a]. \]
- Estimate the expected reward
 \[Q_t(a) \doteq \frac{\text{sum of rewards when } a \text{ taken prior to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1}^{t-1} R_i \cdot 1_{A_i = a}}{\sum_{i=1}^{t-1} 1_{A_i = a}} \]
- Choose \[A_t \doteq \arg \max_a Q_t(a), \]

What is the issue with this strategy?
Exploration vs. Exploitation

(Illustration from Dan Klein and Pieter Abbeel’s course in UC Berkeley)
Next Tuesday

• Bandits algorithms
 – Explore-first
 – epsilon-greedy
 – Upper confidence bound