Artificial Intelligence

CS 165A
Jan 14, 2020

Instructor: Prof. Yu-Xiang Wang

→ Machine learning Overview
→ Supervised learning
Feedback from the class

- Many encouragements on our experiments in 3-min discussion.

- Vast majority says that it’s the right pace. A few says it’s “going too fast.”

- Two students said they want “more examples.”

- “Slides before the class time, so as to take notes on iPad.”

- “Poll should be on Piazza for anonymity”
Feedback from the class

• “Ethical dilemma: How do we decide ‘rational’ decision if there is no right answer?”

 – No right answer to “thinking machine”

 – The answers do exist if we can “write down an objective function”

 – Which “objective function” to optimize in the complex world is a policy question and really requires us to think hard on the ethics and social impacts.

 – This course is more about when we have a clear objective, how to optimize it.
Homework 1 released

• First two questions are refreshers of what you are likely to be using (a lot) in this course.

• Q3 is about the problem solving process of designing the environment for AI agent.

• Q4 – Q6 is about getting you to implement a simple ML algorithm from raw data to deployment.

• Start early!
Announcement: CRML Distinguished Lecture

Robots that Learn Grounded Language Through Interactive Dialog

THURSDAY, JAN 16, 2020 | 3:00 PM RECEPTION | 3:30 PM LECTURE | MOSHER ALUMNI HOUSE, ALUMNI HALL | UCSB

Raymond J. Mooney
Professor of Computer Science, University of Texas at Austin

Abstract
In order to develop an office/home robot that learns to accept natural language commands, we have developed methods that learn from natural dialog with ordinary users rather than from manually labeled data. By engaging users in dialog, the system learns a semantic parser, an effective dialog management policy, and a grounded semantic lexicon that connects words to multi-modal (visual, auditory and haptic) perception. In addition to learning from clarification dialogs when understanding user commands, it also engages people in interactive games such as "I Spy." We have tested our approach on both simulated robots using on-line crowdsourced users on the web as well as with people interacting with real robots in our lab. Experimental results demonstrate our methods produce more successful, shorter dialogs over time and learn to accurately identify objects from natural language descriptions using multi-modal perception.

Biography
Raymond J. Mooney is a Professor in the Department of Computer Science at the University of Texas at Austin. He received his Ph.D. in 1988 from the University of Illinois at Urbana-Champaign. He is an author of over 170 published research papers, primarily in the areas of machine learning and natural language processing. He was the President of the International Machine Learning Society from 2008-2011, program co-chair for AAAI 2006, general chair for HLT-EMNLP 2005, and co-chair for ICML 1990. He is a Fellow of AAAI, ACM, and ACL and the recipient of the Classic Paper award from AAAI-19 and best paper awards from AAAI-96, KDD-04, ICML-05 and ACL-07.
Plan for the next four lectures

• Today: ML Overview / Supervised Learning

• Jan 16: Supervised learning / Continuous optimization

• Jan 21: Probabilistic Graphical Models

• Jan 23: Probabilistic reasoning / inference with PGM
Different Types of Machine Learning

• Supervised Learning Spam Filter.

• Unsupervised Learning Topics of a body of texts

• Reinforcement Learning Atari Games. Serve Ads.

• Structured Prediction Machine translation.

Bandits and reinforcement learning after the midterm.
Supervised learning
Unsupervised Learning

<table>
<thead>
<tr>
<th>“Arts”</th>
<th>“Budgets”</th>
<th>“Children”</th>
<th>“Education”</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW</td>
<td>MILLION</td>
<td>CHILDREN</td>
<td>SCHOOL</td>
</tr>
<tr>
<td>FILM</td>
<td>TAX</td>
<td>WOMEN</td>
<td>STUDENTS</td>
</tr>
<tr>
<td>SHOW</td>
<td>PROGRAM</td>
<td>PEOPLE</td>
<td>SCHOOLS</td>
</tr>
<tr>
<td>MUSIC</td>
<td>BUDGET</td>
<td>CHILD</td>
<td>EDUCATION</td>
</tr>
<tr>
<td>MOVIE</td>
<td>BILLION</td>
<td>YEARS</td>
<td>TEACHERS</td>
</tr>
<tr>
<td>PLAY</td>
<td>FEDERAL</td>
<td>FAMILIES</td>
<td>HIGH</td>
</tr>
<tr>
<td>MUSICAL</td>
<td>YEAR</td>
<td>WORK</td>
<td>PUBLIC</td>
</tr>
<tr>
<td>BEST</td>
<td>SPENDING</td>
<td>PARENTS</td>
<td>TEACHER</td>
</tr>
<tr>
<td>ACTOR</td>
<td>NEW</td>
<td>SAYS</td>
<td>BENNETT</td>
</tr>
<tr>
<td>FIRST</td>
<td>STATE</td>
<td>FAMILY</td>
<td>MANIGAT</td>
</tr>
<tr>
<td>YORK</td>
<td>PLAN</td>
<td>WELFARE</td>
<td>NAMPHY</td>
</tr>
<tr>
<td>OPERA</td>
<td>MONEY</td>
<td>MEN</td>
<td>STATE</td>
</tr>
<tr>
<td>THEATER</td>
<td>PROGRAMS</td>
<td>PERCENT</td>
<td>PRESIDENT</td>
</tr>
<tr>
<td>ACTRESS</td>
<td>GOVERNMENT</td>
<td>CARE</td>
<td>ELEMENTARY</td>
</tr>
<tr>
<td>LOVE</td>
<td>CONGRESS</td>
<td>LIFE</td>
<td>HAITI</td>
</tr>
</tbody>
</table>

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive $400,000 each. The Juilliard School, where music and the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000 donation, too.
Semi-supervised Learning
Reinforcement learning

Recommendations

buy or not buy
The focus of today’s lecture is “Supervised Learning”

• Actually, just “binary classification”.

• Prototypical Example: Spam filtering
 – Design an “agent” to look at my email
 – And predict whether it is “Spam” or “Ham”

Illustration extracted from [here]
Example of SPAM emails

MICROWORLD CORPORATION... December 20, 2019 at 2:38 AM
CLAIMS.
To: undisclosed-recipients;;
Reply-To: microworld219@gmail.com

MICROWORLD CORPORATIONS: CUSTOMER SERVICE:
FRIEDRICHSTRAGE 10, BERLIN ALEMANY
REFERENCE NUMBER: MBB-009-D54-DE
BATCH NUMBER: MGC-2019- SM-009
TICKET NUMBERS: 2,6,13,21,26,32

OFFICIAL WINNING NOTIFICATION.
We are pleased to inform you of the released results of Microworld Promotion...
This is a promotional program organized by Microworld Corporations, in conjunction with the Foundation for the promotion of software products, and use of email addresses. Held on Thursday 19th, December 2019, in Berlin, Alemanha.
Your email address won a cash award of Four hundred and eighty eight thousand two hundred and fifty euros (488,250.00 Euros).
Contact Our Foreign Transfer Manager for claims with your winning details and your contact information.
Mrs. Helena Bosch.
Email: micropromo19@yahoo.com
Congratulations!!
Sincerely,
Rosa Van Beek.

MICROWORLD CORPORATION... January 1, 2020 at 10:35 PM
Email ADMIN
To: Yu-Xiang Wang,
Reply-To: Email ADMIN

Email ADMIN
To: yuxiangw@cs.ucsb.edu

Dear yuxiangw@cs.ucsb.edu,

Your email has used up the storage limit of 99.9 gigabytes as defined by your Administrator. You will be blocked from sending and receiving messages if not revalidated within 48hrs.
Kindly click on your email below for quick re-validation and additional storage will be updated automatically.

yuxiangw@cs.ucsb.edu

Regards,
E-mail Support 2020.
Example of another SPAM email

MARK ZUCKERBERG
WINNING AMOUNT

Reply-To: MARK ZUCKERBERG

WINNING AMOUNT

My name is Mark Zuckerberg, a philanthropist, the founder and CEO of the social-networking website Facebook, as well as one of the world's youngest billionaires and Chairman of the Mark Zuckerberg Charitable Foundation, one of the largest private foundations in the world. I believe strongly in 'giving while living.' I had one idea that never changed in my mind - that you should use your wealth to help people. I have decided to secretly give $1,500,000.00 to randomly selected individuals worldwide. On receipt of this email, you should count yourself as the lucky individual. Your email address was chosen online while searching at random. Kindly get back to me at your earliest convenience, so I know your email address is valid. (mzuckerberg2444@gmail.com) Email me to visit the web page to know more about me: https://en.wikipedia.org/wiki/Mark_Zuckerberg/ or you can google me (Mark Zuckerberg).

Regards,
MARK ZUCKERBERG
Example of a HAM (non-spam) email

Dear Professor Foo,

I am a student in your machine learning class.

I have a question about the second term project and I was not able to find the answer on the syllabus. Should our project be only about the topics listed on the second part of the syllabus, or can I incorporate topics from the whole course, as long as it fits with the subject of the class?

I look forward to hearing from you.
Best regards,
Bar

Quoted from [Here].
Modelling-Inference-Learning paradigm

Modeling
- Feature engineering
- Specify a family of classifiers

Inference
Deployment to email client

Learning
Learning the best performing classifier
What are the features that we can use to describe an email (3 min discussions)

• What are characteristics of spam and ham emails?

• What are the information that we can extract from text, and hyper-texts to describe an email?

• What are typical characteristic of a spam email?
Possible features

• Number of special characters: $, %
• Mentioning of: Award, cash, free
•Greetings: generic, or specific
• Bad grammars and misspelled words: e.g. m0ney, click here.
• Excessive excitement: Many “!”,”!!!”, “?!”, words in CAPITAL LETTERS.

• Whether the senders on the contact list
• Length of an email
• Whether the receiver has responded to sender before
Example of a feature vector of dimension 4

Contains hyperlinks

Proportion of misspelled words

Whether the contact list

Length of the message

Step 1 in Modelling Feature extractor:
Converting the object of interest to a vector of numerical values.

Contains hyperlinks	Proportion of misspelled words
1 | 0.0375
0 | 80

Whether the contact list	Length of the message

Email ADMIN

January 1, 2020 at 10:35 PM

To: Yu-Xiang Wang,
Reply-To: Email ADMIN

Dear yuxiangw@cs.ucsb.edu,

Your email has used up the storage limit of 99.9 gigabytes as defined by your Administrator. You will be blocked from sending and receiving messages if not re-validated within 48hrs.

Kindly click on your email below for quick re-validation and additional storage will be updated automatically

yuxiangw@cs.ucsb.edu

Regards,
E-mail Support 2020.
Mathematically defining a classifier

- Feature space: \(\mathcal{X} = \mathbb{R}^d \)
- Label space: \(\mathcal{Y} = \{0, 1\} = \{\text{non-spam, spam}\} \)
- A classifier (hypothesis): \(h : \mathcal{X} \rightarrow \mathcal{Y} \)
How do we make use of this feature vector? What is a reasonable “classifier” based on this feature representation?

<table>
<thead>
<tr>
<th>Contains hyperlinks</th>
<th>Proportion of misspelled words</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0375</td>
</tr>
<tr>
<td>0</td>
<td>80</td>
</tr>
</tbody>
</table>

Whether the contact list | Length of the message

- Feature space: $\{0, 1\} \times \{0, 1\} \times \mathbb{R} \times \mathbb{N}$
- Label space: $\mathcal{Y} = \{0, 1\} = \{\text{non-spam, spam}\}$

- **How are we going to use these features as a human?**
 - (3 min discussion)
Specifying a family of classifiers --- a “hypothesis class”

• Hypothesis class
 – A family of classifiers: \mathcal{H}
 – Also known as “concept classes”, “models”, “decision rule book”
 – “Neural networks” and “Support Vector Machines” are hypothesis classes.
 – Typically we want this family to be large and flexible.

• The task of machine learning:
 – A selection problem to find a

 $$ h \in \mathcal{H} $$

 that “works well” on this problem.
Decision trees

- **Question**: What are the “free parameters” if we are to learn such a decision tree? Using data?
Learning a decision tree

• Free parameters:
 – Which feature(s) to use when branching branch?
 – How to branch? Thresholding? Free threshold?
 – Which label to assign at leaf nodes?

• Hyperparameters:
 – Max height of a decision tree?
 – Number of parameters the tree can use in each

• Question: Consider a problem with 4 binary features.
 – How many decision trees of 3 layers are there? If each decision uses only one feature? (you may repeat features)
 – How many possible feature vectors are there?
 – How many classifiers are there (without restrictions)?
Example: Linear classifiers

- Score(x) = w_0 + w_1 \cdot 1(\text{hyperlinks}) + w_2 \cdot 1(\text{contact list}) + w_3 \cdot \text{misspelling} + w_4 \cdot \text{length}

- A linear classifier: h(x) = 1 if Score(x) > 0 and 0 otherwise.

- Question: What are the “free-parameters” in a linear classifier?
 - If we redefine \(\mathcal{Y} = \{-1, 1\} \)
 - A compact representation:

 \[
 h(x) = \text{sign}(w^T[1; x])
 \]
Geometric view: Linear classifier are “half-spaces”!

\[\{ x | w_0 + w_1 * x_1 + w_2 * x_2 + w_3 * x_3 + w_4 * x_4 > 0 \} \]

The set of all ”emails” that will be classified as “Spams”.

- Non-spam
- Spam

Length of the message

Proportion of misspelled words
Learning linear classifiers

- Training data:

\[(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}\]

- In the above example, there is a clean cut boundary that distinguishes “spams” from “non-spams”.
 - “Linearly separable” problem
 - Learning linear classifier: Finding vector \(w\) that is consistent with the observed training data.
Example: Linearly non-separable cases

Proportion of misspelled words

Length of the message

Non-spam

spam
How do we learn a linear classifier in a non-linearly separable case?

• Training data:

\[(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}\]

• Solving the following optimization problem:

\[
\min_{w \in \mathbb{R}^d} \text{Error}(w) = \frac{1}{n} \sum_{i=1}^{n} 1(h_w(x_i) \neq y_i)
\]

• Learning: Find the linear classifier that makes the smallest number of mistakes on the training data.
What happens if the linear classifier with the smallest number of mistakes still makes a mistake 49% of the time?

Case 1:

There is no information about the label in the features. No classifiers are able to do well.

Case 2:

There are some nonlinear classifiers that work. But no linear classifiers will do better than chance.
Going to higher dimensions? Maybe we can also allow non-linear decision boundaries?

- Non-spam
- spam

- Proportion of misspelled words
- Length of the message
Example: Feature transformation.

What we can do:

\[(\tilde{x}_1, \tilde{x}_2) = \left(\sqrt{x_1^2 + x_2^2}, \arctan(x_2/x_1) \right)\]

In the redefined space, the two classes are now linearly separable.
Nonparametric classifiers

• Increasing the complexity of the classifier as we get more data
• For example:
 – We can use the entire training dataset as “free parameters” of the classifier.
 – k-Nearest Neighbor
 – Kernel methods (lifting to infinite dimensional space)
 – Neural networks (design a model for a fixed data size)
• (More details in the textbook: AIMA, ESL)

Question: What is the classification error of 1-NN classifiers?
We can make the classifiers arbitrarily accurate... with 1-NN classifier; or with bigger and bigger neural networks.

• Even if the data look like:

• What went wrong? Answer: Accurate only on the training data.
The problem of Overfitting

The green line represents an overfitted model. While the green line best follows the training data, it is too dependent on that data and it is likely to have a higher error rate on new unseen data.
The goal of machine learning is not to obtain 0-training error, but rather to achieve small error rates on **new data points** (that are not used for training.)

- Test Error < Training Error + Generalization Error

\[
\text{Err}(h) := \mathbb{E}[\mathbf{1}(h(x) \neq y)]
\]

\[
\text{\widehat{Err}}(h) := \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}(h(x_i) \neq y_i)
\]

\[
\text{Gen}(\mathcal{H}) := \sup_{h \in \mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}(h(x_i) \neq y_i) - \mathbb{E}[\mathbf{1}(h(x) \neq y)] \right|
\]

(** some text uses “generalization error” as a synonym as “test error”, which has created much confusion. The above is the definition we adopt.**)

(More fun about this in Homework 1)
Case study: Biotech startup (3 min discussion)

• Problem (true story, according to Alex Smola)
 – Biotech startup wants to detect prostate cancer
 – Easy to get blood samples from sick patients
 – Hard to get blood samples from healthy ones.

• Solution?
 – Get blood samples from male university students
 – Use them as healthy reference.
 – Classifier gets 100% accuracy.

• What is wrong?
The problem of distribution shift

Training data

Test data received during:
Prediction / inference / Deployment

** Machine learning is only “guaranteed to work” when the training data are drawn i.i.d. from the same distribution as the new data that we will receive in the “inference” phase.
“Adversarial Examples” are consequences of distribution-shift

“panda” + .007 × noise = “gibbon”

57.7% confidence
99.3% confidence

(Goodfellow et al., 2015)
Empirically measuring the test error by splitting the data into: Training, Test, and Validation Sets

Validation set is used for model-selection:
- choosing decision tree vs. linear classifier
- Select features, tune hyperparameters

Test set is used only once to report the final results.

Read more in Section 18.4 in the AIMA textbook.
Importance of Random Data Shuffling

data shall be randomly shuffled
Summary of today’s lecture

• Machine learning overview

• Supervised learning: Spam filtering as an example
 – Features, feature extraction
 – Models, hypothesis class
 – Choosing an appropriate hypothesis class
 – Overfitting and generalization

• Caveat:
 – Prevent overfitting
 – watch out for distribution-shift
On Thursday

• How to learn a classifier:
 – Algorithms to solve the optimization problem in machine learning

• Continuous optimization

• Two modeling principles: Discriminative vs Generative

Don’t forget to submit the feedback sheets! Come to office hours!