Stochastic Subgradient Methods

Yu-Xiang Wang
CS292A

(Based on Ryan Tibshirani’s 10-725)
Last time: proximal map, Moreau envelope, interpretations of proximal algorithms

1. Properties of prox_f and M_f.
 - Moreau decomposition: $\text{prox}_f + \text{prox}_{f^*} = I$.
 - Gradient: $\nabla M_{t,f}(x) = \frac{x - \text{prox}_{t,f}(x)}{t}$.

2. Two interpretations of the proximal point algorithm for minimizing f
 - Fixed point iterations: $x^{k+1} = (I + t\partial f)^{-1}x^k$.
 - Gradient Descent on Moreau Envelope:
 $x^{k+1} = x^k - t\nabla M_f(x^k)$.

3. Two interpretation of the proximal gradient algorithm $f + g$.
 - Majorization-minimization.
 - Gradient Descent on Moreau Envelope of a locally linearized objective,
 - Fixed Point iterations
Outline

Today:

• Stochastic subgradient descent
• Convergence rates
• Mini-batches
• Early stopping
Stochastic gradient descent

Consider minimizing an average of functions

$$\min_x \frac{1}{m} \sum_{i=1}^m f_i(x)$$

As \(\nabla \sum_{i=1}^m f_i(x) = \sum_{i=1}^m \nabla f_i(x)\), gradient descent would repeat:

$$x^{(k)} = x^{(k-1)} - t_k \cdot \frac{1}{m} \sum_{i=1}^m \nabla f_i(x^{(k-1)}), \quad k = 1, 2, 3, \ldots$$

In comparison, stochastic gradient descent or SGD (or incremental gradient method) repeats:

$$x^{(k)} = x^{(k-1)} - t_k \cdot \nabla f_{i_k}(x^{(k-1)}), \quad k = 1, 2, 3, \ldots$$

where \(i_k \in \{1, \ldots, m\}\) is some chosen index at iteration \(k\).

(Robbins and Monro, 1951, Annals of Mathematical Statistics)
Two rules for choosing index i_k at iteration k:

- **Randomized rule**: choose $i_k \in \{1, \ldots, m\}$ uniformly at random
- **Cyclic rule**: choose $i_k = 1, 2, \ldots, m, 1, 2, \ldots, m, \ldots$

Randomized rule is more common in practice. For randomized rule, note that

$$\mathbb{E}[\nabla f_{i_k}(x)] = \nabla f(x)$$

so we can view SGD as using an unbiased estimate of the gradient at each step.

Main appeal of SGD:

- Iteration cost is independent of m (number of functions)
- Can also be a big savings in terms of memory usage
Example: stochastic logistic regression

Given \((x_i, y_i) \in \mathbb{R}^p \times \{0, 1\}, i = 1, \ldots, n\), recall logistic regression:

\[
\min_{\beta} f(\beta) = \frac{1}{n} \sum_{i=1}^{n} \left(-y_i x_i^T \beta + \log(1 + \exp(x_i^T \beta)) \right)
\]

Gradient computation \(\nabla f(\beta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - p_i(\beta)) x_i\) is doable when \(n\) is moderate, but not when \(n\) is huge.

Full gradient (also called batch) versus stochastic gradient:

- One batch update costs \(O(np)\)
- One stochastic update costs \(O(p)\)

Clearly, e.g., 10K stochastic steps are much more affordable.
Small example with $n = 10$, $p = 2$ to show the “classic picture” for batch versus stochastic methods:

Blue: batch steps, $O(np)$

Red: stochastic steps, $O(p)$

Rule of thumb for stochastic methods:

- generally thrive far from optimum
- generally struggle close to optimum
Step sizes

Standard in SGD is to use diminishing step sizes, e.g., $t_k = 1/k$, for $k = 1, 2, 3, \ldots$

Why not fixed step sizes? Here’s some intuition. Suppose we take cyclic rule for simplicity. Set $t_k = t$ for m updates in a row, we get:

$$x^{(k+m)} = x^{(k)} - t \sum_{i=1}^{m} \nabla f_i(x^{(k+i-1)})$$

Meanwhile, full gradient with step size t would give:

$$x^{(k+1)} = x^{(k)} - t \sum_{i=1}^{m} \nabla f_i(x^{(k)})$$

The difference here: $t \sum_{i=1}^{m} [\nabla f_i(x^{(k+i-1)}) - \nabla f_i(x^{(k)})]$, and if we hold t constant, this difference will not generally be going to zero
Convergence rates

Recall: for convex f, gradient descent with diminishing step sizes satisfies
\[f(x^{(k)}) - f^* = O\left(1/\sqrt{k}\right) \]

When f is differentiable with Lipschitz gradient, we get for suitable fixed step sizes
\[f(x^{(k)}) - f^* = O\left(1/k\right) \]

What about SGD? For convex f, SGD with diminishing step sizes satisfies\(^1\)
\[\mathbb{E}[f(x^{(k)})] - f^* = O\left(\log(k)/\sqrt{k}\right) \]

Unfortunately this almost does not improve\(^2\) when we further assume f has Lipschitz gradient.

\(^1\)E.g., Shamir and Zhang, ICML’2012.
\(^2\)We may improve a $\log k$ factor when assuming smoothness. But there are algorithms that is not the last iterate of SGD that does not need the $\log k$ factor in the first place even without smoothness.
Even worse is the following discrepancy!

When f is strongly convex and has a Lipschitz gradient, gradient descent satisfies

$$f(x^{(k)}) - f^* = O(c^k)$$

where $c < 1$. But under same conditions, SGD gives us3

$$\mathbb{E}[f(x^{(k)})] - f^* = O(\log k/k)$$

So stochastic methods do not enjoy the linear convergence rate of gradient descent under strong convexity.

What can we do to improve SGD?

3E.g., Shamir and Zhang, ICML’2012.
Mini-batches

Also common is mini-batch stochastic gradient descent, where we choose a random subset $I_k \subseteq \{1, \ldots m\}$, of size $|I_k| = b \ll m$, and repeat:

$$x^{(k)} = x^{(k-1)} - t_k \cdot \frac{1}{b} \sum_{i \in I_k} \nabla f_i(x^{(k-1)}), \quad k = 1, 2, 3, \ldots$$

Again, we are approximating full gradient by an unbiased estimate:

$$\mathbb{E}\left[\frac{1}{b} \sum_{i \in I_k} \nabla f_i(x) \right] = \nabla f(x)$$

Using mini-batches reduces the variance of our gradient estimate by a factor $1/b$, but is also b times more expensive.
Back to logistic regression, let’s now consider a regularized version:

$$\min_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \left(- y_i x_i^T \beta + \log(1 + e^{x_i^T \beta}) \right) + \frac{\lambda}{2} \| \beta \|_2^2$$

Write the criterion as

$$f(\beta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\beta), \quad f_i(\beta) = -y_i x_i^T \beta + \log(1 + e^{x_i^T \beta}) + \frac{\lambda}{2} \| \beta \|_2^2$$

Full gradient computation is $\nabla f(\beta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - p_i(\beta)) x_i + \lambda \beta$.

Comparison between methods:

- One batch update costs $O(np)$
- One mini-batch update costs $O(bp)$
- One stochastic update costs $O(p)$
Example with $n = 10,000$, $p = 20$, all methods use fixed step sizes:
What’s happening? Now let’s parametrize by flops:

![Graph showing criterion values for different flop counts and parameter settings.](image-url)
Finally, looking at suboptimality gap (on log scale):

![Plot showing iterations vs. criterion gap](image)

- **Full**
- **Stochastic**
- **Mini-batch, b=10**
- **Mini-batch, b=100**
Convergence rate proofs

Algorithm: \(x^{k+1} = x^k - t_k g^k \).

Assumptions: (1) Unbiased subgradient: \(\mathbb{E}[g^k|x^k] \in \partial f(x^k) \).
(2) Bounded variance: \(\mathbb{E}[\|g^k - \mathbb{E}[g^k|x^k]\|^2|x^k] \leq \sigma^2 \)

- Convex and \(G \)-Lipschitz (Proof this!)

\[
\min_{i=1,\ldots,k} \mathbb{E} \left[f(x^i) \right] - f^* \leq \frac{\|x^1 - x^*\|^2 + (G^2 + \sigma^2) \sum_{i=1}^{k} t_i^2}{2 \sum_{i=1}^{k} t_i}
\]

- Nonconvex but \(L \)-smooth with \(t_i = 1/({\sqrt{kL}}) \) (Proof this!)

\[
\mathbb{E} \left[\frac{1}{k} \sum_{i=1}^{k} \|\nabla f(x^i)\|^2 \right] \leq \frac{2(f(x^1) - f^*)L + \sigma^2}{\sqrt{k}}
\]

- \(m \)-Strongly convex and \(G \)-Lipschitz: \(O(G^2 \log(T)/mT) \) rate.

we will prove this when we talk about online learning!
Averaging Stochastic (Sub)gradient Descent

One drawback of SGD: the guarantees are for
\[\min_{i=1,...,k} \mathbb{E} \left[f(x^i) \right]. \]
Idea: Let’s output the online averages of the iterates.

\[\bar{x}^k = \frac{k-1}{k} \bar{x}^{k-1} + \frac{1}{k} x^k \] (Polyak-Rupert Averaging)\(^4\)

Convergence bound:

\[\mathbb{E}[f(\bar{x}^k)] - f^* \leq \begin{cases} O(1/\sqrt{k}) & \text{if convex (We just proved that!)}^5 \\ O(\log k/k) & \text{if strongly convex} \end{cases} \]

Can the \(\log k \) be removed? No. Use \(\alpha \)-Suffix averaging. (Rakhlin, Shamir, Sridharan, ICML’2012)

But that doesn’t have an online implementation. Solution by (Shamir and Zhang, ICML’2013) : \[\bar{x}_\eta^k = (1 - \frac{1+\eta}{k+\eta})\bar{x}_{\eta}^{k-1} + \frac{1+\eta}{k+\eta} x^k. \]

\(^5\)Using ideas from Nemirovski et al. (2009).
ASGD Comparison in Practice

Fig. 2. Comparison of the test set performance of SGD, SGDQNN, and ASGD for a linear squared hinge SVM trained on the ALPHA task of the 2008 Pascal Large Scale Learning Challenge. ASGD nearly reaches the optimal expected risk after a single pass.

(Figure from Leon Bottou, 2010)
Stochastic Programming

Stochastic programming:

$$\min_{x} \mathbb{E}f(x)$$

where the expectation is taken over f. f is a random function of x. More generally,

$$\min_{x} \mathbb{E}f(x), \text{ Subject to } \mathbb{E}g(x) \leq 0.$$

Chance constrained stochastic programming:

$$\min_{x} \mathbb{E}f(x) \text{ Subject to } \mathbb{P}(g_i(x) \leq 0) \geq \eta.$$
Stochastic Programming: Examples

1. Machine Learning / Stochastic Convex Optimization

\[
\text{minimize } \mathbb{E}_{(x,y) \sim D} [\ell(h, (x, y))]
\]

where \(\ell \) is a loss function, \(\mathcal{H} \) is a hypothesis class (a class of classifiers), \(x, y \) are feature and label pairs.

2. Portfolio Optimization with Value At Risk (VaR) constraint.

\[
\max_{x: x \geq 0, \sum_i x_i = \text{Budget}} \mathbb{E} \left[\sum_i R_i x_i \right],
\]

Subject to \(\mathbb{P} \left(\sum_i R_i x_i \leq -$1 Million \right) \leq 0.05 \)

where \(R_i \) is the return of Stock \(i \), \(x_i \) are the allocated budget in the portfolio.
Optimality Guarantees of SGD

Under the gradient oracle: $\mathbb{E}[g_i] = \nabla \mathbb{E} f(x)$, let us minimize the following stochastic objective over $\hat{\theta} \in \mathbb{R}$

$$\mathbb{E}_{X \sim \mathcal{N}(\mu, \sigma^2)} [(\theta - X)^2] = (\theta - \mu)^2 + \sigma^2.$$

This function is 1-strongly convex in $\hat{\theta}$. The observation is $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$, equivalent to observing a stochastic gradient $\theta - X_i$, which approximates the gradient $\theta - \mu$.

Theorem: Any algorithm $\hat{\mu}$ that takes random variables X_1, \ldots, X_n as an input obeys that:

$$\max_{\theta \in \mathbb{R}} \mathbb{E}[(\hat{\mu} - \mu)^2] \geq \frac{\sigma^2}{n}$$

If we can solve the stochastic programming problems, then we can solve the estimation problem beyond its information-theoretic limit.
Similarly, consider

$$\min_{\theta \in [-1,1]} \mathbb{E}[X\theta] = p\theta - (1 - p)\theta = (-1 + 2p)\theta$$

where \(\mathbb{P}(X = 1) = p \) and \(\mathbb{P}(X = -1) = 1 - p \).

This is a convex and 1-Lipschitz objective. Observing samples \(X_1, ..., X_n \) from that distribution can be considered stochastic gradients.

Statistical lower bound \(1/\sqrt{n} \) on estimating \(p \) suggest that we cannot distinguish between the world when \(p = 0.5 - 1/\sqrt{n} \) and the world when \(p = 0.5 + 1/\sqrt{n} \), which implies a lower bound of \(1/\sqrt{k} \) for the convergence rate of SGD for non-strongly convex stochastic objective.
End of the story?

Short story:

- SGD can be **super effective** in terms of iteration cost, memory
- But SGD is **slow to converge**, can’t adapt to strong convexity
- And mini-batches seem to be a wash in terms of flops (though they can still be useful in practice)
- Averaging trick helps to remove $\log k$ terms in cases without smoothness.
- Lower bound from stochastic programming that says $1/\sqrt{k}$ is optimal in general and $1/k$ for strongly convex.

Is this the end of the story for SGD?

For a while, the answer was believed to be yes. But this was for a more general stochastic optimization problem, where

$$f(x) = \int F(x, \xi) \, dP(\xi).$$

New wave of “variance reduction” work shows we can modify SGD to converge much faster for **finite sums** (more later?)
SGD in large-scale ML

SGD has really taken off in large-scale machine learning

- In many ML problems we don’t care about optimizing to high accuracy, it doesn’t pay off in terms of statistical performance
- Thus (in contrast to what classic theory says) fixed step sizes are commonly used in ML applications
- One trick is to experiment with step sizes using small fraction of training before running SGD on full data set ... many other heuristics are common
- Many variants provide better practical stability, convergence: momentum, acceleration, averaging, coordinate-adapted step sizes, variance reduction ...
- See AdaGrad, Adam, AdaMax, SVRG, SAG, SAGA ... (more later?)

\(^6\)E.g., Bottou (2012), “Stochastic gradient descent tricks”
Early stopping

Suppose p is large and we wanted to fit (say) a logistic regression model to data $(x_i, y_i) \in \mathbb{R}^p \times \{0, 1\}$, $i = 1, \ldots n$

We could solve (say) ℓ_2 regularized logistic regression:

$$\min_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \left(- y_i x_i^T \beta + \log(1 + e^{x_i^T \beta}) \right) \text{ subject to } \|\beta\|_2 \leq t$$

We could also run gradient descent on the unregularized problem:

$$\min_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \left(- y_i x_i^T \beta + \log(1 + e^{x_i^T \beta}) \right)$$

and stop early, i.e., terminate gradient descent well-short of the global minimum
Consider the following, for a very small constant step size ϵ:

- Start at $\beta^{(0)} = 0$, solution to regularized problem at $t = 0$
- Perform gradient descent on unregularized criterion

$$
\beta^{(k)} = \beta^{(k-1)} - \epsilon \cdot \frac{1}{n} \sum_{i=1}^{n} (y_i - p_i(\beta^{(k-1)})) x_i, \quad k = 1, 2, 3, \ldots
$$

(we could equally well consider SGD)

- Treat $\beta^{(k)}$ as an approximate solution to regularized problem with $t = \|\beta^{(k)}\|_2$

This is called **early stopping** for gradient descent. Why would we ever do this? It’s both more convenient and potentially much more efficient than using explicit regularization
An intriguing connection

When we solve the ℓ_2 regularized logistic problem for varying t ... solution path looks quite similar to gradient descent path!

Example with $p = 8$, solution and grad descent paths side by side:
Lots left to explore

- Connection holds beyond logistic regression, for arbitrary loss
- In general, the grad descent path will not coincide with the ℓ_2 regularized path (as $\epsilon \to 0$). Though in practice, it seems to give competitive statistical performance
- Can extend early stopping idea to mimick a generic regularizer (beyond ℓ_2)\(^7\)
- There is a lot of literature on early stopping, but it’s still not as well-understood as it should be
- Early stopping is just one instance of implicit or algorithmic regularization ... many others are effective in large-scale ML, they all should be better understood

\(^7\)Tibshirani (2015), “A general framework for fast stagewise algorithms”
References and further reading