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15.1 Recap (MAB)

K actions at every round, T rounds
A sequence of (bounded) rewards r1, r2, . . . , rT ∈ [0, 1]K

Choose losses beforehand: `1, `2, . . . , `T ∈ [0, 1]K

Regret: E
∑T
t=1 `t(at)−min

∑T
t=1 `t(u) →

Replace at by xt, the probability of taking action a:
∑T
t=1 `t(xt)−

∑T
t=1 `t(u)

Apply on regret algorithm in the full info setting.

Xt ∈ A(`1, `2, . . . , `t−1) →
Xt ∈ Ã(`1(a1), `2(a2), . . . , `t−1(at−1))
Reduction approach: regret bound calculated only from A, not Ã. Get a stochastic estimate of `1, . . . , `T
given only the observations.

Idea: stochastic approximation of `t
This is an unbiased estimate provided xt > 0:

ˆ̀
t(i) =

{
`t(i)/xt(i) if i = at

0 otherwise

1. ε-greedy: OGD to {ˆ̀1, ˆ̀
2, . . . , ˆ̀

t−1} ⇒ T
3
4

√
K

2. EXP3 (exponential-weighted algorithm):

A = Hedge (FTRL with entropy regularization) to {ˆ̀1, ˆ̀
2, . . . , ˆ̀

t−1} ⇒
√
TK log(·)
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(Adversarial) Contextual Bandits
Player declares strategy A.
Adversary chooses x1, x2, x3, . . . , xT ∈ Rd. (xt are context vectors)
Adversary chooses `1, `2, . . . , `T ∈ Rd. (Losses are bounded in l∞ norm by 1: ||`i||∞ ≤ 1.)
Player is given H, h ∈ H, h(x)→ a
h : X → A
xi → ai
(Every element in the hypothesis class is an ”expert”.)
Contrast to stochastic contextual bandits: sequence is drawn i.i.d.

EXP4: Exponential Weighting algorithm for Explore-Exp-loit with Experts

estimate l̂t ∈ RK
T [:, :, Lt] ∈ R|H|×K ⇒

√
TK log(|H|)

This can be used for deep learning because there is no assumption that the hypothesis class H is convex (the
only assumption is that the loss function is convex). But the runtime is Θ(|H|) (linear in |H|), so this is not
efficient for large |H|.

Can apply polynomial computation: See the paper ”Taming the Monster”, by Agarwal, Langford [agar-
wal2014].

15.2 OCO with Bandits Feedback

Expert Advice, MAB −→ OCO (how?)

Algorithm 1

procedure ExpertAdvices
Setup: K feedback convex.
Player A.
Adversary chooses f1, . . . , fT : K → R.
for t = 1, 2, . . . , T do

Player plays Xt ∼ A (f(X1), f(X2), . . . , f(Xt−1)).
Player observes and suffers loss ft(Xt).

The regret for the algorithm is

Regret = E

T∑
t=1

ft(Xt)−
T∑
t=1

ft(u), ∀ fixed u.

≤ E
T∑
t=1

< ∇ft(Xt), Xt > −
T∑
t=1

< ∇ft(Xt), v >, ∀ fixed v.
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Algorithm 2 Reduction to Bandit Convex Optimization

1: procedure ReductionBanditCO
2: Input: Convex set K, first order(full info) OCO A.
3: X1 = A(∅).
4: for t = 1, 2, . . . , T do
5: Sample yt ∼ Dt, such that E[yt] = Xt.
6: Play yt, observe ft(yt), generate gt, such that E[gt] = ∇ft(Xt).
7: Xt+1 = A(g1, g2, . . . , gt).

Lemma 15.1 Let u ∈ K fixed, ∀f1, . . . , ft : K → R, and they are differentiable.
Assume RegretT (A) ≤ BA(∇1f(X1),∇2f(X2), . . . ,∇tf(Xt)) in full info.
If in addition, E[gt|X1, f1, X2, f2, . . . , Xt, ft] = ∇ft(Xt), then

RegretAlg1,T ≤ E[BA(g1, . . . , gT ].

Example (SGD):

E[gt] =∇f(Xt)

E[||gt − Egt||22] ≤δ2

E[||gt||22] ≤G2 + δ2

Proof: Let ht(X) = ft(X) + (gt −∇ft(Xt)
TX, we know the following

1. ∇ht(Xt) = ∇ft(Xt) + gt −∇ft(Xt) = gt.

2.

E[ht(X)] =E[ft(X)] + E
[
(gt −∇ft(Xt))

T
X
]

=E[ft(X)] + E
[
E[(gt −∇ft(Xt))

TX|X1, f1, X2, f2, . . . , Xt, ft]
]

=E[ft(X)] + E[0TX]

= E[ft(X)].

3. E[ht(Xt)] = E[ft(Xt)].

By regret bound of A,∀ fixed u ∈ K,

T∑
t=1

ht(Xt)−
T∑
t=1

ht(u) ≤ BA(g1, . . . , gT ).

Take expectation: we apply item 3 on first term, item 2 on the second term, and eventually have

E

T∑
t=1

ft(Xt)− E
T∑
t=1

ft(u) ≤ E[BA(g1, . . . , gT )].
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How do we estimate the gradient without a gradient?

f : R→ R
f ′(x) = lim

δ→0

f(x+δ)−f(x−δ)
2δ

Let

g(x) =

{
f(x+δ)

δ with prob. 1
2

− f(x−δ)
δ with prob. 1

2

E[g(x)] =
1

2

f(x+ δ)

δ
− 1

2

f(x− δ)
δ

=
f(x+ δ)− f(x− δ)

2δ
= f ′(x).

f : Rn → R

Bδ = {x | ||x||2 ≤ δ}, Sδ = {x | ||x||2 = δ}

f̂δ(X) = Ev∼uniform(B1)[f(X + δv)].

Example (linear):

f(X) =< l,X >−→ f̂δ(X) = f(X).

g(X) = f(X + δu).u, u ∼ S1 ∈ Rn.

Lemma 15.2 Eu∼S1 [f(X + δu).u] = δ
n∇f̂δ(X).

Proof: We use Stokes Theorem: ∫
Σ

dµ

dX
=

∮
δΣ

dX.

Which in here we can write

∇
∫
Bδ

f(X + v)dv =

∫
Sδ

f(X + u)
u

||u||
du.

Thus, we have

f̂δ(X) =

∫
Bδ
f(X + v)dv

Vol(Bδ)
Ev∼S [f(x+ δu).u]

=

∫
Sδ
f(X + u) u

||u||du

Vol(Sδ)

=
Vol(Bδ)

Vol(Sδ)

=
δ

n
.
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Algorithm 3

procedure FKM
2: Input K, 0 ∈ K, B1 ⊂ K, ||ft(X)|| ≤ 1, for ∀X ∈ K.

for t = 1, 2, . . . , T do
4: Draw ut ∼ S, yt = Xt + δu.

Play yt, ft(yt), let gt = n
δ ft(yt).ut.

6: Update Xt+1 = πKδ [Xt − ηgt].

Apply full info A to Kδ such that gt = f(X + δu).u and u ∼ Sδ uniformly.

Xt → ∇f̂δ(Xt)

X

Kδ

To prove this we need to:

• Cost K → Kdelta

• Cost ft → ftdelta

• Bound E[||gt||2] with n, δ, ft

• Choose δ and η carefully
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