CS292A Convex Optimization: OCO with Bandits Feedback Spring 2019 Lecture 15: June 4 Lecturer: Yu-Xiang Wang Scribes: Omid Askarisichani, Rachel Redberg

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

15.1 Recap (MAB)

K actions at every round, T rounds A sequence of (bounded) rewards $r_1, r_2, \ldots, r_T \in [0, 1]^K$ Choose losses beforehand: $\ell_1, \ell_2, \ldots, \ell_T \in [0, 1]^K$

Regret: $\mathbf{E} \sum_{t=1}^{T} \ell_t(a_t) - \min \sum_{t=1}^{T} \ell_t(u) \rightarrow$ Replace a_t by x_t , the probability of taking action a: $\sum_{t=1}^{T} \ell_t(x_t) - \sum_{t=1}^{T} \ell_t(u)$

Apply on regret algorithm in the full info setting.

 $X_t \in \mathcal{A}(\ell_1, \ell_2, \dots, \ell_{t-1}) \rightarrow X_t \in \tilde{\mathcal{A}}(\ell_1(a_1), \ell_2(a_2), \dots, \ell_{t-1}(a_{t-1}))$

Reduction approach: regret bound calculated only from A, not \tilde{A} . Get a stochastic estimate of ℓ_1, \ldots, ℓ_T given only the observations.

Idea: stochastic approximation of ℓ_t This is an unbiased estimate provided $x_t > 0$:

$$\hat{\ell}_t(i) = \begin{cases} \ell_t(i)/x_t(i) & \text{if } i = a_t \\ 0 & \text{otherwise} \end{cases}$$

- 1. ϵ -greedy: OGD to $\{\hat{\ell}_1, \hat{\ell}_2, \dots, \hat{\ell}_{t-1}\} \Rightarrow T^{\frac{3}{4}}\sqrt{K}$
- 2. EXP3 (exponential-weighted algorithm): A = Hedge (FTRL with entropy regularization) to $\{\hat{\ell}_1, \hat{\ell}_2, \dots, \hat{\ell}_{t-1}\} \Rightarrow \sqrt{TK \log(\cdot)}$

(Adversarial) Contextual Bandits

Player declares strategy \mathcal{A} . Adversary chooses $x_1, x_2, x_3, \ldots, x_T \in \mathbb{R}^d$. (x_t are context vectors) Adversary chooses $\ell_1, \ell_2, \ldots, \ell_T \in \mathbb{R}^d$. (Losses are bounded in l_∞ norm by 1: $||\ell_i||_\infty \leq 1$.) Player is given $\mathcal{H}, h \in \mathcal{H}, h(x) \to a$ $h: X \to \mathcal{A}$ $x_i \to a_i$ (Every element in the hypothesis class is an "expert".) Contrast to stochastic contextual bandits: sequence is drawn i.i.d.

EXP4: Exponential Weighting algorithm for Explore-Exp-loit with Experts

estimate $\hat{l}_t \in \mathbb{R}^K$

 $T[:,:,L_t] \in \mathbb{R}^{|\mathcal{H}| \times K} \Rightarrow \sqrt{TK \log(|\mathcal{H}|)}$

This can be used for deep learning because there is no assumption that the hypothesis class \mathcal{H} is convex (the only assumption is that the loss function is convex). But the runtime is $\Theta(|\mathcal{H}|)$ (linear in $|\mathcal{H}|$), so this is not efficient for large $|\mathcal{H}|$.

Can apply polynomial computation: See the paper "Taming the Monster", by Agarwal, Langford [agarwal2014].

15.2 OCO with Bandits Feedback

Expert Advice, MAB \longrightarrow OCO (how?)

Algorithm 1
procedure ExpertAdvices
Setup: K feedback convex.
Player A.
Adversary chooses $f_1, \ldots, f_T : K \to \mathbb{R}$.
for $t = 1, 2, \ldots, T$ do
Player plays $X_t \sim A(f(X_1), f(X_2), \dots, f(X_{t-1})).$
Player observes and suffers loss $f_t(X_t)$.

The regret for the algorithm is

$$\begin{aligned} \text{Regret} &= E \sum_{t=1}^{T} f_t(X_t) - \sum_{t=1}^{T} f_t(u), \quad \forall \text{ fixed } u. \\ &\leq E \sum_{t=1}^{T} < \nabla f_t(X_t), X_t > - \sum_{t=1}^{T} < \nabla f_t(X_t), v >, \quad \forall \text{ fixed } v \end{aligned}$$

Algorithm 2 Reduction to Bandit Convex Optimization		
1: procedure ReductionBanditCO		
2: Input: Convex set K , first order(full info) OCO A .		
3: $X_1 = A(\emptyset).$		
4: for $t = 1, 2,, T$ do		
5: Sample $y_t \sim D_t$, such that $E[y_t] = X_t$.		
6: Play y_t , observe $f_t(y_t)$, generate g_t , such that $E[g_t] = \nabla f_t(X_t)$.		
7: $X_{t+1} = A(g_1, g_2, \dots, g_t).$		

Lemma 15.1 Let $u \in K$ fixed, $\forall f_1, \ldots, f_t : K \to \mathbb{R}$, and they are differentiable. Assume $Regret_T(A) \leq B_A(\nabla_1 f(X_1), \nabla_2 f(X_2), \ldots, \nabla_t f(X_t))$ in full info. If in addition, $E[g_t|X_1, f_1, X_2, f_2, \ldots, X_t, f_t] = \nabla f_t(X_t)$, then

$$Regret_{Alq1,T} \leq E[B_A(g_1,\ldots,g_T]].$$

Example (SGD):

$$E[g_t] = \nabla f(X_t)$$

$$E[||g_t - Eg_t||_2^2] \le \delta^2$$

$$E[||g_t||_2^2] \le G^2 + \delta^2$$

Proof: Let $h_t(X) = f_t(X) + (g_t - \nabla f_t(X_t)^T X)$, we know the following

1. $\nabla h_t(X_t) = \nabla f_t(X_t) + g_t - \nabla f_t(X_t) = g_t.$ 2.

$$E[h_t(X)] = E[f_t(X)] + E\left[(g_t - \nabla f_t(X_t))^T X\right]$$

= $E[f_t(X)] + E\left[E[(g_t - \nabla f_t(X_t))^T X | X_1, f_1, X_2, f_2, \dots, X_t, f_t]\right]$
= $E[f_t(X)] + E[0^T X]$
= $E[f_t(X)].$

3. $E[h_t(X_t)] = E[f_t(X_t)].$

By regret bound of A, \forall fixed $u \in K$,

$$\sum_{t=1}^{T} h_t(X_t) - \sum_{t=1}^{T} h_t(u) \le B_A(g_1, \dots, g_T).$$

Take expectation: we apply item 3 on first term, item 2 on the second term, and eventually have

$$E\sum_{t=1}^{T} f_t(X_t) - E\sum_{t=1}^{T} f_t(u) \le E[B_A(g_1, \dots, g_T)].$$

15-3

How do we estimate the gradient without a gradient?

$$\begin{split} f: \mathbb{R} &\to \mathbb{R} \\ f'(x) &= \lim_{\delta \to 0} \frac{f(x+\delta) - f(x-\delta)}{2\delta} \end{split}$$
 Let

$$g(x) = \begin{cases} \frac{f(x+\delta)}{\delta} & \text{with prob. } \frac{1}{2} \\ -\frac{f(x-\delta)}{\delta} & \text{with prob. } \frac{1}{2} \end{cases}$$

$$\mathbf{E}[g(x)] = \frac{1}{2} \frac{f(x+\delta)}{\delta} - \frac{1}{2} \frac{f(x-\delta)}{\delta} = \frac{f(x+\delta) - f(x-\delta)}{2\delta} = f'(x).$$

 $f:\mathbb{R}^n\to\mathbb{R}$

$$B_{\delta} = \{x \mid ||x||_{2} \le \delta\}, \quad S_{\delta} = \{x \mid ||x||_{2} = \delta\}$$

$$\hat{f}_{\delta}(X) = E_{v \sim \text{uniform}(B_1)}[f(X + \delta v)].$$

Example (linear): $f(X) = \langle l, X \rangle \longrightarrow \hat{f}_{\delta}(X) = f(X).$ $g(X) = f(X + \delta u).u, \quad u \sim S_1 \in \mathbb{R}^n.$

Lemma 15.2 $E_{u \sim S_1}[f(X + \delta u).u] = \frac{\delta}{n} \nabla \hat{f}_{\delta}(X).$

Proof: We use Stokes Theorem:

$$\int_{\Sigma} \frac{d\mu}{dX} = \oint_{\delta\Sigma} dX.$$

Which in here we can write

$$\nabla \int_{B_{\delta}} f(X+v) dv = \int_{S_{\delta}} f(X+u) \frac{u}{||u||} du.$$

Thus, we have

$$\hat{f}_{\delta}(X) = \frac{\int_{B_{\delta}} f(X+v) dv}{\operatorname{Vol}(B_{\delta})} E_{v \sim S}[f(x+\delta u).u]$$
$$= \frac{\int_{S_{\delta}} f(X+u) \frac{u}{||u||} du}{\operatorname{Vol}(S_{\delta})}$$
$$= \frac{\operatorname{Vol}(B_{\delta})}{\operatorname{Vol}(S_{\delta})}$$
$$= \frac{\delta}{n}.$$

Algorithm 3	
p	rocedure FKM
2:	Input $K, 0 \in K, B_1 \subset K, f_t(X) \le 1$, for $\forall X \in K$.
	for $t = 1, 2,, T$ do
4:	Draw $u_t \sim S, y_t = X_t + \delta u.$
	Play y_t , $f_t(y_t)$, let $g_t = \frac{n}{\delta} f_t(y_t) . u_t$.
6:	Update $X_{t+1} = \pi_{K_{\delta}} [X_t - \eta g_t].$

Apply full info A to K_{δ} such that $g_t = f(X + \delta u) \cdot u$ and $u \sim S_{\delta}$ uniformly.

To prove this we need to:

- Cost $K \to K_d elta$
- Cost $f_t \to f_{t_delta}$
- Bound $E[||g_t||^2]$ with n, δ, f_t
- Choose δ and η carefully

References

 Agarwal, Alekh, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire. (2014) Taming the monster: A fast and simple algorithm for contextual bandits. In International Conference on Machine Learning:1638–1646.