Lecture 15: June 4

Lecturer: Yu-Xiang Wang
Scribes: Omid Askarisichani, Rachel Redberg

Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

15.1 Recap (MAB)

K actions at every round, T rounds
A sequence of (bounded) rewards $r_{1}, r_{2}, \ldots, r_{T} \in[0,1]^{K}$
Choose losses beforehand: $\ell_{1}, \ell_{2}, \ldots, \ell_{T} \in[0,1]^{K}$
Regret: $\mathbf{E} \sum_{t=1}^{T} \ell_{t}\left(a_{t}\right)-\min \sum_{t=1}^{T} \ell_{t}(u) \rightarrow$
Replace a_{t} by x_{t}, the probability of taking action $a: \sum_{t=1}^{T} \ell_{t}\left(x_{t}\right)-\sum_{t=1}^{T} \ell_{t}(u)$
Apply on regret algorithm in the full info setting.
$X_{t} \in \mathcal{A}\left(\ell_{1}, \ell_{2}, \ldots, \ell_{t-1}\right) \rightarrow$
$X_{t} \in \tilde{\mathcal{A}}\left(\ell_{1}\left(a_{1}\right), \ell_{2}\left(a_{2}\right), \ldots, \ell_{t-1}\left(a_{t-1}\right)\right)$
Reduction approach: regret bound calculated only from A, not \tilde{A}. Get a stochastic estimate of $\ell_{1}, \ldots, \ell_{T}$ given only the observations.

Idea: stochastic approximation of ℓ_{t}
This is an unbiased estimate provided $x_{t}>0$:

$$
\hat{\ell}_{t}(i)= \begin{cases}\ell_{t}(i) / x_{t}(i) & \text { if } i=a_{t} \\ 0 & \text { otherwise }\end{cases}
$$

1. ϵ-greedy: OGD to $\left\{\hat{\ell}_{1}, \hat{\ell}_{2}, \ldots, \hat{\ell}_{t-1}\right\} \Rightarrow T^{\frac{3}{4}} \sqrt{K}$
2. EXP3 (exponential-weighted algorithm):
$\mathrm{A}=$ Hedge (FTRL with entropy regularization) to $\left\{\hat{\ell}_{1}, \hat{\ell}_{2}, \ldots, \hat{\ell}_{t-1}\right\} \Rightarrow \sqrt{T K \log (\cdot)}$

(Adversarial) Contextual Bandits

Adversary chooses $x_{1}, x_{2}, x_{3}, \ldots, x_{T} \in \mathbb{R}^{d}$. (x_{t} are context vectors)
Adversary chooses $\ell_{1}, \ell_{2}, \ldots, \ell_{T} \in \mathbb{R}^{d}$. (Losses are bounded in l_{∞} norm by 1 : $\left\|\ell_{i}\right\|_{\infty} \leq 1$.)
Player is given $\mathcal{H}, h \in \mathcal{H}, h(x) \rightarrow a$
$h: X \rightarrow \mathcal{A}$
$x_{i} \rightarrow a_{i}$
(Every element in the hypothesis class is an "expert".)
Contrast to stochastic contextual bandits: sequence is drawn i.i.d.

EXP4: Exponential Weighting algorithm for Explore-Exp-loit with Experts
estimate $\hat{l}_{t} \in \mathbb{R}^{K}$
$T\left[:,:, L_{t}\right] \in \mathbb{R}^{|\mathcal{H}| \times K} \Rightarrow \sqrt{T K \log (|\mathcal{H}|)}$
This can be used for deep learning because there is no assumption that the hypothesis class \mathcal{H} is convex (the only assumption is that the loss function is convex). But the runtime is $\Theta(|\mathcal{H}|)$ (linear in $|\mathcal{H}|$), so this is not efficient for large $|\mathcal{H}|$.

Can apply polynomial computation: See the paper "Taming the Monster", by Agarwal, Langford [agarwal2014].

15.2 OCO with Bandits Feedback

Expert Advice, MAB $\longrightarrow \mathrm{OCO}$ (how?)

```
Algorithm 1
    procedure EXPERTADVICES
        Setup: \(K\) feedback convex.
        Player \(A\).
        Adversary chooses \(f_{1}, \ldots, f_{T}: K \rightarrow \mathbb{R}\).
        for \(t=1,2, \ldots, T\) do
            Player plays \(X_{t} \sim A\left(f\left(X_{1}\right), f\left(X_{2}\right), \ldots, f\left(X_{t-1}\right)\right)\).
            Player observes and suffers loss \(f_{t}\left(X_{t}\right)\).
```

The regret for the algorithm is

$$
\begin{aligned}
\text { Regret } & =E \sum_{t=1}^{T} f_{t}\left(X_{t}\right)-\sum_{t=1}^{T} f_{t}(u), \quad \forall \text { fixed } u \\
& \leq E \sum_{t=1}^{T}<\nabla f_{t}\left(X_{t}\right), X_{t}>-\sum_{t=1}^{T}<\nabla f_{t}\left(X_{t}\right), v>, \quad \forall \text { fixed } v
\end{aligned}
$$

```
Algorithm 2 Reduction to Bandit Convex Optimization
    procedure REDUCTIONBANDITCO
        Input: Convex set \(K\), first order(full info) OCO \(A\).
        \(X_{1}=A(\emptyset)\).
        for \(t=1,2, \ldots, T\) do
            Sample \(y_{t} \sim D_{t}\), such that \(E\left[y_{t}\right]=X_{t}\).
            Play \(y_{t}\), observe \(f_{t}\left(y_{t}\right)\), generate \(g_{t}\), such that \(E\left[g_{t}\right]=\nabla f_{t}\left(X_{t}\right)\).
            \(X_{t+1}=A\left(g_{1}, g_{2}, \ldots, g_{t}\right)\).
```

Lemma 15.1 Let $u \in K$ fixed, $\forall f_{1}, \ldots, f_{t}: K \rightarrow \mathbb{R}$, and they are differentiable.
Assume Regret ${ }_{T}(A) \leq B_{A}\left(\nabla_{1} f\left(X_{1}\right), \nabla_{2} f\left(X_{2}\right), \ldots, \nabla_{t} f\left(X_{t}\right)\right)$ in full info. If in addition, $E\left[g_{t} \mid X_{1}, f_{1}, X_{2}, f_{2}, \ldots, X_{t}, f_{t}\right]=\nabla f_{t}\left(X_{t}\right)$, then

$$
\text { Regret }_{A l g 1, T} \leq E\left[B_{A}\left(g_{1}, \ldots, g_{T}\right]\right.
$$

Example (SGD):

$$
\begin{aligned}
E\left[g_{t}\right] & =\nabla f\left(X_{t}\right) \\
E\left[\left\|g_{t}-E g_{t}\right\|_{2}^{2}\right] & \leq \delta^{2} \\
E\left[\left\|g_{t}\right\|_{2}^{2}\right] & \leq G^{2}+\delta^{2}
\end{aligned}
$$

Proof: Let $h_{t}(X)=f_{t}(X)+\left(g_{t}-\nabla f_{t}\left(X_{t}\right)^{T} X\right.$, we know the following

1. $\nabla h_{t}\left(X_{t}\right)=\nabla f_{t}\left(X_{t}\right)+g_{t}-\nabla f_{t}\left(X_{t}\right)=g_{t}$.
2.

$$
\begin{aligned}
E\left[h_{t}(X)\right]= & E\left[f_{t}(X)\right]+E\left[\left(g_{t}-\nabla f_{t}\left(X_{t}\right)\right)^{T} X\right] \\
= & E\left[f_{t}(X)\right]+E\left[E\left[\left(g_{t}-\nabla f_{t}\left(X_{t}\right)\right)^{T} X \mid X_{1}, f_{1}, X_{2}, f_{2}, \ldots, X_{t}, f_{t}\right]\right] \\
= & E\left[f_{t}(X)\right]+E\left[0^{T} X\right] \\
& =E\left[f_{t}(X)\right]
\end{aligned}
$$

3. $E\left[h_{t}\left(X_{t}\right)\right]=E\left[f_{t}\left(X_{t}\right)\right]$.

By regret bound of A, \forall fixed $u \in K$,

$$
\sum_{t=1}^{T} h_{t}\left(X_{t}\right)-\sum_{t=1}^{T} h_{t}(u) \leq B_{A}\left(g_{1}, \ldots, g_{T}\right)
$$

Take expectation: we apply item 3 on first term, item 2 on the second term, and eventually have

$$
E \sum_{t=1}^{T} f_{t}\left(X_{t}\right)-E \sum_{t=1}^{T} f_{t}(u) \leq E\left[B_{A}\left(g_{1}, \ldots, g_{T}\right)\right]
$$

How do we estimate the gradient without a gradient?
$f: \mathbb{R} \rightarrow \mathbb{R}$
$f^{\prime}(x)=\lim _{\delta \rightarrow 0} \frac{f(x+\delta)-f(x-\delta)}{2 \delta}$
Let

$$
\begin{gathered}
g(x)= \begin{cases}\frac{f(x+\delta)}{\delta} & \text { with prob. } \frac{1}{2} \\
-\frac{f(x-\delta)}{\delta} & \text { with prob. } \frac{1}{2}\end{cases} \\
\mathbf{E}[g(x)]=\frac{1}{2} \frac{f(x+\delta)}{\delta}-\frac{1}{2} \frac{f(x-\delta)}{\delta}=\frac{f(x+\delta)-f(x-\delta)}{2 \delta}=f^{\prime}(x)
\end{gathered}
$$

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
B_{\delta}=\left\{x \mid\|x\|_{2} \leq \delta\right\}, \quad S_{\delta}=\left\{x \mid\|x\|_{2}=\delta\right\}
$$

$\hat{f}_{\delta}(X)=E_{v \sim \text { uniform }\left(B_{1}\right)}[f(X+\delta v)]$.

Example (linear):
$f(X)=<l, X>\longrightarrow \hat{f}_{\delta}(X)=f(X)$.
$g(X)=f(X+\delta u) . u, \quad u \sim S_{1} \in \mathbb{R}^{n}$.

Lemma 15.2 $E_{u \sim S_{1}}[f(X+\delta u) \cdot u]=\frac{\delta}{n} \nabla \hat{f}_{\delta}(X)$.

Proof: We use Stokes Theorem:

$$
\int_{\Sigma} \frac{d \mu}{d X}=\oint_{\delta \Sigma} d X
$$

Which in here we can write

$$
\nabla \int_{B_{\delta}} f(X+v) d v=\int_{S_{\delta}} f(X+u) \frac{u}{\|u\|} d u
$$

Thus, we have

$$
\begin{aligned}
\hat{f}_{\delta}(X) & =\frac{\int_{B_{\delta}} f(X+v) d v}{\operatorname{Vol}\left(B_{\delta}\right)} E_{v \sim S}[f(x+\delta u) \cdot u] \\
& =\frac{\int_{S_{\delta}} f(X+u) \frac{u}{\|u\|} d u}{\operatorname{Vol}\left(S_{\delta}\right)} \\
& =\frac{\operatorname{Vol}\left(B_{\delta}\right)}{\operatorname{Vol}\left(S_{\delta}\right)} \\
& =\frac{\delta}{n}
\end{aligned}
$$

```
Algorithm 3
    procedure FKM
        Input \(K, 0 \in K, B_{1} \subset K,\left\|f_{t}(X)\right\| \leq 1\), for \(\forall X \in K\).
        for \(t=1,2, \ldots, T\) do
            Draw \(u_{t} \sim S, y_{t}=X_{t}+\delta u\).
            Play \(y_{t}, f_{t}\left(y_{t}\right)\), let \(g_{t}=\frac{n}{\delta} f_{t}\left(y_{t}\right) \cdot u_{t}\).
    6: \(\quad\) Update \(X_{t+1}=\pi_{K_{\delta}}\left[X_{t}-\eta g_{t}\right]\).
```

Apply full info A to K_{δ} such that $g_{t}=f(X+\delta u) . u$ and $u \sim S_{\delta}$ uniformly.

To prove this we need to:

- Cost $K \rightarrow K_{d}$ elta
- Cost $f_{t} \rightarrow f_{t_{d} e l t a}$
- Bound $E\left[\left\|g_{t}\right\|^{2}\right]$ with n, δ, f_{t}
- Choose δ and η carefully

References

[1] Agarwal, Alekh, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire. (2014) Taming the monster: A fast and simple algorithm for contextual bandits. In International Conference on Machine Learning:1638-1646.

