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1.1 Convex optimization problems

Definition 1.1 (Convex optimization problem) The optimization problem:

min
x∈D

f(x)

subject to
gi(x) ≤ 0, i = 1, ...,m

hj(x) = 0, j = 1, ..., p

is a convex optimization problem when the functions f and gi are convex, and hj are affine.
See definition 1.9 for convex function

Important Note: For convex optimization problems, local minima are global minima.

1.2 Convex sets

Definition 1.2 (Convex sets) C ⊆ Rn is a convex set iff:

x, y ∈ C ⇒ tx+ (1− t)y ∈ C, ∀ 0 ≤ t ≤ 1

Definition 1.3 A Convex Combination of x1, ..., xk ∈ Rn is any linear combination θ1x1 + ... + θkxk
where θi ≥ 0 for all i, and

∑n
i=1 θi = 1

The Convex Hull of set C is denoted conv(C), and is the set of all convex combinations of the elements in
C. The convex hull is always convex.

1.3 Examples of convex sets

Norm Ball: {x : ‖x‖ ≤ r}
Hyperplane: {x : aTx = b}
Half-space: {x : aTx ≤ b}
Polyhedron: {x : Ax ≤ b}
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1.4 Cones

Definition 1.4 (Cone) C ⊆ Rn is a cone if

x ∈ C ⇒ tx ∈ C, ∀t ≥ 0

Definition 1.5 (Convex Cone:) If a cone is convex, then we call it a convex cone, i.e.

x1, x2 ∈ C ⇒ t1x1 + t2x2 ∈ C, ∀t1, t2 ≥ 0

Definition 1.6 A Conic Combination of x1, ..., xk ∈ Rn is any linear combination θ1x1+ ...+θkxk where
θi ≥ 0 for all i.

The Conic Hull of a set C is denoted coni(C), and is the intersection of all convex cones containing C, plus
the origin.

1.5 Examples of convex cones

Norm Cone: {(x, t)|‖x‖ ≤ t}, for any norm ‖ · ‖.
Normal Cone: Given any set C and a point x ∈ C, the normal cone is defined as

NC(x) = {g|gTx ≥ gT y,∀y ∈ C}

Positive Semidefinite Cone: §n+ = {X ∈ §n|X � 0} is the positive semidefinite cone made up of all nxn
positive semidefinite matrices X.

1.6 Properties of convex sets

Definition 1.7 (Separating Hyperplane Theorem) Any two disjoint convex sets have a hyperplane
separating them. So, if C,D are nonempty, disjoint convex sets, then there exists a, b such that

C ⊆ {x | aTx ≤ b}

D ⊆ {x | aTx ≥ b}

In plain terms: there is a hyperplane which splits the space into two half-spaces. The set C is fully contained
in one half-space, and D in the other half-space.

Definition 1.8 (Supporting Hyperplane Theorem) If C is a nonempty convex set, and x0 is in the
boundary of C, then ∃a such that

C ⊆ {x | aTx ≤ aTx0}

In other words: For any convex set C, every boundary point has a hyperplane passing through it such that
C is entirely contained in one of the closed half-spaces bounded by the hyperplane.
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1.7 Operations preserving convexity

Intersection: The intersection of convex sets is a convex set.
Affine images and preimages: Any affine transformation of a convex set is also a convex set. Formally,
if f(x) = Ax+ b and C is convex, then the image of C under f

f(C) = {f(x) | x ∈ C}

is convex. Also, if D is convex, then its preimage

f−1(D) = {x | f(x) ∈ D}

is convex.

Perspective images and preimages: The perspective function over a convex set is a convex set. Addi-
tionally, the preimage of the perspective function over a convex set is also a convex set. The perspective
function is P : Rn × R++ 7−→ Rn

P (x, z) = x/z

for z > 0.

Linear-fractional images and preimages: The perspective map composed with an affine function is
called a linear-fractional function and has the form:

f(x) =
Ax+ b

cTx+ d

where cTx + d > 0. If C ⊆ dom(f) is convex, then f(C) is also convex. Also, if D is convex, then so is
f−1(D).

1.8 Convex functions

Definition 1.9 (Convex functions) f : Rn → R is a convex function if dom(f) ⊆ Rn and f(tx+(1−t)y) ≤
tf(x) + (1− t)f(y) for all 0 ≤ t ≤ 1 and all x, y ∈ dom(f).

f is strictly convex if f(tx+ (1− t)y) < tf(x) + (1− t)f(y) for x 6= y and 0 < t < 1.

f is strongly convex with parameter m > 0 if f − m
2 ‖x‖

2
2 is convex.

Note that strongly convex ⇒ strictly convex ⇒ convex.

Definition 1.10 (Concave functions) f is a concave function iff −f is convex.

1.9 Key properties of convex functions

Epigraph characterization: a function f is convex iff its epigraph, epi(f) = {(x, t) ∈ dom(f)×R : f(x) ≤
t} is a convex set.

Convex sublevel sets: if f is convex, then its sublevel sets {x ∈ dom(f) : f(x) ≤ t} are convex ∀t ∈ R.

First-order characterization: if f is differentiable, then f is convex iff dom(f) is convex and

f(y) ≥ f(x) +∇f(x)T (y − x)
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for all x, y ∈ dom(f). In other words, the tangent at x is a global under-estimator of the function. We see
that ∇f(x) = 0⇔ x minimizes f .

Second-order characterization: if f is twice differentiable, then f is convex iff dom(f) is convex and its
Hessian ∇2f(x) � 0 (positive semidefinite).

Jensen’s inequality: if f is convex and X is a random variable supported on dom(f), the f(E[X] ≤
E[f(X)].

1.10 Examples of Convex functions

Univariate functions:

• Exponential function: eax is convex for any a on R.

• Power function: xa is convex for a ≥ 1 or a ≤ 0 over R+ (non-negative reals). It is concave for
0 ≤ a ≤ 1.

• Logarithmic function: log(x) is concave over R++ (set of positive reals)

Affine functions: f(x) = aTx+ b is both convex and concave

Quadratic functions: f(x) = 1
2x

TQx + bTx + c is convex provided that Q � 0. This follows directly by
observing that Hessian of f is Q.

Least squares loss: f(x) = ‖y − Ax‖22 is always convex in x because f can be represented as xTATAx−
2yTAx+ yT y. Since ATA is positive semidefinite for any A, f is a quadratic convex function.

Norms:

• The lp norm of x, denoted by ‖x‖p, is convex for any p ≥ 1 where,

‖x‖p =

{
(
∑n
i=1 x

p
i )

1/p
for 1 ≤ p <∞

maxi |xi| p = ∞

• The operator (spectral) and trace (nuclear) norms of a matrix defined by ‖X‖op = σ1(X) and ‖X‖tr =∑r
i=1 σr(X) is convex in X. Here σ1(X) ≥ ... ≥ σr(X) are singular values of X

Indicator function: If C is a convex set, then its indicator function IC(x) is convex where,

IC(x) =

{
0 x ∈ C
∞ x /∈ C

Support function: for any set C (convex or not), its support function I∗C(x) = maxy∈C x
T y is convex.

Max function: f(x) = max{x1, ..., xn} is convex.

1.11 Operations preserving convexity

Non-negative linear combination: f1, ..., fm convex implies a1f1 + ...+ amfm is convex for any
a1, ..., am ≥ 0.
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Pointwise maximization: if fi is convex for any i ∈ I, where I is a possibly infinite set, then f(x) =
maxi∈I fi(x) is convex.

Partial minimization if g(x, y) is convex in x, y and C is convex, then f(x) = miny∈C g(x, y) is convex.
This result trivially extends to partial minimization over a subset of the function’s arguments.

Affine composition: if f is convex, then g(x) = f(Ax+ b) is convex.

General composition: suppose f = h ◦ g, where g : Rn → R, h : R→ R, f : Rn → R then:

• f is convex if h is convex and nondecreasing, g is convex

• f is convex if h is convex and nonincreasing, g is concave

• f is concave if h is concave and nondecreasing, g is concave

• f is concave if h is concave and nonincreasing, g is convex

To remember these, think of chain rule for n = 1 and see how we can make f ′′ positive.

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x)

Vector composition: suppose that f(x) = h(g(x)) = h(g1(x), ..., gk(x)) where g : Rn → Rk,
h : Rk → R, f : Rn → R then:

• f is convex if h is convex and nondecreasing in each argument, g is convex

• f is convex if h is convex and nonincreasing in each argument, g is concave

• f is concave if h is concave and nondecreasing in each argument, g is concave

• f is concave if h is concave and nonincreasing in each argument, g is convex

1.11.1 Examples

Proposition 1.11 Let C be an arbitrary set and x be an arbitrary point. The maximum distance function
to C under an arbitrary norm ‖ · ‖ f(x) = maxy∈C ‖x− y‖ is convex.

Proof: Consider fy(x) = ‖x− y‖, the distance from x to a fixed y ∈ C. Then f is a pointwise maximum of
convex functions represented as f(x) = maxy∈C fy(x)

Proposition 1.12 The distance between a point x and its projection to a convex set C given by d(x) =
miny∈C ‖x− y‖ is convex

Proof: Let h(x, y) = ‖x − y‖. Then d(x) = miny∈C h(x, y) which is a partial minimization of a convex
function over a convex set.

Proposition 1.13 The soft max function g(x) = log(
∑k
i=1 e

aTi x+bi), for fixed ai, bi is convex.
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Proof: Due to affine composition rule, it is sufficient to show that f(x) = log(
∑k
i=1 e

xi) is convex. We make
use of Hölder’s inequality which states that xT y ≤ ‖x‖p‖y‖q where 1

p + 1
q = 1. For λ ∈ (0, 1), We have,

f(λx+ (1− λ)y) = log(

k∑
i=1

eλxi+(1−λ)yi)

≤ log

( k∑
i=1

(
eλxi

) 1
λ )

)λ
·

(
k∑
i=1

(
e(1−λ)yi

) 1
1−λ

)1−λ
= λf(x) + (1− λ)f(y),

where in the second step, we applied Hölder’s inequality with p = 1
λ and q = 1

1−λ .

Remark: The function f(x) = log(
∑k
i=1 e

xi) smoothly approximates maxi xi. This can be seen by noting
that,

max
i
xi ≤ f(x) ≤ log(k) + max

i
xi


