Lecture 1: April 2

Lecturer: Yu-Xiang Wang
Scribes: Alon, Dheeraj

Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1.1 Convex optimization problems

Definition 1.1 (Convex optimization problem) The optimization problem:

$$
\min _{x \in D} f(x)
$$

subject to

$$
\begin{aligned}
& g_{i}(x) \leq 0, i=1, \ldots, m \\
& h_{j}(x)=0, j=1, \ldots, p
\end{aligned}
$$

is a convex optimization problem when the functions f and g_{i} are convex, and h_{j} are affine.
See definition 1.9 for convex function

Important Note: For convex optimization problems, local minima are global minima.

1.2 Convex sets

Definition 1.2 (Convex sets) $C \subseteq \mathbb{R}^{n}$ is a convex set iff:

$$
x, y \in C \Rightarrow t x+(1-t) y \in C, \quad \forall 0 \leq t \leq 1
$$

Definition 1.3 A Convex Combination of $x_{1}, \ldots, x_{k} \in \mathbb{R}^{n}$ is any linear combination $\theta_{1} x_{1}+\ldots+\theta_{k} x_{k}$ where $\theta_{i} \geq 0$ for all i, and $\sum_{i=1}^{n} \theta_{i}=1$

The Convex Hull of set C is denoted $\operatorname{conv}(C)$, and is the set of all convex combinations of the elements in C. The convex hull is always convex.

1.3 Examples of convex sets

Norm Ball: $\{x:\|x\| \leq r\}$
Hyperplane: $\left\{x: a^{T} x=b\right\}$
Half-space: $\left\{x: a^{T} x \leq b\right\}$
Polyhedron: $\{x: A x \leq b\}$

1.4 Cones

Definition 1.4 (Cone) $C \subseteq \mathbb{R}^{n}$ is a cone if

$$
x \in C \Rightarrow t x \in C, \quad \forall t \geq 0
$$

Definition 1.5 (Convex Cone:) If a cone is convex, then we call it a convex cone, i.e.

$$
x_{1}, x_{2} \in C \Rightarrow t_{1} x_{1}+t_{2} x_{2} \in C, \quad \forall t_{1}, t_{2} \geq 0
$$

Definition 1.6 A Conic Combination of $x_{1}, \ldots, x_{k} \in \mathbb{R}^{n}$ is any linear combination $\theta_{1} x_{1}+\ldots+\theta_{k} x_{k}$ where $\theta_{i} \geq 0$ for all i.

The Conic Hull of a set C is denoted $\operatorname{coni}(C)$, and is the intersection of all convex cones containing C, plus the origin.

1.5 Examples of convex cones

Norm Cone: $\{(x, t) \mid\|x\| \leq t\}$, for any norm $\|\cdot\|$.
Normal Cone: Given any set C and a point $x \in C$, the normal cone is defined as

$$
N_{C}(x)=\left\{g \mid g^{T} x \geq g^{T} y, \forall y \in C\right\}
$$

Positive Semidefinite Cone: $\S_{+}^{n}=\left\{X \in \S^{n} \mid X \succeq 0\right\}$ is the positive semidefinite cone made up of all nxn positive semidefinite matrices X.

1.6 Properties of convex sets

Definition 1.7 (Separating Hyperplane Theorem) Any two disjoint convex sets have a hyperplane separating them. So, if C, D are nonempty, disjoint convex sets, then there exists a, b such that

$$
\begin{aligned}
& C \subseteq\left\{x \mid a^{T} x \leq b\right\} \\
& D \subseteq\left\{x \mid a^{T} x \geq b\right\}
\end{aligned}
$$

In plain terms: there is a hyperplane which splits the space into two half-spaces. The set C is fully contained in one half-space, and D in the other half-space.

Definition 1.8 (Supporting Hyperplane Theorem) If C is a nonempty convex set, and x_{0} is in the boundary of C, then $\exists a$ such that

$$
C \subseteq\left\{x \mid a^{T} x \leq a^{T} x_{0}\right\}
$$

In other words: For any convex set C, every boundary point has a hyperplane passing through it such that C is entirely contained in one of the closed half-spaces bounded by the hyperplane.

1.7 Operations preserving convexity

Intersection: The intersection of convex sets is a convex set.
Affine images and preimages: Any affine transformation of a convex set is also a convex set. Formally, if $f(x)=A x+b$ and C is convex, then the image of C under f

$$
f(C)=\{f(x) \mid x \in C\}
$$

is convex. Also, if D is convex, then its preimage

$$
f^{-1}(D)=\{x \mid f(x) \in D\}
$$

is convex.
Perspective images and preimages: The perspective function over a convex set is a convex set. Additionally, the preimage of the perspective function over a convex set is also a convex set. The perspective function is $P: \mathbb{R}^{n} \times \mathbb{R}_{++} \longmapsto \mathbb{R}^{n}$

$$
P(x, z)=x / z
$$

for $z>0$.
Linear-fractional images and preimages: The perspective map composed with an affine function is called a linear-fractional function and has the form:

$$
f(x)=\frac{A x+b}{c^{T} x+d}
$$

where $c^{T} x+d>0$. If $C \subseteq \operatorname{dom}(f)$ is convex, then $f(C)$ is also convex. Also, if D is convex, then so is $f^{-1}(D)$.

1.8 Convex functions

Definition 1.9 (Convex functions) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function if $\operatorname{dom}(f) \subseteq \mathbb{R}^{n}$ and $f(t x+(1-t) y) \leq$ $t f(x)+(1-t) f(y)$ for all $0 \leq t \leq 1$ and all $x, y \in \operatorname{dom}(f)$.
f is strictly convex if $f(t x+(1-t) y)<t f(x)+(1-t) f(y)$ for $x \neq y$ and $0<t<1$.
f is strongly convex with parameter $m>0$ if $f-\frac{m}{2}\|x\|_{2}^{2}$ is convex.
Note that strongly convex \Rightarrow strictly convex \Rightarrow convex.
Definition 1.10 (Concave functions) f is a concave function iff $-f$ is convex.

1.9 Key properties of convex functions

Epigraph characterization: a function f is convex iff its epigraph, epi $(f)=\{(x, t) \in \operatorname{dom}(f) \times \mathbb{R}: f(x) \leq$ $t\}$ is a convex set.
Convex sublevel sets: if f is convex, then its sublevel sets $\{x \in \operatorname{dom}(f): f(x) \leq t\}$ are convex $\forall t \in \mathbb{R}$.
First-order characterization: if f is differentiable, then f is convex $i f f \operatorname{dom}(f)$ is convex and

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

for all $x, y \in \operatorname{dom}(f)$. In other words, the tangent at x is a global under-estimator of the function. We see that $\nabla f(x)=0 \Leftrightarrow x$ minimizes f.

Second-order characterization: if f is twice differentiable, then f is convex iff $\operatorname{dom}(f)$ is convex and its Hessian $\nabla^{2} f(x) \succeq 0$ (positive semidefinite).

Jensen's inequality: if f is convex and X is a random variable supported on $\operatorname{dom}(f)$, the $f(\mathbb{E}[X] \leq$ $\mathbb{E}[f(X)]$.

1.10 Examples of Convex functions

Univariate functions:

- Exponential function: $e^{a x}$ is convex for any a on \mathbb{R}.
- Power function: x^{a} is convex for $a \geq 1$ or $a \leq 0$ over \mathbb{R}_{+}(non-negative reals). It is concave for $0 \leq a \leq 1$.
- Logarithmic function: $\log (x)$ is concave over \mathbb{R}_{++}(set of positive reals)

Affine functions: $f(x)=a^{T} x+b$ is both convex and concave
Quadratic functions: $f(x)=\frac{1}{2} x^{T} Q x+b^{T} x+c$ is convex provided that $Q \succeq 0$. This follows directly by observing that Hessian of f is Q.

Least squares loss: $f(x)=\|y-A x\|_{2}^{2}$ is always convex in x because f can be represented as $x^{T} A^{T} A x-$ $2 y^{T} A x+y^{T} y$. Since $A^{T} A$ is positive semidefinite for any A, f is a quadratic convex function.

Norms:

- The l_{p} norm of x, denoted by $\|x\|_{p}$, is convex for any $p \geq 1$ where,

$$
\|x\|_{p}= \begin{cases}\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p} & \text { for } 1 \leq p<\infty \\ \max _{i}\left|x_{i}\right| & \mathrm{p}=\infty\end{cases}
$$

- The operator (spectral) and trace (nuclear) norms of a matrix defined by $\|\boldsymbol{X}\|_{o p}=\sigma_{1}(\boldsymbol{X})$ and $\|\boldsymbol{X}\|_{t r}=$ $\sum_{i=1}^{r} \sigma_{r}(\boldsymbol{X})$ is convex in \boldsymbol{X}. Here $\sigma_{1}(\boldsymbol{X}) \geq \ldots \geq \sigma_{r}(\boldsymbol{X})$ are singular values of \boldsymbol{X}

Indicator function: If C is a convex set, then its indicator function $I_{C}(x)$ is convex where,

$$
I_{C}(x)= \begin{cases}0 & x \in C \\ \infty & x \notin C\end{cases}
$$

Support function: for any set C (convex or not), its support function $I_{C}^{*}(x)=\max _{y \in C} x^{T} y$ is convex.
Max function: $f(x)=\max \left\{x_{1}, \ldots, x_{n}\right\}$ is convex.

1.11 Operations preserving convexity

Non-negative linear combination: f_{1}, \ldots, f_{m} convex implies $a_{1} f_{1}+\ldots+a_{m} f_{m}$ is convex for any $a_{1}, \ldots, a_{m} \geq 0$.

Pointwise maximization: if f_{i} is convex for any $i \in I$, where I is a possibly infinite set, then $f(x)=$ $\max _{i \in I} f_{i}(x)$ is convex.
Partial minimization if $g(x, y)$ is convex in x, y and C is convex, then $f(x)=\min _{y \in C} g(x, y)$ is convex. This result trivially extends to partial minimization over a subset of the function's arguments.

Affine composition: if f is convex, then $g(x)=f(A x+b)$ is convex.
General composition: suppose $f=h \circ g$, where $g: \mathbb{R}^{n} \rightarrow \mathbb{R}, h: \mathbb{R} \rightarrow \mathbb{R}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ then:

- f is convex if h is convex and nondecreasing, g is convex
- f is convex if h is convex and nonincreasing, g is concave
- f is concave if h is concave and nondecreasing, g is concave
- f is concave if h is concave and nonincreasing, g is convex

To remember these, think of chain rule for $n=1$ and see how we can make $f^{\prime \prime}$ positive.

$$
f^{\prime \prime}(x)=h^{\prime \prime}(g(x)) g^{\prime}(x)^{2}+h^{\prime}(g(x)) g^{\prime \prime}(x)
$$

Vector composition: suppose that $f(x)=h(g(x))=h\left(g_{1}(x), \ldots, g_{k}(x)\right)$ where $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$, $h: \mathbb{R}^{k} \rightarrow \mathbb{R}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ then:

- f is convex if h is convex and nondecreasing in each argument, g is convex
- f is convex if h is convex and nonincreasing in each argument, g is concave
- f is concave if h is concave and nondecreasing in each argument, g is concave
- f is concave if h is concave and nonincreasing in each argument, g is convex

1.11.1 Examples

Proposition 1.11 Let C be an arbitrary set and x be an arbitrary point. The maximum distance function to C under an arbitrary norm $\|\cdot\| f(x)=\max _{y \in C}\|x-y\|$ is convex.

Proof: Consider $f_{y}(x)=\|x-y\|$, the distance from x to a fixed $y \in C$. Then f is a pointwise maximum of convex functions represented as $f(x)=\max _{y \in C} f_{y}(x)$

Proposition 1.12 The distance between a point x and its projection to a convex set C given by $d(x)=$ $\min _{y \in C}\|x-y\|$ is convex

Proof: Let $h(x, y)=\|x-y\|$. Then $d(x)=\min _{y \in C} h(x, y)$ which is a partial minimization of a convex function over a convex set.

Proposition 1.13 The soft max function $g(x)=\log \left(\sum_{i=1}^{k} e^{a_{i}^{T} x+b_{i}}\right)$, for fixed a_{i}, b_{i} is convex.

Proof: Due to affine composition rule, it is sufficient to show that $f(x)=\log \left(\sum_{i=1}^{k} e^{x_{i}}\right)$ is convex. We make use of Hölder's inequality which states that $x^{T} y \leq\|x\|_{p}\|y\|_{q}$ where $\frac{1}{p}+\frac{1}{q}=1$. For $\lambda \in(0,1)$, We have,

$$
\begin{aligned}
f(\lambda x+(1-\lambda) y) & =\log \left(\sum_{i=1}^{k} e^{\lambda x_{i}+(1-\lambda) y_{i}}\right) \\
& \left.\leq \log \left(\left(\sum_{i=1}^{k}\left(e^{\lambda x_{i}}\right)^{\frac{1}{\lambda}}\right)\right)^{\lambda} \cdot\left(\sum_{i=1}^{k}\left(e^{(1-\lambda) y_{i}}\right)^{\frac{1}{1-\lambda}}\right)^{1-\lambda}\right) \\
& =\lambda f(x)+(1-\lambda) f(y)
\end{aligned}
$$

where in the second step, we applied Hölder's inequality with $p=\frac{1}{\lambda}$ and $q=\frac{1}{1-\lambda}$.
Remark: The function $f(x)=\log \left(\sum_{i=1}^{k} e^{x_{i}}\right)$ smoothly approximates $\max _{i} x_{i}$. This can be seen by noting that,

$$
\max _{i} x_{i} \leq f(x) \leq \log (k)+\max _{i} x_{i}
$$

