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4.1 Recap of Gradient Descent

Consider the following minimization problem:

min
x
f(x) (4.1)

Gradient descent can be used to minimize f(x) iterating the following steps:

x(k) = x(k−1) − tk · ∇f(x(k−1)), k = 1, 2, 3... (4.2)

4.1.1 Comparison between Different Condition

Strongly convex and smooth is a strong condition. Polyak- Lojasiewicz(PL) condition is overlapping with
convex condition, it requires the gradient rate to be big and is still ratively restrict. if f is convex and
smooth, then (RSC) = (PL) = (QC) = errorbound(EB). For general smooth functions, we have (RSI)→
(EB) = (PL) → (QG). Gradient descent(GD) is not optimal, when know the conditonal number L,m, we
could use Acceleration GD, which will have a square root improvement, and is optimal for first order method.
Question: Why we learn GD instead of AGD? AGD is a gradient descent method, it doen’t guarantee grdient
descent in every iteration. Up to now we talk about are convex and smooth, we are working with function
that are not smooth.

4.2 Subgradients

Definition 4.1 A subgradient of a convex function f at x is any g ∈ Rn such that

f(y) ≥ f(x) + gT (y − x)for ally

• For convex functions, such g always exists (Subgradients need to be on the ralative interior of domf)

f(x) =

{
−(1− ||x||2)

1
2 if ||x||2 ≤ 1;

∞ otherwise;

• If f is differentialble at x, then f has a unique subgradient at x which is exactly ∇f(x)
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• although the same definition of subgradients can also work for nonconvex functions, subgradients may
not exist at certain locations, even if they may be smooth.

• Two examples of nonconvex with no subgradients everywhere: f(x) = −x2 and f(x) = x3.

Example 4.2 where subgradients not exists. e.x. a concave function, or f(x) = xq, where q > 1 is a
constant, for arbitrary line which is tangent to f(x), will always cross f(x).

4.2.1 Examples of Subgradients

• Absolute value Consider f(x) = |x|, for x 6= 0, unique subgradient g = sign(x), otherwise subgradient
g is any element between [−1, 1].

• l2 norm Consider f(x) = ||x||2, for x 6= 0, unique subgradient g = x/||x||2, otherwise subgradient is
any element of {z : ||z||2 ≤ 1}.

• l1 norm Consider f(x) = ||x||1,for xi 6= 0, unique subgradient gi = sign(x), otherwise subgradient gi
is any element between [−1, 1].

• Pointwise max of two differentiable convex functions The function has the form f1, f2 :
Rn− > R, f(x) = max{f1(x), f2(x)}.The function is differentiable at any location where f1(x) >
f2(x)orf1(x) < f2(x). At these locations the subgradient is uniquely equal to the gradient of the larger
function. However at locations where f1(x) = f2(x), the function becomes nondifferentialble.

g(x) =

 ∇f1(x) iff1(x) ≥ f2(x)
∇f2(x) iff1(x) ≤ f2(x)
t∇f1(x) + (1− t)∇f2(x), t ∈ [0, 1] iff1(x) = f2(x)

4.3 Subdifferential

Set of all subgradients of convex f is called the subdifferential,

∂f(x) = {g ∈ Rn : g is a subgradient of f at x}

4.3.1 Property of Subdifferential

• It’s nonempty if f is convex.

• ∂f(x) is closed and convex even for nonconvex f .

• If f is differentialble at x, then ∂f(x) = {∇f(x)} .

• if ∂f(x) = {g}, then f is differentiable at x and ∇f(x) = g.

4.3.2 Connection of Convexity Geometry

Given a convex set C ⊆ Rn, consider indicator function IC : Rn− > R, where

IC(x) =

{
I{x ∈ C} = 0 if x ∈ C
∞ otherwise
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Proof: By the definition of subgradient g, IC(y) ≥ IC(x) + gT (y − x), since for y /∈ C, Ic(y) = ∞, so we
have 0 ≥ gT (y − x),∀y ∈ C.

4.3.3 Subgradient Calcus

• Scaling: ∂(af) = a∂̇f , provided a ≥ 0(if a ≤ 0, it will turn the function into a concave function).

• Addition: ∂(f1 + f2) = ∂f1 + ∂f2.

• Affine composition: if f(x) = g(Ax+ b), then ∂g = AT∂f(Ax+ b).

• Finite pointwise maximum: if f(x) = maxi∈[1,m] fi(x), then

∂f(x) = conv(∪i:fi(x)=f(x)∂fi(x))

• Norm : f(x) = ||x||p, Let q be such that 1/p+ 1/q = 1, then ||x||p = max||z||q≤1 z
Tx, which is also the

definition of dual norm. Then we have

∂f(x) = argmax||z||q≤1z
Tx.(This is called a polar operator from Yaolin Yu’s NIPS’13)

4.3.4 Importance of Subgradient

• For convex analysis, optimality characterization via subgradients. That is for any f(convex or not),

f(x∗) = minxf(x)⇐⇒ 0 ∈ ∂f(x∗)

This is called the subgradient optimality condition. Since

f(y) ≥ f(x∗) + 0T (y − x∗) = f(x∗)

• For convex optimization, if you can compute subgradients, then you can minimize any convex function.

4.3.5 Derivation of First-order Optimality

Consider a constrained minimization problem:

min
x
f(x) + IC(x)

By apply subgradient optimality we have 0 ∈ ∂(f(x) + IC(x)).

0 ∈ ∂(f(x) + IC(x)⇐⇒ 0 ∈ ∇f(x) +NC(x)

⇐⇒ −∇f(x) ∈ Nc(x)

⇐⇒ −∇f(x)Tx ≥ −∇f(x)T yfor all y ∈ C
⇐⇒ f(x)T ≥ (y − x) ≥ 0for all y ∈ C

Note: the condition 0 ∈ ∂(f(x) + IC(x) is a fully general condition for optimality in convex problems. But
it’s not always easy to work with (KKT conditions, later, are easier)
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4.3.6 Example: Lasso Optimality Conditions

Given y ∈ Rn, x ∈ Rn×p, lasso problem is

min
β

1

2
||y −Xβ||22 + λ||β||1,where λ ≥ 0

Follow subgradient optimality, we have

0 ∈ ∂(
1

2
||y −Xβ||22 + λ||β||1)

⇐⇒ 0 ∈ −XT (y −XTβ) + λ∂||β||1
⇐⇒ XT (y −XTβ) = λv for some v ∈ ∂||β||1

4.3.7 Example: Soft-thresholding

For a simplified lasso problem, the sulution is β = Sλ(y),where Sλ is the soft-thresholding operator.

4.3.8 Example: Distance to a Convex Set

The distance function to a convex, closed set C is:

dist(x,C) = min
y∈C
||y − x||2

Write dist(x,C) = ||x−PC(x)||2, where PC(x) is the projection of x onto C. It turns out when dist(x,C) > 0,

∂dist(x,C) = { x− PC(x)

||x− PC(x)||2
}

Proof: Suppose u = PC(x), then by first-order optimality conditions for a projection, we have

(x− u)T (y − u) ≤ 0 for all y ∈ C

Hence C ⊂ H = {y : (x− u)T (y − u) ≤ 0}. Then we have

dist(y, C) ≥ (x− u)T (y − u)

||x− u||2

=
(x− u)T (y − x+ x− u)

||x− u||2

= ||x− u||2 + (
x− u
||x− u||2

)T (y − x)

Hence g = x−u
||x−u||2 is a subgradient of dist(x,C) at x.
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Figure 4.1: Illustration of the subgradients of three example nonsmooth functions. From left to right: 1.
absolute value; 2. l2 norm; 3. l1 norm. 4. pointwise max of two differentiable convex functions.


