6.1 Fenchel conjugate

Given a function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \), define its conjugate \(f^* : \mathbb{R}^n \rightarrow \mathbb{R} \),
\[
f^*(y) = \max_{x} y^T x - f(x)
\] (6.1)

Note that \(f^* \) is always convex, since it is the pointwise maximum of function convex (affine) functions in \(y \).

It has the following properties:

- Fenchel’s inequality: for any \(x, y \)
 \[
f(x) + f^*(y) \geq x^T y
\] (6.2)

- Conjugate of conjugate \(f^{**} \) satisfies \(f^{**} \leq f \).

- If \(f \) is closed and convex, then for any \(x, y \),
 \[
x \in \partial f^*(y) \iff y \in \partial f(x) \iff f(x) + f^*(y) = x^T y
\] (6.3)

- If \(f(u, v) = f_1(u) + f_2(v) \), then \(f^*(w, z) = f_1^*(w) + f_2^*(z) \)

Examples:

\[
\begin{array}{|c|c|}
\hline
f(x) & f^*(x) \\
\hline
\frac{1}{2} x^T Q x (Q \succ 0) & \frac{1}{2} y^T Q^{-1} y \\
I_C(x) \text{ (indicator function)} & \max_{x \in C} y^T x \text{ (support function)} \\
\|x\| & I_{\{x: \|x\|_1 \leq 1\}}(y) \\
\hline
\end{array}
\]

6.2 Moreau Envelope and Smoothing

\[
M_{\delta, f}(x) := \min_{y} \frac{1}{2\delta} \|y - x\|^2 + f(y) \\
= \frac{1}{2\delta} \|\text{prox}_{\delta f}(x) - x\|^2 + f(\text{prox}_{\delta f}(x))
\] (6.4)

Example: Huber function is
\[
L_\delta(x) = \begin{cases}
\frac{1}{2} x^2 & \text{if } |x| \leq \delta \\
\delta (|x| - \frac{1}{2} \delta) & \text{otherwise}
\end{cases}
\] (6.5)
is the Moreau Envelope of the absolute value function

\[M_{\delta|\cdot|}(x) = \min_y \frac{1}{2}(x - y)^2 + \delta|y| \]

Huber envelope and prox operators has the following properties:

- **(Yoshida-Moreau Smoothing)** $M_{t,f}(x)$ of any convex function is $1/t$-smooth.
- **(Preservation of optimal criterion.)** $\min_x f(x) = \min_x M_{t,f}(x)$.
- **(Preservation of optimal solution.)** x minimizes f if and only if x minimizes $M_{t,f}(x)$ for all $t > 0$ (even for nonconvex functions).
- **(Gradient of a Moreau-Envelope)** $\nabla M_{t,f}(x) = \frac{x - \text{prox}_{t,f}(x)}{t}$.
- **(Fixed Point Iteration)** x^* minimizes f if and only if $x^* = \text{prox}_{t,f}(x^*)$.
- **(Moreau Decomposition)** $x = \text{prox}_f(x) + \text{prox}_f^\perp(x)$. This a generalization of the orthogonal projection decomposition to a subspace S. $x = \Pi_S(x) + \Pi_{S^\perp}(x)$. Combine with the gradients, we have $\nabla M_f(x) = \text{prox}_f(x)$.
- **(Proximal average)** Let f_1, \ldots, f_m be closed proper convex functions, there exists a convex function g, such that
 \[\frac{1}{m} \sum_{i=1}^{m} \text{prox}_{f_i} = \text{prox}_g \]
 (6.7)
- **(Non-Expansiveness)** prox_f is a non-expansion, namely, for all x, y,
 \[\|\text{prox}_f(x) - \text{prox}_f(y)\|^2 \leq \langle x - y, \text{prox}_f(x) - \text{prox}_f(y) \rangle \]
 (6.8)
6.3 Operator-theoretic view of a prox operator

∂f maps a point $x \in \text{dom} f$ to the set $\partial f(x)$. $(I + t\partial f)^{-1}$ is called the resolvent of an operator ∂f.

Theorem 6.1 Consider convex function f,

$$\text{prox}_{t,f}(x) = (I + t\partial f)^{-1}(x). \tag{6.9}$$

Proof: Recall the definition:

$$\text{prox}_f(x) = \arg \min_y \frac{1}{2} \|y - x\|^2 + f(y). \tag{6.10}$$

By the first order optimality condition x^* obeys that

$$0 \in (x^* - x) + \partial f(x^*) \iff x \in x^* + \partial f(x^*) = (I + \partial f)(x^*) \tag{6.11}$$

if an only if

$$x^* = (I + \partial f)^{-1}x. \tag{6.12}$$

6.4 Proximal Point Algorithm (aka Proximal Minimization)

To minimize a convex function f. Iterate:

$$x^{k+1} = \text{prox}_{t,f}(x^k). \tag{6.13}$$

- This is a fixed point iteration (note that prox is a non-expansion) $x^{k+1} = (I + t\partial f)^{-1}x^k$.
- Also, this is a gradient descent on the Moreau Envelope. $x^{k+1} = x^k - (I - (I + t\partial f)^{-1})x_k = x_k - t\nabla M_f(x_k)$.

6.5 Proximal Gradient Algorithm

For minimizing a composition objective $f + h$

$$x^{k+1} = \text{prox}_{t,h}(x^k - t\nabla f(x^k)). \tag{6.14}$$

- It can be taken as a fixed point iteration:

$$x_{k+1} = (I + t\partial h)^{-1}(I - t\nabla f)x^k \tag{6.15}$$

- Or, it can be taken as a Smoothed Majorization-Minimization objective

$$x^{k+1} = \arg \min_y f(x^k) + \langle \nabla f(x^k), y - x^k \rangle + \frac{1}{2t} \|y - x_k\|^2 + h(y) \tag{6.16}$$

Proof: x^* is optimal

$$\iff 0 \in \nabla f(x^*) + \partial h(x^*)$$

$$\iff 0 \in \nabla f(x^*) - x^* + x^* + \partial h(x^*)$$

$$\iff x^* - \nabla f(x^*) \in x^* + \partial h(x^*)$$

$$\iff x^* - \nabla f(x^*) \in (I + \partial h)(x^*)$$

$$\iff x^* = (I + \partial h)^{-1}(I - \nabla f)(x^*) \tag{6.17}$$
• The generalized gradient is the gradient of a Moreau-Envelope of $f_{\text{linearized}} + h$ at x_k.

We now delve right into the proof.

Lemma 6.2 This is the first lemma of the lecture.

Proof: The proof is by induction on \ldots. For fun, we throw in a figure.

![Figure 6.1: A Fun Figure](image)

This is the end of the proof, which is marked with a little box.

6.5.1 A few items of note

Here is an itemized list:

- this is the first item;
- this is the second item.

Here is an enumerated list:

1. this is the first item;
2. this is the second item.

Here is an exercise:

Exercise: Show that $P \neq NP$.

Here is how to define things in the proper mathematical style. Let f_k be the $AND - OR$ function, defined by

\[
f_k(x_1, x_2, \ldots, x_{2^k}) = \begin{cases}
 x_1 & \text{if } k = 0; \\
 AND(f_{k-1}(x_1, \ldots, x_{2^{k-1}}), f_{k-1}(x_{2^{k-1}+1}, \ldots, x_{2^k})) & \text{if } k \text{ is even}; \\
 OR(f_{k-1}(x_1, \ldots, x_{2^{k-1}}), f_{k-1}(x_{2^{k-1}+1}, \ldots, x_{2^k})) & \text{otherwise}.
\end{cases}
\]

Theorem 6.3 This is the first theorem.

Proof: This is the proof of the first theorem. We show how to write pseudo-code now.

Consider a comparison between x and y:
if x or y or both are in S then
 answer accordingly
else
 Make the element with the larger score (say x) win the comparison
 if $F(x) + F(y) < \frac{n}{r-1}$ then
 $F(x) \leftarrow F(x) + F(y)$
 $F(y) \leftarrow 0$
 else
 $S \leftarrow S \cup \{x\}$
 $r \leftarrow r + 1$
 endif
endif
This concludes the proof.

6.6 Next topic

Here is a citation, just for fun [CW87].

References