Proximal gradient (Part II)

Yu-Xiang Wang
CS292F

(Based on Ryan Tibshirani’s 10-725)
Last time: proximal gradient descent

Consider the problem

$$\min_x g(x) + h(x)$$

with \(g, h\) convex, \(g\) differentiable, and \(h\) “simple” in so much as

$$\text{prox}_t(x) = \arg\min_z \frac{1}{2t} \|x - z\|^2_2 + h(z)$$

is computable. **Proximal gradient descent**: let \(x^{(0)} \in \mathbb{R}^n\), repeat:

$$x^{(k)} = \text{prox}_{t_k} \left(x^{(k-1)} - t_k \nabla g(x^{(k-1)})\right), \quad k = 1, 2, 3, \ldots$$

Step sizes \(t_k\) chosen to be fixed and small, or via backtracking

If \(\nabla g\) is Lipschitz with constant \(L\), then this has convergence rate \(O(1/\epsilon)\). Lastly we can **accelerate** this, to optimal rate \(O(1/\sqrt{\epsilon})\)
Last time: proximal gradient descent

In the convergence proof (HW2 Q3), we rewrote update as the following:

\[x^{(k)} = x^{(k-1)} - t_k \cdot G_{t_k}(x^{(k-1)}) \]

where \(G_t \) is the generalized gradient of \(f \), (Nesterov’s Gradient Mapping!)

\[G_t(x) = \frac{x - \text{prox}_t(x - t\nabla g(x))}{t} \]

Then we more or less followed the convergence proof of the standard Gradient Descent (Lecture 3).

What is \(G_t \)? Is \(G_t \) the gradient of some function?
What exactly is the proximal gradient algorithm descent doing?
Outline

Today:
- Fenchel conjugate
- Prox Operator, Moreau Envelope and Smoothing
- Interpreting proximal algorithms
(Fenchel) Conjugate function

Given a function $f : \mathbb{R}^n \to \mathbb{R}$, define its conjugate $f^* : \mathbb{R}^n \to \mathbb{R}$,

$$f^*(y) = \max_x y^T x - f(x)$$

Note that f^* is always convex, since it is the pointwise maximum of convex (affine) functions in y (here f need not be convex)

$$f^*(y) : \text{maximum gap between linear function } y^T x \text{ and } f(x)$$

(From B & V page 91)

For differentiable f, conjugation is called the Legendre transform
Examples:

- Simple quadratic: let $f(x) = \frac{1}{2} x^T Q x$, where $Q > 0$. Then $y^T x - \frac{1}{2} x^T Q x$ is strictly concave in x and is maximized at $x = Q^{-1} y$, so

\[
 f^*(y) = \frac{1}{2} y^T Q^{-1} y
\]

- Indicator function: if $f(x) = I_C(x)$, then its conjugate is

\[
 f^*(y) = I_C^*(y) = \max_{x \in C} y^T x
\]

called the support function of C

- Norm: if $f(x) = \|x\|$, then its conjugate is

\[
 f^*(y) = I_{\{z : \|z\|* \leq 1\}}(y)
\]

where $\| \cdot \|*$ is the dual norm of $\| \cdot \|$
Properties:

- Fenchel’s inequality: for any x, y,
 \[f(x) + f^*(y) \geq x^T y \]

- Conjugate of conjugate f^{**} satisfies $f^{**} \leq f$

- If f is closed and convex, then $f^{**} = f$

- If f is closed and convex, then for any x, y,
 \[x \in \partial f^*(y) \iff y \in \partial f(x) \iff f(x) + f^*(y) = x^T y \]

- If $f(u, v) = f_1(u) + f_2(v)$, then
 \[f^*(w, z) = f_1^*(w) + f_2^*(z) \]
Moreau Envelope and Smoothing

We talked about prox operator

\[
\text{prox}_{t,f}(x) \in \operatorname*{argmin}_{y} \frac{1}{2t} \|y - x\|^2 + f(y).
\]

Note that the output of prox is in the \(\text{dom} f \).

The Moreau envelope of a function \(f \) defined as

\[
M_{t,f}(x) := \min_{y} \frac{1}{2t} \|y - x\|^2 + f(y)
= \frac{1}{2t} \|\text{prox}_{t,f}(x) - x\|^2 + f(\text{prox}_{t,f}(x)).
\]

The Moreau envelope outputs the optimal objective value.

These quantities can be defined by for general functions but many of their remarkable properties only apply to convex \(f \).
Example: Huber function

\[
L_\delta(x) = \begin{cases}
\frac{1}{2}x^2 & \text{if } |x| \leq \delta \\
\delta(|x| - \frac{1}{2}\delta) & \text{otherwise.}
\end{cases}
\]

We can rewrite the Huber function as the Moreau Envelope of the absolute value function \(|\cdot| \).

\[
M_{\delta |\cdot|}(x) = \min_y \frac{1}{2} (x - y)^2 + \delta |y|.
\]

Proof.

We know that the argmax is the soft-shresholding operator. Substitute that into the equation. If \(|x| > \delta \), the optimal solution \(y^* = x - \delta \text{sign}(x) \), and the criterion value is \(\frac{1}{2}\delta^2 + \delta|x| - \delta^2 \).

If \(|x| < \delta \), the \(y^* = 0 \) and \(M_{\delta |\cdot|}(x) = \frac{1}{2}x^2 \). \qed
Example: Huber function

(Stolen from Yaoliang Yu’s wonderful notes. [Click Here].)
Properties of a Moreau Envelope and Prox Operator

1. (Yoshida-Moreau Smoothing) $M_{t,f}(x)$ of any convex function is $1/t$-smooth. (Need duality to write down a clean proof.)

2. (Preservation of optimal criterion.) $\min_x f(x) = \min_x M_{t,f}(x)$.

3. (Preservation of optimal solution.) x minimizes f if and only if x minimizes $M_{t,f}(x)$ for all $t > 0$ (even for nonconvex functions).

4. (Gradient of a Moreau-Envelope) $\nabla M_{t,f}(x) = \frac{x - \text{prox}_{t,f}(x)}{t}$

5. (Fixed Point Iteration) x^* minimizes f if and only if $x^* = \text{prox}_{t,f}(x^*)$.
More properties of a Moreau Envelope and Prox Operator

1. (Moreau Decomposition) \(x = \text{prox}_f(x) + \text{prox}_{f^*}(x) \)
 ▶ You can think of it as a generalization of the orthogonal projection decomposition to a subspace \(S \)
 \[
 x = \Pi_S(x) + \Pi_{S^\perp}(x).
 \]
 ▶ Combine with the gradients, you have: \(\nabla M_f(x) = \text{prox}_{f^*}(x) \).

2. (Proximal average) Let \(f_1, \ldots, f_m \) be closed proper convex functions, there exists a convex function \(g \), such that
 \[
 \frac{1}{m} \sum_{i=1}^{m} \text{prox}_f = \text{prox}_g.
 \]

3. (Non-Expansiveness) \(\text{prox}_f \) is a non-expansion, namely, for all \(x, y \)
 \[
 \|\text{prox}_f(x) - \text{prox}_f(y)\|^2 \leq \langle x - y, \text{prox}_f(x) - \text{prox}_f(y) \rangle.
 \]
Operator-theoretic view of a prox operator

∂f maps a point $x \in \text{dom} f$ to the set $\partial f(x)$.

$(I + t\partial f)^{-1}$ is called the **resolvent** of an operator ∂f.

Theorem: Consider convex function f (so that the subgradient exists in the rel-int)

$$\text{prox}_{t,f}(x) = (I + t\partial f)^{-1}(x).$$

Proof: Recall the definition:

$$\text{prox}_f(x) = \arg \min_y \frac{1}{2} \|y - x\|^2 + f(y).$$

By the first order optimality condition x^* obeys that

$$0 \in (x^* - x) + \partial f(x^*) \iff x \in x^* + \partial f(x^*) = (I + \partial f)(x^*)$$

if an only if

$$x^* = (I + \partial f)^{-1}x.$$
Proximal Point Algorithm (aka Proximal Minimization)

To minimize a convex function f. Iterate:

$$x^{k+1} = \text{prox}_{tf}(x^k).$$

1. This is a fixed point iteration (note that prox is a non-expansion).

$$x^{k+1} = (I + t\partial f)^{-1}x^k.$$

2. Also, this is a gradient descent on the Moreau Envelope.

$$x^{k+1} = x_k - (I - (I + t\partial f)^{-1})x_k = x_k - t\nabla M_f(x_k).$$

Question: Is the learning rate appropriate for the GD to converge?
Proximal Gradient Algorithm

For minimizing a composition objective $f + h$

$$x^{k+1} = \text{prox}_{th}(x^k - t\nabla f(x^k)).$$

1. As a fixed point iteration:

$$x^{k+1} = (I + t\partial h)^{-1}(I - t\nabla f)x_k$$

2. As a Smoothed Majorization-Minimization objective

$$x^{k+1} = \underset{y}{\text{argmin}} f(x^k) + \langle \nabla f(x^k), y - x^k \rangle + \frac{1}{2t} ||y - x_k||^2 + h(y)$$

3. The generalized gradient is the gradient of a Moreau-Envelope of $f_{\text{Linearized}} + h$ at x^k.
Summary of Proximal Algorithms

1. Proximal point algorithm is to minimize the smoothed version of a nonsmooth objective using gradient descent.
2. Proximal gradient is to combine the idea of local quadratic approximation (with Majorization-Minimization) with the Moreau-Yoshida smoothing.
3. We can express things in operator-theoretic form as fixed point iterations.
4. If the fixed point iterations are conducted using a contraction map, then we have linear convergence.
References and further reading